arm-smmu.c 52.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
37
#include <linux/io-64-nonatomic-hi-lo.h>
38
#include <linux/iommu.h>
39
#include <linux/iopoll.h>
40 41
#include <linux/module.h>
#include <linux/of.h>
42
#include <linux/of_address.h>
43
#include <linux/pci.h>
44 45 46 47 48 49
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

50
#include "io-pgtable.h"
51 52

/* Maximum number of stream IDs assigned to a single device */
53
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
54 55 56 57 58 59 60 61 62

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
63
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
64

65 66 67 68 69 70 71 72 73 74
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

75 76 77 78 79
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
80
#ifdef CONFIG_64BIT
81
#define smmu_write_atomic_lq		writeq_relaxed
82
#else
83
#define smmu_write_atomic_lq		writel_relaxed
84 85
#endif

86 87 88 89 90 91 92 93 94 95 96
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
97
#define sCR0_VMID16EN			(1 << 31)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
119
#define ID0_ATOSNS			(1 << 26)
120 121 122
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
123 124
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
145
#define ID2_VMID16			(1 << 15)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

173 174 175
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

176 177 178 179
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
180 181 182
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
198 199
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
200 201 202

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
203
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
204 205

#define ARM_SMMU_CB_SCTLR		0x0
206
#define ARM_SMMU_CB_ACTLR		0x4
207 208
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
209 210
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
211 212
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
213
#define ARM_SMMU_CB_S1_MAIR1		0x3c
214
#define ARM_SMMU_CB_PAR			0x50
215
#define ARM_SMMU_CB_FSR			0x58
216
#define ARM_SMMU_CB_FAR			0x60
217
#define ARM_SMMU_CB_FSYNR0		0x68
218
#define ARM_SMMU_CB_S1_TLBIVA		0x600
219
#define ARM_SMMU_CB_S1_TLBIASID		0x610
220 221 222
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
223
#define ARM_SMMU_CB_ATS1PR		0x800
224
#define ARM_SMMU_CB_ATSR		0x8f0
225 226 227 228 229 230 231 232 233 234 235

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

236 237
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

238 239 240 241
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

242 243 244 245
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
246
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
247

248
#define TTBRn_ASID_SHIFT		48
249 250 251 252 253 254 255 256 257 258 259 260

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

261 262 263
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
264
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
265 266 267

#define FSYNR0_WNR			(1 << 4)

268
static int force_stage;
269
module_param(force_stage, int, S_IRUGO);
270 271
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
272 273 274 275
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
276

277 278 279 280 281
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

282 283
enum arm_smmu_implementation {
	GENERIC_SMMU,
284
	ARM_MMU500,
285
	CAVIUM_SMMUV2,
286 287
};

288 289 290 291 292 293
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

294
struct arm_smmu_master_cfg {
295 296 297 298 299
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

300 301 302 303 304 305
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

306 307 308 309 310
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
311
	unsigned long			pgshift;
312 313 314 315 316 317

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
318
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
319
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
320
	u32				features;
321 322 323

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
324
	enum arm_smmu_arch_version	version;
325
	enum arm_smmu_implementation	model;
326 327 328 329 330 331 332 333 334

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

335 336 337
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
338 339 340 341 342 343 344

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
345 346

	u32				cavium_id_base; /* Specific to Cavium */
347 348 349 350 351 352 353
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
354
#define INVALID_IRPTNDX			0xff
355

356 357
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
358

359 360 361 362 363 364
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

365
struct arm_smmu_domain {
366
	struct arm_smmu_device		*smmu;
367 368
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
369
	struct arm_smmu_cfg		cfg;
370
	enum arm_smmu_domain_stage	stage;
371
	struct mutex			init_mutex; /* Protects smmu pointer */
372
	struct iommu_domain		domain;
373 374
};

375 376
static struct iommu_ops arm_smmu_ops;

377 378 379
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

380 381 382 383 384
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

385 386
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

387
static struct arm_smmu_option_prop arm_smmu_options[] = {
388 389 390 391
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

392 393 394 395 396
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

397 398 399
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
400

401 402 403 404 405 406 407 408 409 410
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

411
static struct device_node *dev_get_dev_node(struct device *dev)
412 413 414
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
415

416 417
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
418
		return bus->bridge->parent->of_node;
419 420
	}

421
	return dev->of_node;
422 423
}

424 425 426 427 428 429 430
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
431

432 433 434 435 436 437 438 439 440 441 442 443 444
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

445
static struct arm_smmu_master_cfg *
446
find_smmu_master_cfg(struct device *dev)
447
{
448 449
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
450

451 452 453 454
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
455

456
	return cfg;
457 458
}

459 460 461 462 463 464 465 466
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
467 468
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

510 511
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
512

513 514
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
515

516 517 518 519 520 521 522 523 524
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
525 526 527
	return insert_smmu_master(smmu, master);
}

528
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
529
{
530
	struct arm_smmu_device *smmu;
531
	struct arm_smmu_master *master = NULL;
532
	struct device_node *dev_node = dev_get_dev_node(dev);
533 534

	spin_lock(&arm_smmu_devices_lock);
535
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
536 537 538 539
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
540
	spin_unlock(&arm_smmu_devices_lock);
541

542
	return master ? smmu : NULL;
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
564
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

582 583 584 585 586 587 588
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
589
{
590
	struct arm_smmu_domain *smmu_domain = cookie;
591 592
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
593
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
594
	void __iomem *base;
595 596 597

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
598
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
599
			       base + ARM_SMMU_CB_S1_TLBIASID);
600 601
	} else {
		base = ARM_SMMU_GR0(smmu);
602
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
603
			       base + ARM_SMMU_GR0_TLBIVMID);
604 605
	}

606 607 608 609
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
610
					  size_t granule, bool leaf, void *cookie)
611 612 613 614 615 616 617 618 619 620 621 622 623
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
624
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
625 626 627 628
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
629 630 631
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
632
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
633 634 635 636
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
637 638 639 640 641 642 643
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
644 645
		iova >>= 12;
		do {
646
			smmu_write_atomic_lq(iova, reg);
647 648
			iova += granule >> 12;
		} while (size -= granule);
649 650 651
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
652
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
653 654 655 656 657 658 659 660 661
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

662 663 664
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
665
	u32 fsr, fsynr, resume;
666 667
	unsigned long iova;
	struct iommu_domain *domain = dev;
668
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
669 670
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
671 672
	void __iomem *cb_base;

673
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
674 675 676 677 678 679 680
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
681
				    "Unexpected context fault (fsr 0x%x)\n",
682 683 684 685 686
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

687
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
688 689 690 691
	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
692 693
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
694
		    iova, fsynr, cfg->cbndx);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
713
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
714 715 716 717 718 719

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

720 721 722
	if (!gfsr)
		return IRQ_NONE;

723 724 725 726 727 728 729
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
730
	return IRQ_HANDLED;
731 732
}

733 734
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
735 736
{
	u32 reg;
737
	u64 reg64;
738
	bool stage1;
739 740
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
741
	void __iomem *cb_base, *gr1_base;
742 743

	gr1_base = ARM_SMMU_GR1(smmu);
744 745
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
746

747 748 749 750 751 752
	if (smmu->version > ARM_SMMU_V1) {
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
753 754
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
755
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
756

757 758 759
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

760
	/* CBAR */
761
	reg = cfg->cbar;
762
	if (smmu->version == ARM_SMMU_V1)
763
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
764

765 766 767 768 769 770 771
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
772 773
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
774
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
775
	}
776
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
777

778 779
	/* TTBRs */
	if (stage1) {
780 781
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

782
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
783
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
784 785

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
786
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
787
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
788
	} else {
789
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
790
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
791
	}
792

793 794 795 796 797 798
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
799
			reg |= TTBCR2_SEP_UPSTREAM;
800
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
801 802
		}
	} else {
803 804
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
805 806
	}

807
	/* MAIRs (stage-1 only) */
808
	if (stage1) {
809
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
810
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
811 812
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
813 814 815 816 817 818 819 820 821
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
822
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
823 824 825
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
826
					struct arm_smmu_device *smmu)
827
{
828
	int irq, start, ret = 0;
829 830 831 832
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
833
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
834
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
835

836
	mutex_lock(&smmu_domain->init_mutex);
837 838 839
	if (smmu_domain->smmu)
		goto out_unlock;

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
867 868 869 870 871 872
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
873 874
		break;
	case ARM_SMMU_DOMAIN_NESTED:
875 876 877 878
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
879
	case ARM_SMMU_DOMAIN_S2:
880 881
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
882 883 884 885 886 887
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
888 889 890 891
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
892 893 894 895 896
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
897
		goto out_unlock;
898

899
	cfg->cbndx = ret;
900
	if (smmu->version == ARM_SMMU_V1) {
901 902
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
903
	} else {
904
		cfg->irptndx = cfg->cbndx;
905 906
	}

907 908 909 910 911
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
912
		.iommu_dev	= smmu->dev,
913 914 915 916 917 918 919 920 921 922 923
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
924

925 926 927 928 929 930 931
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
932
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
933 934 935 936
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
937 938
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
939 940
	}

941 942 943 944
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
945
	return 0;
946

947 948
out_clear_smmu:
	smmu_domain->smmu = NULL;
949
out_unlock:
950
	mutex_unlock(&smmu_domain->init_mutex);
951 952 953 954 955
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
956
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
957 958
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
959
	void __iomem *cb_base;
960 961 962 963 964
	int irq;

	if (!smmu)
		return;

965 966 967 968
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
969
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
970 971
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

972 973
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
974 975 976
		free_irq(irq, domain);
	}

977
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
978
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
979 980
}

981
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
982 983 984
{
	struct arm_smmu_domain *smmu_domain;

985
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
986
		return NULL;
987 988 989 990 991 992 993
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
994
		return NULL;
995

996 997 998 999 1000 1001
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1002 1003
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1004 1005

	return &smmu_domain->domain;
1006 1007
}

1008
static void arm_smmu_domain_free(struct iommu_domain *domain)
1009
{
1010
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1011 1012 1013 1014 1015

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1016
	iommu_put_dma_cookie(domain);
1017 1018 1019 1020 1021
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1022
					  struct arm_smmu_master_cfg *cfg)
1023 1024 1025 1026 1027 1028 1029 1030
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1031
	if (cfg->smrs)
1032 1033
		return -EEXIST;

1034
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1035
	if (!smrs) {
1036 1037
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1038 1039 1040
		return -ENOMEM;
	}

1041
	/* Allocate the SMRs on the SMMU */
1042
	for (i = 0; i < cfg->num_streamids; ++i) {
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1053
			.id	= cfg->streamids[i],
1054 1055 1056 1057
		};
	}

	/* It worked! Now, poke the actual hardware */
1058
	for (i = 0; i < cfg->num_streamids; ++i) {
1059 1060 1061 1062 1063
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1064
	cfg->smrs = smrs;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1075
				      struct arm_smmu_master_cfg *cfg)
1076 1077 1078
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1079
	struct arm_smmu_smr *smrs = cfg->smrs;
1080

1081 1082 1083
	if (!smrs)
		return;

1084
	/* Invalidate the SMRs before freeing back to the allocator */
1085
	for (i = 0; i < cfg->num_streamids; ++i) {
1086
		u8 idx = smrs[i].idx;
1087

1088 1089 1090 1091
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1092
	cfg->smrs = NULL;
1093 1094 1095 1096
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1097
				      struct arm_smmu_master_cfg *cfg)
1098 1099
{
	int i, ret;
1100
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1101 1102
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1103
	/* Devices in an IOMMU group may already be configured */
1104
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1105
	if (ret)
1106
		return ret == -EEXIST ? 0 : ret;
1107

1108 1109 1110 1111 1112 1113 1114
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
	 * for all devices behind the SMMU.
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
		return 0;

1115
	for (i = 0; i < cfg->num_streamids; ++i) {
1116
		u32 idx, s2cr;
1117

1118
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1119
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1120
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1121 1122 1123 1124 1125 1126 1127
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1128
					  struct arm_smmu_master_cfg *cfg)
1129
{
1130
	int i;
1131
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1132
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1133

1134 1135 1136
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1137 1138 1139 1140 1141

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1142 1143
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1144
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1145

1146
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1147 1148
	}

1149
	arm_smmu_master_free_smrs(smmu, cfg);
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static void arm_smmu_detach_dev(struct device *dev,
				struct arm_smmu_master_cfg *cfg)
{
	struct iommu_domain *domain = dev->archdata.iommu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
}

1162 1163
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1164
	int ret;
1165
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1166
	struct arm_smmu_device *smmu;
1167
	struct arm_smmu_master_cfg *cfg;
1168

1169
	smmu = find_smmu_for_device(dev);
1170
	if (!smmu) {
1171 1172 1173 1174
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1175 1176 1177 1178 1179
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1180
	/*
1181 1182
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1183
	 */
1184
	if (smmu_domain->smmu != smmu) {
1185 1186
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1187 1188
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1189 1190 1191
	}

	/* Looks ok, so add the device to the domain */
1192
	cfg = find_smmu_master_cfg(dev);
1193
	if (!cfg)
1194 1195
		return -ENODEV;

1196 1197 1198 1199
	/* Detach the dev from its current domain */
	if (dev->archdata.iommu)
		arm_smmu_detach_dev(dev, cfg);

1200 1201 1202
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1203 1204 1205 1206
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1207
			phys_addr_t paddr, size_t size, int prot)
1208
{
1209 1210
	int ret;
	unsigned long flags;
1211
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1212
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1213

1214
	if (!ops)
1215 1216
		return -ENODEV;

1217 1218 1219 1220
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1221 1222 1223 1224 1225
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1226 1227
	size_t ret;
	unsigned long flags;
1228
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1229
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1230

1231 1232 1233 1234 1235 1236 1237
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1238 1239
}

1240 1241 1242
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1243
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1244 1245 1246 1247 1248 1249 1250
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1251
	unsigned long va;
1252 1253 1254

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1255 1256 1257
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1258 1259
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1260
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1261 1262 1263 1264

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1265
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1266 1267 1268 1269
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1270
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1271 1272 1273 1274 1275 1276 1277 1278 1279
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1280
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1281
					dma_addr_t iova)
1282
{
1283 1284
	phys_addr_t ret;
	unsigned long flags;
1285
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1286
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1287

1288
	if (!ops)
1289
		return 0;
1290

1291
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1292 1293
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1294
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1295
	} else {
1296
		ret = ops->iova_to_phys(ops, iova);
1297 1298
	}

1299
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1300

1301
	return ret;
1302 1303
}

1304
static bool arm_smmu_capable(enum iommu_cap cap)
1305
{
1306 1307
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1308 1309 1310 1311 1312
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1313
	case IOMMU_CAP_INTR_REMAP:
1314
		return true; /* MSIs are just memory writes */
1315 1316
	case IOMMU_CAP_NOEXEC:
		return true;
1317
	default:
1318
		return false;
1319
	}
1320 1321
}

1322 1323 1324 1325
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1326 1327
}

1328 1329 1330 1331 1332
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1333 1334
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1335
{
1336
	struct arm_smmu_master_cfg *cfg;
1337 1338
	u16 sid;
	int i;
1339

1340 1341
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1342
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1343 1344
		if (!cfg)
			return -ENOMEM;
1345

1346 1347 1348
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1349

1350 1351
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1365

1366
	return 0;
1367 1368
}

1369 1370
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1371 1372
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1373
	struct arm_smmu_master *master;
1374 1375 1376 1377 1378 1379 1380 1381 1382

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1383 1384

	return 0;
1385 1386 1387 1388
}

static int arm_smmu_add_device(struct device *dev)
{
1389
	struct iommu_group *group;
1390

1391 1392 1393
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1394

1395
	iommu_group_put(group);
1396
	return 0;
1397 1398
}

1399 1400
static void arm_smmu_remove_device(struct device *dev)
{
1401
	iommu_group_remove_device(dev);
1402 1403
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1430 1431 1432
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1433
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1447
	int ret = 0;
1448
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1449

1450 1451
	mutex_lock(&smmu_domain->init_mutex);

1452 1453
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1454 1455 1456 1457 1458
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1459 1460 1461 1462 1463
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1464
		break;
1465
	default:
1466
		ret = -ENODEV;
1467
	}
1468 1469 1470 1471

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1472 1473
}

1474
static struct iommu_ops arm_smmu_ops = {
1475
	.capable		= arm_smmu_capable,
1476 1477
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1478 1479 1480
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1481
	.map_sg			= default_iommu_map_sg,
1482 1483 1484
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1485
	.device_group		= arm_smmu_device_group,
1486 1487
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1488
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1489 1490 1491 1492 1493
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1494
	void __iomem *cb_base;
1495
	int i = 0;
1496 1497
	u32 reg;

1498 1499 1500
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1501

1502 1503
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1504
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1505
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1506
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1507 1508
	}

1509 1510 1511 1512 1513
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1514 1515 1516 1517 1518 1519 1520 1521 1522
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1523
	}
1524

1525 1526 1527 1528
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1529
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1530

1531
	/* Enable fault reporting */
1532
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1533 1534

	/* Disable TLB broadcasting. */
1535
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1536

1537 1538 1539 1540 1541 1542
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1543 1544

	/* Disable forced broadcasting */
1545
	reg &= ~sCR0_FB;
1546 1547

	/* Don't upgrade barriers */
1548
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1549

1550 1551 1552
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1553
	/* Push the button */
1554
	__arm_smmu_tlb_sync(smmu);
1555
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1582
	bool cttw_dt, cttw_reg;
1583 1584 1585 1586 1587 1588

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1589 1590 1591 1592 1593 1594 1595

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1612
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1613 1614 1615 1616
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1617
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1618 1619 1620 1621
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1622 1623 1624 1625 1626 1627 1628 1629 1630
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1631
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1632 1633 1634 1635 1636 1637
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1668 1669 1670
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1671 1672 1673 1674
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1675
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1676

1677
	/* Check for size mismatch of SMMU address space from mapped region */
1678
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1679
	size *= 2 << smmu->pgshift;
1680
	if (smmu->size != size)
1681 1682 1683
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1684

1685
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1686 1687 1688 1689 1690 1691 1692
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1704 1705 1706 1707

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1708
	smmu->ipa_size = size;
1709

1710
	/* The output mask is also applied for bypass */
1711
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1712
	smmu->pa_size = size;
1713

1714 1715 1716
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1717 1718 1719 1720 1721 1722 1723 1724 1725
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1726
	if (smmu->version == ARM_SMMU_V1) {
1727 1728
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1729 1730
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1731 1732 1733
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1734
#endif
1735 1736 1737 1738 1739 1740 1741
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1742 1743
	}

1744 1745 1746
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1747 1748
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1749
			   smmu->va_size, smmu->ipa_size);
1750 1751 1752

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1753
			   smmu->ipa_size, smmu->pa_size);
1754

1755 1756 1757
	return 0;
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1768
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1769
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1770

1771
static const struct of_device_id arm_smmu_of_match[] = {
1772 1773 1774 1775
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
	{ .compatible = "arm,mmu-401", .data = &smmu_generic_v1 },
1776
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1777
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1778 1779 1780 1781
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1782 1783
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1784
	const struct of_device_id *of_id;
1785
	const struct arm_smmu_match_data *data;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1800
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1801 1802 1803
	data = of_id->data;
	smmu->version = data->version;
	smmu->model = data->model;
1804

1805
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1806 1807 1808
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1824 1825 1826 1827
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1839

1840 1841 1842 1843 1844 1845 1846
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1847 1848 1849 1850
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1867 1868
	parse_driver_options(smmu);

1869
	if (smmu->version > ARM_SMMU_V1 &&
1870 1871 1872 1873
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1874
		err = -ENODEV;
1875
		goto out_put_masters;
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1895 1896

	arm_smmu_device_reset(smmu);
1897 1898 1899 1900 1901 1902 1903 1904
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1905 1906
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1934 1935
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1936 1937 1938
		of_node_put(master->of_node);
	}

1939
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1940 1941 1942 1943 1944 1945
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1946
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1961
	struct device_node *np;
1962 1963
	int ret;

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1975 1976 1977 1978 1979
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1980
	if (!iommu_present(&platform_bus_type))
1981 1982
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1983
#ifdef CONFIG_ARM_AMBA
1984
	if (!iommu_present(&amba_bustype))
1985
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1986
#endif
1987

1988 1989 1990 1991 1992
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1993 1994 1995 1996 1997 1998 1999 2000
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2001
subsys_initcall(arm_smmu_init);
2002 2003 2004 2005 2006
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");