arm-smmu.c 49.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
37
#include <linux/iopoll.h>
38 39
#include <linux/module.h>
#include <linux/of.h>
40
#include <linux/of_address.h>
41
#include <linux/pci.h>
42 43 44 45 46 47
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

48
#include "io-pgtable.h"
49 50

/* Maximum number of stream IDs assigned to a single device */
51
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
52 53 54 55 56 57 58 59 60

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
61
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
62

63 64 65 66 67 68 69 70 71 72
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

73 74 75 76 77 78 79 80 81 82 83 84
#ifdef CONFIG_64BIT
#define smmu_writeq	writeq_relaxed
#else
#define smmu_writeq(reg64, addr)				\
	do {							\
		u64 __val = (reg64);				\
		void __iomem *__addr = (addr);			\
		writel_relaxed(__val >> 32, __addr + 4);	\
		writel_relaxed(__val, __addr);			\
	} while (0)
#endif

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
117
#define ID0_ATOSNS			(1 << 26)
118 119 120
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
121 122
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
174 175 176
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
195
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
196 197 198 199

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
200 201
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
202 203
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
204
#define ARM_SMMU_CB_S1_MAIR1		0x3c
205 206
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
207 208 209 210
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
211
#define ARM_SMMU_CB_S1_TLBIVA		0x600
212
#define ARM_SMMU_CB_S1_TLBIASID		0x610
213 214 215
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
216
#define ARM_SMMU_CB_ATS1PR		0x800
217
#define ARM_SMMU_CB_ATSR		0x8f0
218 219 220 221 222 223 224 225 226 227 228

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

229 230 231 232
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

233 234 235 236
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
237
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
238

239
#define TTBRn_ASID_SHIFT		48
240 241 242 243 244 245 246 247 248 249 250 251

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

252 253 254
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
255
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
256 257 258

#define FSYNR0_WNR			(1 << 4)

259
static int force_stage;
260
module_param_named(force_stage, force_stage, int, S_IRUGO);
261 262 263
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");

264 265 266 267 268
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

269 270 271 272 273 274
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

275
struct arm_smmu_master_cfg {
276 277 278 279 280
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

281 282 283 284 285 286
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

287 288 289 290 291
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
292
	unsigned long			pgshift;
293 294 295 296 297 298

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
299
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
300
	u32				features;
301 302 303

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
304
	enum arm_smmu_arch_version	version;
305 306 307 308 309 310 311 312 313

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

314 315 316
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
317 318 319 320 321 322 323 324 325 326 327 328 329 330

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
331
#define INVALID_IRPTNDX			0xff
332

333 334 335
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

336 337 338 339 340 341
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

342
struct arm_smmu_domain {
343
	struct arm_smmu_device		*smmu;
344 345
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
346
	struct arm_smmu_cfg		cfg;
347
	enum arm_smmu_domain_stage	stage;
348
	struct mutex			init_mutex; /* Protects smmu pointer */
349
	struct iommu_domain		domain;
350 351
};

352 353
static struct iommu_ops arm_smmu_ops;

354 355 356
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

357 358 359 360 361
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

362
static struct arm_smmu_option_prop arm_smmu_options[] = {
363 364 365 366
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

367 368 369 370 371
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

372 373 374
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
375

376 377 378 379 380 381 382 383 384 385
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

386
static struct device_node *dev_get_dev_node(struct device *dev)
387 388 389
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
390

391 392
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
393
		return bus->bridge->parent->of_node;
394 395
	}

396
	return dev->of_node;
397 398
}

399 400 401 402 403 404 405
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
406

407 408 409 410 411 412 413 414 415 416 417 418 419
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

420
static struct arm_smmu_master_cfg *
421
find_smmu_master_cfg(struct device *dev)
422
{
423 424
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
425

426 427 428 429
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
430

431
	return cfg;
432 433
}

434 435 436 437 438 439 440 441
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
442 443
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

485 486
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
487

488 489
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
490

491 492 493 494 495 496 497 498 499
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
500 501 502
	return insert_smmu_master(smmu, master);
}

503
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
504
{
505
	struct arm_smmu_device *smmu;
506
	struct arm_smmu_master *master = NULL;
507
	struct device_node *dev_node = dev_get_dev_node(dev);
508 509

	spin_lock(&arm_smmu_devices_lock);
510
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
511 512 513 514
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
515
	spin_unlock(&arm_smmu_devices_lock);
516

517
	return master ? smmu : NULL;
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
539
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

557 558 559 560 561 562 563
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
564
{
565
	struct arm_smmu_domain *smmu_domain = cookie;
566 567
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
568
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
569
	void __iomem *base;
570 571 572

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
573 574
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
575 576
	} else {
		base = ARM_SMMU_GR0(smmu);
577 578
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
579 580
	}

581 582 583 584
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
585
					  size_t granule, bool leaf, void *cookie)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
			iova |= ARM_SMMU_CB_ASID(cfg);
			writel_relaxed(iova, reg);
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
			writeq_relaxed(iova, reg);
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
		writeq_relaxed(iova >> 12, reg);
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

627 628 629 630 631 632
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
633
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
634 635
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
636 637
	void __iomem *cb_base;

638
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
639 640 641 642 643 644 645
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
646
				    "Unexpected context fault (fsr 0x%x)\n",
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
663 664
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
665
		    iova, fsynr, cfg->cbndx);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
684
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
685 686 687 688 689 690

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

691 692 693
	if (!gfsr)
		return IRQ_NONE;

694 695 696 697 698 699 700
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
701
	return IRQ_HANDLED;
702 703
}

704 705
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
706 707
{
	u32 reg;
708
	u64 reg64;
709
	bool stage1;
710 711
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
712
	void __iomem *cb_base, *gr1_base;
713 714

	gr1_base = ARM_SMMU_GR1(smmu);
715 716
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731
	if (smmu->version > ARM_SMMU_V1) {
		/*
		 * CBA2R.
		 * *Must* be initialised before CBAR thanks to VMID16
		 * architectural oversight affected some implementations.
		 */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

732
	/* CBAR */
733
	reg = cfg->cbar;
734
	if (smmu->version == ARM_SMMU_V1)
735
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
736

737 738 739 740 741 742 743 744
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
745
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
746
	}
747
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
748

749 750
	/* TTBRs */
	if (stage1) {
751 752 753 754 755 756 757 758
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
759
	} else {
760 761
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
762
	}
763

764 765 766 767 768 769
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
770
			reg |= TTBCR2_SEP_UPSTREAM;
771
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
772 773
		}
	} else {
774 775
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
776 777
	}

778
	/* MAIRs (stage-1 only) */
779
	if (stage1) {
780
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
781
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
782 783
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
784 785 786 787 788 789 790 791 792
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
793
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
794 795 796
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
797
					struct arm_smmu_device *smmu)
798
{
799
	int irq, start, ret = 0;
800 801 802 803
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
804
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
805
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
806

807
	mutex_lock(&smmu_domain->init_mutex);
808 809 810
	if (smmu_domain->smmu)
		goto out_unlock;

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
838 839 840 841 842 843
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
844 845
		break;
	case ARM_SMMU_DOMAIN_NESTED:
846 847 848 849
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
850
	case ARM_SMMU_DOMAIN_S2:
851 852
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
853 854 855 856 857 858
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
859 860 861 862
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
863 864 865 866 867
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
868
		goto out_unlock;
869

870
	cfg->cbndx = ret;
871
	if (smmu->version == ARM_SMMU_V1) {
872 873
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
874
	} else {
875
		cfg->irptndx = cfg->cbndx;
876 877
	}

878 879 880 881 882
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
883
		.iommu_dev	= smmu->dev,
884 885 886 887 888 889 890 891 892 893 894
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
895

896 897 898 899 900 901 902
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
903
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
904 905 906 907
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
908 909
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
910 911
	}

912 913 914 915
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
916
	return 0;
917

918 919
out_clear_smmu:
	smmu_domain->smmu = NULL;
920
out_unlock:
921
	mutex_unlock(&smmu_domain->init_mutex);
922 923 924 925 926
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
927
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
928 929
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
930
	void __iomem *cb_base;
931 932 933 934 935
	int irq;

	if (!smmu)
		return;

936 937 938 939
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
940
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
941 942
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

943 944
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
945 946 947
		free_irq(irq, domain);
	}

948
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
949
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
950 951
}

952
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
953 954 955
{
	struct arm_smmu_domain *smmu_domain;

956 957
	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;
958 959 960 961 962 963 964
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
965
		return NULL;
966

967 968
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
969 970

	return &smmu_domain->domain;
971 972
}

973
static void arm_smmu_domain_free(struct iommu_domain *domain)
974
{
975
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
976 977 978 979 980

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
981 982 983 984 985
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
986
					  struct arm_smmu_master_cfg *cfg)
987 988 989 990 991 992 993 994
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

995
	if (cfg->smrs)
996 997
		return -EEXIST;

998
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
999
	if (!smrs) {
1000 1001
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1002 1003 1004
		return -ENOMEM;
	}

1005
	/* Allocate the SMRs on the SMMU */
1006
	for (i = 0; i < cfg->num_streamids; ++i) {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1017
			.id	= cfg->streamids[i],
1018 1019 1020 1021
		};
	}

	/* It worked! Now, poke the actual hardware */
1022
	for (i = 0; i < cfg->num_streamids; ++i) {
1023 1024 1025 1026 1027
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1028
	cfg->smrs = smrs;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1039
				      struct arm_smmu_master_cfg *cfg)
1040 1041 1042
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1043
	struct arm_smmu_smr *smrs = cfg->smrs;
1044

1045 1046 1047
	if (!smrs)
		return;

1048
	/* Invalidate the SMRs before freeing back to the allocator */
1049
	for (i = 0; i < cfg->num_streamids; ++i) {
1050
		u8 idx = smrs[i].idx;
1051

1052 1053 1054 1055
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1056
	cfg->smrs = NULL;
1057 1058 1059 1060
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1061
				      struct arm_smmu_master_cfg *cfg)
1062 1063
{
	int i, ret;
1064
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1065 1066
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1067
	/* Devices in an IOMMU group may already be configured */
1068
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1069
	if (ret)
1070
		return ret == -EEXIST ? 0 : ret;
1071

1072
	for (i = 0; i < cfg->num_streamids; ++i) {
1073
		u32 idx, s2cr;
1074

1075
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1076
		s2cr = S2CR_TYPE_TRANS |
1077
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1078 1079 1080 1081 1082 1083 1084
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1085
					  struct arm_smmu_master_cfg *cfg)
1086
{
1087
	int i;
1088
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1089
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1090

1091 1092 1093
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1094 1095 1096 1097 1098

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1099 1100 1101 1102 1103 1104 1105
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1106
	arm_smmu_master_free_smrs(smmu, cfg);
1107 1108 1109 1110
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1111
	int ret;
1112
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1113
	struct arm_smmu_device *smmu;
1114
	struct arm_smmu_master_cfg *cfg;
1115

1116
	smmu = find_smmu_for_device(dev);
1117
	if (!smmu) {
1118 1119 1120 1121
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1122 1123 1124 1125 1126
	if (dev->archdata.iommu) {
		dev_err(dev, "already attached to IOMMU domain\n");
		return -EEXIST;
	}

1127 1128 1129 1130 1131
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1132
	/*
1133 1134
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1135
	 */
1136
	if (smmu_domain->smmu != smmu) {
1137 1138
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1139 1140
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1141 1142 1143
	}

	/* Looks ok, so add the device to the domain */
1144
	cfg = find_smmu_master_cfg(dev);
1145
	if (!cfg)
1146 1147
		return -ENODEV;

1148 1149 1150
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1151 1152 1153 1154 1155
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
1156
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1157
	struct arm_smmu_master_cfg *cfg;
1158

1159
	cfg = find_smmu_master_cfg(dev);
1160 1161 1162 1163 1164
	if (!cfg)
		return;

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
1165 1166 1167
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1168
			phys_addr_t paddr, size_t size, int prot)
1169
{
1170 1171
	int ret;
	unsigned long flags;
1172
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1173
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1174

1175
	if (!ops)
1176 1177
		return -ENODEV;

1178 1179 1180 1181
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1182 1183 1184 1185 1186
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1187 1188
	size_t ret;
	unsigned long flags;
1189
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1190
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1191

1192 1193 1194 1195 1196 1197 1198
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1199 1200
}

1201 1202 1203
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1204
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1205 1206 1207 1208 1209 1210 1211
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1212
	unsigned long va;
1213 1214 1215

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1216 1217 1218
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1219
		smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1220 1221
	else
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1222 1223 1224 1225

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1226
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1243
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1244
					dma_addr_t iova)
1245
{
1246 1247
	phys_addr_t ret;
	unsigned long flags;
1248
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1249
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1250

1251
	if (!ops)
1252
		return 0;
1253

1254
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1255 1256
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1257
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1258
	} else {
1259
		ret = ops->iova_to_phys(ops, iova);
1260 1261
	}

1262
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1263

1264
	return ret;
1265 1266
}

1267
static bool arm_smmu_capable(enum iommu_cap cap)
1268
{
1269 1270
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1271 1272 1273 1274 1275
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1276
	case IOMMU_CAP_INTR_REMAP:
1277
		return true; /* MSIs are just memory writes */
1278 1279
	case IOMMU_CAP_NOEXEC:
		return true;
1280
	default:
1281
		return false;
1282
	}
1283 1284
}

1285 1286 1287 1288
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1289 1290
}

1291 1292 1293 1294 1295
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1296 1297
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1298
{
1299
	struct arm_smmu_master_cfg *cfg;
1300 1301
	u16 sid;
	int i;
1302

1303 1304
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1305
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1306 1307
		if (!cfg)
			return -ENOMEM;
1308

1309 1310 1311
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1312

1313 1314
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1328

1329
	return 0;
1330 1331
}

1332 1333
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1334 1335
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1336
	struct arm_smmu_master *master;
1337 1338 1339 1340 1341 1342 1343 1344 1345

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1346 1347

	return 0;
1348 1349 1350 1351
}

static int arm_smmu_add_device(struct device *dev)
{
1352
	struct iommu_group *group;
1353

1354 1355 1356
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1357

1358
	iommu_group_put(group);
1359
	return 0;
1360 1361
}

1362 1363
static void arm_smmu_remove_device(struct device *dev)
{
1364
	iommu_group_remove_device(dev);
1365 1366
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1393 1394 1395
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1396
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1410
	int ret = 0;
1411
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1412

1413 1414
	mutex_lock(&smmu_domain->init_mutex);

1415 1416
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1417 1418 1419 1420 1421
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1422 1423 1424 1425 1426
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1427
		break;
1428
	default:
1429
		ret = -ENODEV;
1430
	}
1431 1432 1433 1434

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1435 1436
}

1437
static struct iommu_ops arm_smmu_ops = {
1438
	.capable		= arm_smmu_capable,
1439 1440
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1441 1442 1443 1444
	.attach_dev		= arm_smmu_attach_dev,
	.detach_dev		= arm_smmu_detach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1445
	.map_sg			= default_iommu_map_sg,
1446 1447 1448
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1449
	.device_group		= arm_smmu_device_group,
1450 1451
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1452
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1453 1454 1455 1456 1457
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1458
	void __iomem *cb_base;
1459
	int i = 0;
1460 1461
	u32 reg;

1462 1463 1464
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1465 1466 1467

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1468
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1469 1470
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1471 1472
	}

1473 1474 1475 1476 1477 1478
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1479

1480 1481 1482 1483
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1484
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1485

1486
	/* Enable fault reporting */
1487
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1488 1489

	/* Disable TLB broadcasting. */
1490
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1491 1492

	/* Enable client access, but bypass when no mapping is found */
1493
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1494 1495

	/* Disable forced broadcasting */
1496
	reg &= ~sCR0_FB;
1497 1498

	/* Don't upgrade barriers */
1499
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1500 1501

	/* Push the button */
1502
	__arm_smmu_tlb_sync(smmu);
1503
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1530
	bool cttw_dt, cttw_reg;
1531 1532 1533 1534 1535 1536

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1537 1538 1539 1540 1541 1542 1543

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1560
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1561 1562 1563 1564
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1565
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1566 1567 1568 1569
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1570 1571 1572 1573 1574 1575 1576 1577 1578
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1579
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1580 1581 1582 1583 1584 1585
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1616 1617 1618
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1619 1620 1621 1622
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1623
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1624

1625
	/* Check for size mismatch of SMMU address space from mapped region */
1626
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1627
	size *= 2 << smmu->pgshift;
1628
	if (smmu->size != size)
1629 1630 1631
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1632

1633
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1645
	smmu->ipa_size = size;
1646

1647
	/* The output mask is also applied for bypass */
1648
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1649
	smmu->pa_size = size;
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1660
	if (smmu->version == ARM_SMMU_V1) {
1661 1662
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1663 1664
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1665 1666 1667
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1668
#endif
1669 1670 1671 1672 1673 1674 1675
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1676 1677
	}

1678 1679 1680
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1681 1682
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1683
			   smmu->va_size, smmu->ipa_size);
1684 1685 1686

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1687
			   smmu->ipa_size, smmu->pa_size);
1688

1689 1690 1691
	return 0;
}

1692
static const struct of_device_id arm_smmu_of_match[] = {
1693 1694 1695
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1696
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1697 1698 1699 1700 1701
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1702 1703
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1704
	const struct of_device_id *of_id;
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1719 1720 1721
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1722
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1723 1724 1725
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1741 1742 1743 1744
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1756

1757 1758 1759 1760 1761 1762 1763
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1764 1765 1766 1767
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1784 1785
	parse_driver_options(smmu);

1786
	if (smmu->version > ARM_SMMU_V1 &&
1787 1788 1789 1790
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1791
		err = -ENODEV;
1792
		goto out_put_masters;
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1812 1813

	arm_smmu_device_reset(smmu);
1814 1815 1816 1817 1818 1819 1820 1821
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1822 1823
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1851 1852
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1853 1854 1855
		of_node_put(master->of_node);
	}

1856
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1857 1858 1859 1860 1861 1862
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1863
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1878
	struct device_node *np;
1879 1880
	int ret;

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1892 1893 1894 1895 1896
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1897
	if (!iommu_present(&platform_bus_type))
1898 1899
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1900
#ifdef CONFIG_ARM_AMBA
1901
	if (!iommu_present(&amba_bustype))
1902
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1903
#endif
1904

1905 1906 1907 1908 1909
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1910 1911 1912 1913 1914 1915 1916 1917
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1918
subsys_initcall(arm_smmu_init);
1919 1920 1921 1922 1923
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");