arm-smmu.c 52.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
38
#include <linux/iopoll.h>
39 40
#include <linux/module.h>
#include <linux/of.h>
41
#include <linux/of_address.h>
42
#include <linux/pci.h>
43 44 45 46 47 48
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

49
#include "io-pgtable.h"
50 51

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
62
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
63

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_64BIT
#define smmu_writeq	writeq_relaxed
#else
#define smmu_writeq(reg64, addr)				\
	do {							\
		u64 __val = (reg64);				\
		void __iomem *__addr = (addr);			\
		writel_relaxed(__val >> 32, __addr + 4);	\
		writel_relaxed(__val, __addr);			\
	} while (0)
#endif

86 87 88 89 90 91 92 93 94 95 96
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
97
#define sCR0_VMID16EN			(1 << 31)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
119
#define ID0_ATOSNS			(1 << 26)
120 121 122
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
123 124
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
145
#define ID2_VMID16			(1 << 15)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

173 174 175
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

176 177 178 179
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
180 181 182
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
198 199
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
200 201 202

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
203
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
204 205

#define ARM_SMMU_CB_SCTLR		0x0
206
#define ARM_SMMU_CB_ACTLR		0x4
207 208
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
209 210
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
211 212
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
213
#define ARM_SMMU_CB_S1_MAIR1		0x3c
214 215
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
216 217 218 219
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
220
#define ARM_SMMU_CB_S1_TLBIVA		0x600
221
#define ARM_SMMU_CB_S1_TLBIASID		0x610
222 223 224
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
225
#define ARM_SMMU_CB_ATS1PR		0x800
226
#define ARM_SMMU_CB_ATSR		0x8f0
227 228 229 230 231 232 233 234 235 236 237

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

238 239
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

240 241 242 243
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

244 245 246 247
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
248
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
249

250
#define TTBRn_ASID_SHIFT		48
251 252 253 254 255 256 257 258 259 260 261 262

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

263 264 265
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
266
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
267 268 269

#define FSYNR0_WNR			(1 << 4)

270
static int force_stage;
271
module_param(force_stage, int, S_IRUGO);
272 273
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
274 275 276 277
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
278

279 280 281 282 283
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

284 285
enum arm_smmu_implementation {
	GENERIC_SMMU,
286
	ARM_MMU500,
287
	CAVIUM_SMMUV2,
288 289
};

290 291 292 293 294 295
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

296
struct arm_smmu_master_cfg {
297 298 299 300 301
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

302 303 304 305 306 307
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

308 309 310 311 312
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
313
	unsigned long			pgshift;
314 315 316 317 318 319

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
320
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
321
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
322
	u32				features;
323 324 325

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
326
	enum arm_smmu_arch_version	version;
327
	enum arm_smmu_implementation	model;
328 329 330 331 332 333 334 335 336

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

337 338 339
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
340 341 342 343 344 345 346

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
347 348

	u32				cavium_id_base; /* Specific to Cavium */
349 350 351 352 353 354 355
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
356
#define INVALID_IRPTNDX			0xff
357

358 359
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
360

361 362 363 364 365 366
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

367
struct arm_smmu_domain {
368
	struct arm_smmu_device		*smmu;
369 370
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
371
	struct arm_smmu_cfg		cfg;
372
	enum arm_smmu_domain_stage	stage;
373
	struct mutex			init_mutex; /* Protects smmu pointer */
374
	struct iommu_domain		domain;
375 376
};

377 378
static struct iommu_ops arm_smmu_ops;

379 380 381
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

382 383 384 385 386
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

387 388
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

389
static struct arm_smmu_option_prop arm_smmu_options[] = {
390 391 392 393
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

394 395 396 397 398
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

399 400 401
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
402

403 404 405 406 407 408 409 410 411 412
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

413
static struct device_node *dev_get_dev_node(struct device *dev)
414 415 416
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
417

418 419
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
420
		return bus->bridge->parent->of_node;
421 422
	}

423
	return dev->of_node;
424 425
}

426 427 428 429 430 431 432
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
433

434 435 436 437 438 439 440 441 442 443 444 445 446
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

447
static struct arm_smmu_master_cfg *
448
find_smmu_master_cfg(struct device *dev)
449
{
450 451
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
452

453 454 455 456
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
457

458
	return cfg;
459 460
}

461 462 463 464 465 466 467 468
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
469 470
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

512 513
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
514

515 516
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
517

518 519 520 521 522 523 524 525 526
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
527 528 529
	return insert_smmu_master(smmu, master);
}

530
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
531
{
532
	struct arm_smmu_device *smmu;
533
	struct arm_smmu_master *master = NULL;
534
	struct device_node *dev_node = dev_get_dev_node(dev);
535 536

	spin_lock(&arm_smmu_devices_lock);
537
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
538 539 540 541
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
542
	spin_unlock(&arm_smmu_devices_lock);
543

544
	return master ? smmu : NULL;
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
566
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

584 585 586 587 588 589 590
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
591
{
592
	struct arm_smmu_domain *smmu_domain = cookie;
593 594
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
595
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
596
	void __iomem *base;
597 598 599

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
600
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
601
			       base + ARM_SMMU_CB_S1_TLBIASID);
602 603
	} else {
		base = ARM_SMMU_GR0(smmu);
604
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
605
			       base + ARM_SMMU_GR0_TLBIVMID);
606 607
	}

608 609 610 611
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
612
					  size_t granule, bool leaf, void *cookie)
613 614 615 616 617 618 619 620 621 622 623 624 625
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
626
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
627 628 629 630
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
631 632 633
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
634
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
635 636 637 638
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
639 640 641 642 643 644 645
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
646 647 648 649 650
		iova >>= 12;
		do {
			writeq_relaxed(iova, reg);
			iova += granule >> 12;
		} while (size -= granule);
651 652 653
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
654
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
655 656 657 658 659 660 661 662 663
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

664 665 666 667 668 669
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
670
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
671 672
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
673 674
	void __iomem *cb_base;

675
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
676 677 678 679 680 681 682
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
683
				    "Unexpected context fault (fsr 0x%x)\n",
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
700 701
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
702
		    iova, fsynr, cfg->cbndx);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
721
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
722 723 724 725 726 727

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

728 729 730
	if (!gfsr)
		return IRQ_NONE;

731 732 733 734 735 736 737
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
738
	return IRQ_HANDLED;
739 740
}

741 742
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
743 744
{
	u32 reg;
745
	u64 reg64;
746
	bool stage1;
747 748
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
749
	void __iomem *cb_base, *gr1_base;
750 751

	gr1_base = ARM_SMMU_GR1(smmu);
752 753
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
754

755 756 757 758 759 760
	if (smmu->version > ARM_SMMU_V1) {
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
761 762
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
763
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
764

765 766 767
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

768
	/* CBAR */
769
	reg = cfg->cbar;
770
	if (smmu->version == ARM_SMMU_V1)
771
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
772

773 774 775 776 777 778 779
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
780 781
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
782
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
783
	}
784
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
785

786 787
	/* TTBRs */
	if (stage1) {
788 789
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

790
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
791 792 793
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
794
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
795
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
796
	} else {
797 798
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
799
	}
800

801 802 803 804 805 806
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
807
			reg |= TTBCR2_SEP_UPSTREAM;
808
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
809 810
		}
	} else {
811 812
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
813 814
	}

815
	/* MAIRs (stage-1 only) */
816
	if (stage1) {
817
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
818
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
819 820
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
821 822 823 824 825 826 827 828 829
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
830
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
831 832 833
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
834
					struct arm_smmu_device *smmu)
835
{
836
	int irq, start, ret = 0;
837 838 839 840
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
841
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
842
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
843

844
	mutex_lock(&smmu_domain->init_mutex);
845 846 847
	if (smmu_domain->smmu)
		goto out_unlock;

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
875 876 877 878 879 880
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
881 882
		break;
	case ARM_SMMU_DOMAIN_NESTED:
883 884 885 886
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
887
	case ARM_SMMU_DOMAIN_S2:
888 889
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
890 891 892 893 894 895
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
896 897 898 899
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
900 901 902 903 904
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
905
		goto out_unlock;
906

907
	cfg->cbndx = ret;
908
	if (smmu->version == ARM_SMMU_V1) {
909 910
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
911
	} else {
912
		cfg->irptndx = cfg->cbndx;
913 914
	}

915 916 917 918 919
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
920
		.iommu_dev	= smmu->dev,
921 922 923 924 925 926 927 928 929 930 931
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
932

933 934 935 936 937 938 939
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
940
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
941 942 943 944
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
945 946
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
947 948
	}

949 950 951 952
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
953
	return 0;
954

955 956
out_clear_smmu:
	smmu_domain->smmu = NULL;
957
out_unlock:
958
	mutex_unlock(&smmu_domain->init_mutex);
959 960 961 962 963
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
964
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
965 966
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
967
	void __iomem *cb_base;
968 969 970 971 972
	int irq;

	if (!smmu)
		return;

973 974 975 976
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
977
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
978 979
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

980 981
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
982 983 984
		free_irq(irq, domain);
	}

985
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
986
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
987 988
}

989
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
990 991 992
{
	struct arm_smmu_domain *smmu_domain;

993
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
994
		return NULL;
995 996 997 998 999 1000 1001
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1002
		return NULL;
1003

1004 1005 1006 1007 1008 1009
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1010 1011
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1012 1013

	return &smmu_domain->domain;
1014 1015
}

1016
static void arm_smmu_domain_free(struct iommu_domain *domain)
1017
{
1018
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1019 1020 1021 1022 1023

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1024
	iommu_put_dma_cookie(domain);
1025 1026 1027 1028 1029
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1030
					  struct arm_smmu_master_cfg *cfg)
1031 1032 1033 1034 1035 1036 1037 1038
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1039
	if (cfg->smrs)
1040 1041
		return -EEXIST;

1042
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1043
	if (!smrs) {
1044 1045
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1046 1047 1048
		return -ENOMEM;
	}

1049
	/* Allocate the SMRs on the SMMU */
1050
	for (i = 0; i < cfg->num_streamids; ++i) {
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1061
			.id	= cfg->streamids[i],
1062 1063 1064 1065
		};
	}

	/* It worked! Now, poke the actual hardware */
1066
	for (i = 0; i < cfg->num_streamids; ++i) {
1067 1068 1069 1070 1071
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1072
	cfg->smrs = smrs;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1083
				      struct arm_smmu_master_cfg *cfg)
1084 1085 1086
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1087
	struct arm_smmu_smr *smrs = cfg->smrs;
1088

1089 1090 1091
	if (!smrs)
		return;

1092
	/* Invalidate the SMRs before freeing back to the allocator */
1093
	for (i = 0; i < cfg->num_streamids; ++i) {
1094
		u8 idx = smrs[i].idx;
1095

1096 1097 1098 1099
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1100
	cfg->smrs = NULL;
1101 1102 1103 1104
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1105
				      struct arm_smmu_master_cfg *cfg)
1106 1107
{
	int i, ret;
1108
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1109 1110
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1111
	/* Devices in an IOMMU group may already be configured */
1112
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1113
	if (ret)
1114
		return ret == -EEXIST ? 0 : ret;
1115

1116 1117 1118 1119 1120 1121 1122
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
	 * for all devices behind the SMMU.
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
		return 0;

1123
	for (i = 0; i < cfg->num_streamids; ++i) {
1124
		u32 idx, s2cr;
1125

1126
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1127
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1128
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1129 1130 1131 1132 1133 1134 1135
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1136
					  struct arm_smmu_master_cfg *cfg)
1137
{
1138
	int i;
1139
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1140
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1141

1142 1143 1144
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1145 1146 1147 1148 1149

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1150 1151
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1152
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1153

1154
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1155 1156
	}

1157
	arm_smmu_master_free_smrs(smmu, cfg);
1158 1159
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static void arm_smmu_detach_dev(struct device *dev,
				struct arm_smmu_master_cfg *cfg)
{
	struct iommu_domain *domain = dev->archdata.iommu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
}

1170 1171
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1172
	int ret;
1173
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1174
	struct arm_smmu_device *smmu;
1175
	struct arm_smmu_master_cfg *cfg;
1176

1177
	smmu = find_smmu_for_device(dev);
1178
	if (!smmu) {
1179 1180 1181 1182
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1183 1184 1185 1186 1187
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1188
	/*
1189 1190
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1191
	 */
1192
	if (smmu_domain->smmu != smmu) {
1193 1194
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1195 1196
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1197 1198 1199
	}

	/* Looks ok, so add the device to the domain */
1200
	cfg = find_smmu_master_cfg(dev);
1201
	if (!cfg)
1202 1203
		return -ENODEV;

1204 1205 1206 1207
	/* Detach the dev from its current domain */
	if (dev->archdata.iommu)
		arm_smmu_detach_dev(dev, cfg);

1208 1209 1210
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1211 1212 1213 1214
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1215
			phys_addr_t paddr, size_t size, int prot)
1216
{
1217 1218
	int ret;
	unsigned long flags;
1219
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1220
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1221

1222
	if (!ops)
1223 1224
		return -ENODEV;

1225 1226 1227 1228
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1229 1230 1231 1232 1233
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1234 1235
	size_t ret;
	unsigned long flags;
1236
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1237
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1238

1239 1240 1241 1242 1243 1244 1245
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1246 1247
}

1248 1249 1250
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1251
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1252 1253 1254 1255 1256 1257 1258
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1259
	unsigned long va;
1260 1261 1262

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1263 1264 1265
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1266
		smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1267 1268
	else
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1269 1270 1271 1272

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1273
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1290
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1291
					dma_addr_t iova)
1292
{
1293 1294
	phys_addr_t ret;
	unsigned long flags;
1295
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1296
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1297

1298
	if (!ops)
1299
		return 0;
1300

1301
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1302 1303
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1304
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1305
	} else {
1306
		ret = ops->iova_to_phys(ops, iova);
1307 1308
	}

1309
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1310

1311
	return ret;
1312 1313
}

1314
static bool arm_smmu_capable(enum iommu_cap cap)
1315
{
1316 1317
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1318 1319 1320 1321 1322
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1323
	case IOMMU_CAP_INTR_REMAP:
1324
		return true; /* MSIs are just memory writes */
1325 1326
	case IOMMU_CAP_NOEXEC:
		return true;
1327
	default:
1328
		return false;
1329
	}
1330 1331
}

1332 1333 1334 1335
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1336 1337
}

1338 1339 1340 1341 1342
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1343 1344
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1345
{
1346
	struct arm_smmu_master_cfg *cfg;
1347 1348
	u16 sid;
	int i;
1349

1350 1351
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1352
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1353 1354
		if (!cfg)
			return -ENOMEM;
1355

1356 1357 1358
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1359

1360 1361
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1375

1376
	return 0;
1377 1378
}

1379 1380
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1381 1382
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1383
	struct arm_smmu_master *master;
1384 1385 1386 1387 1388 1389 1390 1391 1392

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1393 1394

	return 0;
1395 1396 1397 1398
}

static int arm_smmu_add_device(struct device *dev)
{
1399
	struct iommu_group *group;
1400

1401 1402 1403
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1404

1405
	iommu_group_put(group);
1406
	return 0;
1407 1408
}

1409 1410
static void arm_smmu_remove_device(struct device *dev)
{
1411
	iommu_group_remove_device(dev);
1412 1413
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1440 1441 1442
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1443
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1457
	int ret = 0;
1458
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1459

1460 1461
	mutex_lock(&smmu_domain->init_mutex);

1462 1463
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1464 1465 1466 1467 1468
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1469 1470 1471 1472 1473
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1474
		break;
1475
	default:
1476
		ret = -ENODEV;
1477
	}
1478 1479 1480 1481

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1482 1483
}

1484
static struct iommu_ops arm_smmu_ops = {
1485
	.capable		= arm_smmu_capable,
1486 1487
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1488 1489 1490
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1491
	.map_sg			= default_iommu_map_sg,
1492 1493 1494
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1495
	.device_group		= arm_smmu_device_group,
1496 1497
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1498
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1499 1500 1501 1502 1503
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1504
	void __iomem *cb_base;
1505
	int i = 0;
1506 1507
	u32 reg;

1508 1509 1510
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1511

1512 1513
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1514
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1515
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1516
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1517 1518
	}

1519 1520 1521 1522 1523
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1524 1525 1526 1527 1528 1529 1530 1531 1532
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1533
	}
1534

1535 1536 1537 1538
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1539
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1540

1541
	/* Enable fault reporting */
1542
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1543 1544

	/* Disable TLB broadcasting. */
1545
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1546

1547 1548 1549 1550 1551 1552
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1553 1554

	/* Disable forced broadcasting */
1555
	reg &= ~sCR0_FB;
1556 1557

	/* Don't upgrade barriers */
1558
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1559

1560 1561 1562
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1563
	/* Push the button */
1564
	__arm_smmu_tlb_sync(smmu);
1565
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1592
	bool cttw_dt, cttw_reg;
1593 1594 1595 1596 1597 1598

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1599 1600 1601 1602 1603 1604 1605

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1622
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1623 1624 1625 1626
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1627
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1628 1629 1630 1631
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1632 1633 1634 1635 1636 1637 1638 1639 1640
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1641
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1642 1643 1644 1645 1646 1647
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1678 1679 1680
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1681 1682 1683 1684
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1685
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1686

1687
	/* Check for size mismatch of SMMU address space from mapped region */
1688
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1689
	size *= 2 << smmu->pgshift;
1690
	if (smmu->size != size)
1691 1692 1693
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1694

1695
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1696 1697 1698 1699 1700 1701 1702
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1714 1715 1716 1717

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1718
	smmu->ipa_size = size;
1719

1720
	/* The output mask is also applied for bypass */
1721
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1722
	smmu->pa_size = size;
1723

1724 1725 1726
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1727 1728 1729 1730 1731 1732 1733 1734 1735
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1736
	if (smmu->version == ARM_SMMU_V1) {
1737 1738
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1739 1740
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1741 1742 1743
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1744
#endif
1745 1746 1747 1748 1749 1750 1751
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1752 1753
	}

1754 1755 1756
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1757 1758
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1759
			   smmu->va_size, smmu->ipa_size);
1760 1761 1762

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1763
			   smmu->ipa_size, smmu->pa_size);
1764

1765 1766 1767
	return 0;
}

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1778
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1779
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1780

1781
static const struct of_device_id arm_smmu_of_match[] = {
1782 1783 1784 1785
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
	{ .compatible = "arm,mmu-401", .data = &smmu_generic_v1 },
1786
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1787
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1788 1789 1790 1791
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1792 1793
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1794
	const struct of_device_id *of_id;
1795
	const struct arm_smmu_match_data *data;
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1810
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1811 1812 1813
	data = of_id->data;
	smmu->version = data->version;
	smmu->model = data->model;
1814

1815
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1816 1817 1818
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1834 1835 1836 1837
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1849

1850 1851 1852 1853 1854 1855 1856
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1857 1858 1859 1860
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1877 1878
	parse_driver_options(smmu);

1879
	if (smmu->version > ARM_SMMU_V1 &&
1880 1881 1882 1883
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1884
		err = -ENODEV;
1885
		goto out_put_masters;
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1905 1906

	arm_smmu_device_reset(smmu);
1907 1908 1909 1910 1911 1912 1913 1914
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1915 1916
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1944 1945
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1946 1947 1948
		of_node_put(master->of_node);
	}

1949
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1950 1951 1952 1953 1954 1955
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1956
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1971
	struct device_node *np;
1972 1973
	int ret;

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1985 1986 1987 1988 1989
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1990
	if (!iommu_present(&platform_bus_type))
1991 1992
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1993
#ifdef CONFIG_ARM_AMBA
1994
	if (!iommu_present(&amba_bustype))
1995
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1996
#endif
1997

1998 1999 2000 2001 2002
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

2003 2004 2005 2006 2007 2008 2009 2010
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2011
subsys_initcall(arm_smmu_init);
2012 2013 2014 2015 2016
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");