core.c 189.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298

299
/*
300
 * __task_rq_lock - lock the rq @p resides on.
301
 */
302
static inline struct rq *__task_rq_lock(struct task_struct *p)
303 304
	__acquires(rq->lock)
{
305 306
	struct rq *rq;

307 308
	lockdep_assert_held(&p->pi_lock);

309
	for (;;) {
310
		rq = task_rq(p);
311
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
312
		if (likely(rq == task_rq(p)))
313
			return rq;
314
		raw_spin_unlock(&rq->lock);
315 316 317
	}
}

L
Linus Torvalds 已提交
318
/*
319
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
320
 */
321
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
323 324
	__acquires(rq->lock)
{
325
	struct rq *rq;
L
Linus Torvalds 已提交
326

327
	for (;;) {
328
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329
		rq = task_rq(p);
330
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
331
		if (likely(rq == task_rq(p)))
332
			return rq;
333 334
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
335 336 337
	}
}

A
Alexey Dobriyan 已提交
338
static void __task_rq_unlock(struct rq *rq)
339 340
	__releases(rq->lock)
{
341
	raw_spin_unlock(&rq->lock);
342 343
}

344 345
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
346
	__releases(rq->lock)
347
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
348
{
349 350
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
351 352 353
}

/*
354
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
355
 */
A
Alexey Dobriyan 已提交
356
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
357 358
	__acquires(rq->lock)
{
359
	struct rq *rq;
L
Linus Torvalds 已提交
360 361 362

	local_irq_disable();
	rq = this_rq();
363
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
364 365 366 367

	return rq;
}

P
Peter Zijlstra 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
398 399 400 401 402 403 404 405 406

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
415
	__hrtick_restart(rq);
416
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
433
		__hrtick_restart(rq);
434
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
514
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
515 516 517
{
	int cpu;

518
	lockdep_assert_held(&task_rq(p)->lock);
I
Ingo Molnar 已提交
519

520
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
521 522
		return;

523
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
524 525

	cpu = task_cpu(p);
526 527
	if (cpu == smp_processor_id()) {
		set_preempt_need_resched();
I
Ingo Molnar 已提交
528
		return;
529
	}
I
Ingo Molnar 已提交
530 531 532 533 534 535 536

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

537
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
538 539 540 541
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

542
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
543 544
		return;
	resched_task(cpu_curr(cpu));
545
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
546
}
547

548
#ifdef CONFIG_SMP
549
#ifdef CONFIG_NO_HZ_COMMON
550 551 552 553 554 555 556 557 558 559 560 561 562 563
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

564
	rcu_read_lock();
565
	for_each_domain(cpu, sd) {
566 567 568 569 570 571
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
572
	}
573 574
unlock:
	rcu_read_unlock();
575 576
	return cpu;
}
577 578 579 580 581 582 583 584 585 586
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
587
static void wake_up_idle_cpu(int cpu)
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
603 604

	/*
605 606 607
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
608
	 */
609
	set_tsk_need_resched(rq->idle);
610

611 612 613 614
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
615 616
}

617
static bool wake_up_full_nohz_cpu(int cpu)
618
{
619
	if (tick_nohz_full_cpu(cpu)) {
620 621 622 623 624 625 626 627 628 629 630
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
631
	if (!wake_up_full_nohz_cpu(cpu))
632 633 634
		wake_up_idle_cpu(cpu);
}

635
static inline bool got_nohz_idle_kick(void)
636
{
637
	int cpu = smp_processor_id();
638 639 640 641 642 643 644 645 646 647 648 649 650

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
651 652
}

653
#else /* CONFIG_NO_HZ_COMMON */
654

655
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
656
{
657
	return false;
P
Peter Zijlstra 已提交
658 659
}

660
#endif /* CONFIG_NO_HZ_COMMON */
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
679

680
void sched_avg_update(struct rq *rq)
681
{
682 683
	s64 period = sched_avg_period();

684
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 686 687 688 689 690
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
691 692 693
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
694 695
}

696
#endif /* CONFIG_SMP */
697

698 699
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700
/*
701 702 703 704
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
705
 */
706
int walk_tg_tree_from(struct task_group *from,
707
			     tg_visitor down, tg_visitor up, void *data)
708 709
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
710
	int ret;
711

712 713
	parent = from;

714
down:
P
Peter Zijlstra 已提交
715 716
	ret = (*down)(parent, data);
	if (ret)
717
		goto out;
718 719 720 721 722 723 724
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
725
	ret = (*up)(parent, data);
726 727
	if (ret || parent == from)
		goto out;
728 729 730 731 732

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
733
out:
P
Peter Zijlstra 已提交
734
	return ret;
735 736
}

737
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
738
{
739
	return 0;
P
Peter Zijlstra 已提交
740
}
741 742
#endif

743 744
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
745 746 747
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
748 749 750 751
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
752
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
753
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
754 755
		return;
	}
756

757
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
758
	load->inv_weight = prio_to_wmult[prio];
759 760
}

761
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762
{
763
	update_rq_clock(rq);
764
	sched_info_queued(rq, p);
765
	p->sched_class->enqueue_task(rq, p, flags);
766 767
}

768
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769
{
770
	update_rq_clock(rq);
771
	sched_info_dequeued(rq, p);
772
	p->sched_class->dequeue_task(rq, p, flags);
773 774
}

775
void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 777 778 779
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

780
	enqueue_task(rq, p, flags);
781 782
}

783
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 785 786 787
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

788
	dequeue_task(rq, p, flags);
789 790
}

791
static void update_rq_clock_task(struct rq *rq, s64 delta)
792
{
793 794 795 796 797 798 799 800
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
823 824
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825
	if (static_key_false((&paravirt_steal_rq_enabled))) {
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

843 844
	rq->clock_task += delta;

845 846 847 848
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
849 850
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

881
/*
I
Ingo Molnar 已提交
882
 * __normal_prio - return the priority that is based on the static prio
883 884 885
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
886
	return p->static_prio;
887 888
}

889 890 891 892 893 894 895
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
896
static inline int normal_prio(struct task_struct *p)
897 898 899
{
	int prio;

900 901 902
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
903 904 905 906 907 908 909 910 911 912 913 914 915
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
916
static int effective_prio(struct task_struct *p)
917 918 919 920 921 922 923 924 925 926 927 928
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
929 930 931
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
932 933
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
934
 */
935
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
936 937 938 939
{
	return cpu_curr(task_cpu(p)) == p;
}

940 941
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
942
				       int oldprio)
943 944 945
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
946 947
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
948
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
949
		p->sched_class->prio_changed(rq, p, oldprio);
950 951
}

952
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
973
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 975 976
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
977
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
978
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
979
{
980 981 982 983 984
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
985
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987 988

#ifdef CONFIG_LOCKDEP
989 990 991 992 993
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
994
	 * see task_group().
995 996 997 998
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
999 1000 1001
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1002 1003
#endif

1004
	trace_sched_migrate_task(p, new_cpu);
1005

1006
	if (task_cpu(p) != new_cpu) {
1007 1008
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1009
		p->se.nr_migrations++;
1010
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011
	}
I
Ingo Molnar 已提交
1012 1013

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1014 1015
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
	if (p->on_rq) {
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1052 1053
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1074 1075
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1098 1099 1100 1101
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1102 1103 1104 1105 1106 1107 1108 1109 1110
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1111
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112 1113 1114 1115 1116 1117
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1118
struct migration_arg {
1119
	struct task_struct *task;
L
Linus Torvalds 已提交
1120
	int dest_cpu;
1121
};
L
Linus Torvalds 已提交
1122

1123 1124
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1125 1126 1127
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1128 1129 1130 1131 1132 1133 1134
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1135 1136 1137 1138 1139 1140
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1141
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1142 1143
{
	unsigned long flags;
I
Ingo Molnar 已提交
1144
	int running, on_rq;
R
Roland McGrath 已提交
1145
	unsigned long ncsw;
1146
	struct rq *rq;
L
Linus Torvalds 已提交
1147

1148 1149 1150 1151 1152 1153 1154 1155
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1168 1169 1170
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1171
			cpu_relax();
R
Roland McGrath 已提交
1172
		}
1173

1174 1175 1176 1177 1178 1179
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1180
		trace_sched_wait_task(p);
1181
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1182
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1183
		ncsw = 0;
1184
		if (!match_state || p->state == match_state)
1185
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186
		task_rq_unlock(rq, p, &flags);
1187

R
Roland McGrath 已提交
1188 1189 1190 1191 1192 1193
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1204

1205 1206 1207 1208 1209
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1210
		 * So if it was still runnable (but just not actively
1211 1212 1213 1214
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1215 1216 1217 1218
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219 1220
			continue;
		}
1221

1222 1223 1224 1225 1226 1227 1228
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1229 1230

	return ncsw;
L
Linus Torvalds 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1240
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1241 1242 1243 1244 1245
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1246
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1256
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1257
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1258

1259
#ifdef CONFIG_SMP
1260
/*
1261
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262
 */
1263 1264
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1265 1266
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1267 1268
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1269

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1287
	}
1288

1289 1290
	for (;;) {
		/* Any allowed, online CPU? */
1291
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292 1293 1294 1295 1296 1297
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1328 1329 1330 1331 1332
	}

	return dest_cpu;
}

1333
/*
1334
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335
 */
1336
static inline
1337
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338
{
1339
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1351
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1352
		     !cpu_online(cpu)))
1353
		cpu = select_fallback_rq(task_cpu(p), p);
1354 1355

	return cpu;
1356
}
1357 1358 1359 1360 1361 1362

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1363 1364
#endif

P
Peter Zijlstra 已提交
1365
static void
1366
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1367
{
P
Peter Zijlstra 已提交
1368
#ifdef CONFIG_SCHEDSTATS
1369 1370
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381
		rcu_read_lock();
P
Peter Zijlstra 已提交
1382 1383 1384 1385 1386 1387
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1388
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1389
	}
1390 1391 1392 1393

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1394 1395 1396
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1397
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1398 1399

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1400
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1401 1402 1403 1404 1405 1406

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1407
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1408
	p->on_rq = 1;
1409 1410 1411 1412

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1413 1414
}

1415 1416 1417
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1418
static void
1419
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1420 1421
{
	check_preempt_curr(rq, p, wake_flags);
1422
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1423 1424 1425 1426 1427 1428

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1429
	if (rq->idle_stamp) {
1430
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1431
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1432

1433 1434 1435
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1436
			rq->avg_idle = max;
1437

T
Tejun Heo 已提交
1438 1439 1440 1441 1442
		rq->idle_stamp = 0;
	}
#endif
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1468 1469
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1470 1471 1472 1473 1474 1475 1476 1477
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1478
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1479
static void sched_ttwu_pending(void)
1480 1481
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1482 1483
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1484 1485 1486

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1487 1488 1489
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1490 1491 1492 1493 1494 1495 1496 1497
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1498 1499 1500 1501 1502
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1503
	preempt_fold_need_resched();
1504

1505 1506 1507
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1524
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1525
	sched_ttwu_pending();
1526 1527 1528 1529

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1530
	if (unlikely(got_nohz_idle_kick())) {
1531
		this_rq()->idle_balance = 1;
1532
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533
	}
1534
	irq_exit();
1535 1536 1537 1538
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1539
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540 1541
		smp_send_reschedule(cpu);
}
1542

1543
bool cpus_share_cache(int this_cpu, int that_cpu)
1544 1545 1546
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1547
#endif /* CONFIG_SMP */
1548

1549 1550 1551 1552
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1553
#if defined(CONFIG_SMP)
1554
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556 1557 1558 1559 1560
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1561 1562 1563
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1564 1565 1566
}

/**
L
Linus Torvalds 已提交
1567
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1568
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1569
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1570
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575 1576 1577
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1578
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1579
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1580
 */
1581 1582
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1583 1584
{
	unsigned long flags;
1585
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1586

1587 1588 1589 1590 1591 1592 1593
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1594
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1595
	if (!(p->state & state))
L
Linus Torvalds 已提交
1596 1597
		goto out;

1598
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1599 1600
	cpu = task_cpu(p);

1601 1602
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1603 1604

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1605
	/*
1606 1607
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1608
	 */
1609
	while (p->on_cpu)
1610
		cpu_relax();
1611
	/*
1612
	 * Pairs with the smp_wmb() in finish_lock_switch().
1613
	 */
1614
	smp_rmb();
L
Linus Torvalds 已提交
1615

1616
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1617
	p->state = TASK_WAKING;
1618

1619
	if (p->sched_class->task_waking)
1620
		p->sched_class->task_waking(p);
1621

1622
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623 1624
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1625
		set_task_cpu(p, cpu);
1626
	}
L
Linus Torvalds 已提交
1627 1628
#endif /* CONFIG_SMP */

1629 1630
	ttwu_queue(p, cpu);
stat:
1631
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1632
out:
1633
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1634 1635 1636 1637

	return success;
}

T
Tejun Heo 已提交
1638 1639 1640 1641
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1642
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1643
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644
 * the current task.
T
Tejun Heo 已提交
1645 1646 1647 1648 1649
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1650 1651 1652 1653
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1654 1655
	lockdep_assert_held(&rq->lock);

1656 1657 1658 1659 1660 1661
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1662
	if (!(p->state & TASK_NORMAL))
1663
		goto out;
T
Tejun Heo 已提交
1664

P
Peter Zijlstra 已提交
1665
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1666 1667
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1668
	ttwu_do_wakeup(rq, p, 0);
1669
	ttwu_stat(p, smp_processor_id(), 0);
1670 1671
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1672 1673
}

1674 1675 1676 1677 1678
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1679 1680 1681
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1682 1683 1684 1685
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1686
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1687
{
1688 1689
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1690 1691 1692
}
EXPORT_SYMBOL(wake_up_process);

1693
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1694 1695 1696 1697 1698 1699 1700
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1701 1702 1703
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1704
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1705
{
P
Peter Zijlstra 已提交
1706 1707 1708
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1709 1710
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1711
	p->se.prev_sum_exec_runtime	= 0;
1712
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1713
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1714
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1715 1716

#ifdef CONFIG_SCHEDSTATS
1717
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1718
#endif
N
Nick Piggin 已提交
1719

1720 1721 1722 1723
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	p->dl.dl_runtime = p->dl.runtime = 0;
	p->dl.dl_deadline = p->dl.deadline = 0;
1724
	p->dl.dl_period = 0;
1725 1726
	p->dl.flags = 0;

P
Peter Zijlstra 已提交
1727
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1728

1729 1730 1731
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1732 1733 1734

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736 1737 1738
		p->mm->numa_scan_seq = 0;
	}

1739 1740 1741 1742 1743
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1744 1745
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747
	p->numa_work.next = &p->numa_work;
1748 1749
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1750 1751
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1752 1753 1754

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1755
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1756 1757
}

1758
#ifdef CONFIG_NUMA_BALANCING
1759
#ifdef CONFIG_SCHED_DEBUG
1760 1761 1762 1763 1764 1765 1766
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1767 1768 1769 1770 1771 1772
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1773
}
1774
#endif /* CONFIG_SCHED_DEBUG */
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1798 1799 1800 1801

/*
 * fork()/clone()-time setup:
 */
1802
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1803
{
1804
	unsigned long flags;
I
Ingo Molnar 已提交
1805 1806
	int cpu = get_cpu();

1807
	__sched_fork(clone_flags, p);
1808
	/*
1809
	 * We mark the process as running here. This guarantees that
1810 1811 1812
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1813
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1814

1815 1816 1817 1818 1819
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1820 1821 1822 1823
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1824
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1825
			p->policy = SCHED_NORMAL;
1826
			p->static_prio = NICE_TO_PRIO(0);
1827 1828 1829 1830 1831 1832
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1833

1834 1835 1836 1837 1838 1839
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1840

1841 1842 1843 1844 1845 1846
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1847
		p->sched_class = &fair_sched_class;
1848
	}
1849

P
Peter Zijlstra 已提交
1850 1851 1852
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1853 1854 1855 1856 1857 1858 1859
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1860
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1861
	set_task_cpu(p, cpu);
1862
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1863

1864
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1865
	if (likely(sched_info_on()))
1866
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1867
#endif
P
Peter Zijlstra 已提交
1868 1869
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1870
#endif
1871
	init_task_preempt_count(p);
1872
#ifdef CONFIG_SMP
1873
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1874
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1875
#endif
1876

N
Nick Piggin 已提交
1877
	put_cpu();
1878
	return 0;
L
Linus Torvalds 已提交
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->rd->dl_bw;
}

1903
static inline int dl_bw_cpus(int i)
1904
{
1905 1906 1907 1908 1909 1910 1911
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
1912 1913 1914 1915 1916 1917 1918
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

1919
static inline int dl_bw_cpus(int i)
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957
	u64 period = attr->sched_period ?: attr->sched_deadline;
1958 1959
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1960
	int cpus, err = -1;
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
1971
	cpus = dl_bw_cpus(task_cpu(p));
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
1992 1993 1994 1995 1996 1997 1998
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1999
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2000 2001
{
	unsigned long flags;
I
Ingo Molnar 已提交
2002
	struct rq *rq;
2003

2004
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2005 2006 2007 2008 2009 2010
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2011
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2012 2013
#endif

2014 2015
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2016
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2017
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2018
	p->on_rq = 1;
2019
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2020
	check_preempt_curr(rq, p, WF_FORK);
2021
#ifdef CONFIG_SMP
2022 2023
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2024
#endif
2025
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2026 2027
}

2028 2029 2030
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2031
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2032
 * @notifier: notifier struct to register
2033 2034 2035 2036 2037 2038 2039 2040 2041
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2042
 * @notifier: notifier struct to unregister
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2056
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2057 2058 2059 2060 2061 2062 2063 2064 2065
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2066
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2067 2068 2069
		notifier->ops->sched_out(notifier, next);
}

2070
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2082
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2083

2084 2085 2086
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2087
 * @prev: the current task that is being switched out
2088 2089 2090 2091 2092 2093 2094 2095 2096
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2097 2098 2099
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2100
{
2101
	trace_sched_switch(prev, next);
2102
	sched_info_switch(rq, prev, next);
2103
	perf_event_task_sched_out(prev, next);
2104
	fire_sched_out_preempt_notifiers(prev, next);
2105 2106 2107 2108
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2109 2110
/**
 * finish_task_switch - clean up after a task-switch
2111
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2112 2113
 * @prev: the thread we just switched away from.
 *
2114 2115 2116 2117
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2118 2119
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2120
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2121 2122 2123
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2124
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2125 2126 2127
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2128
	long prev_state;
L
Linus Torvalds 已提交
2129 2130 2131 2132 2133

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2134
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2135 2136
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2137
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2138 2139 2140 2141 2142
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2143
	prev_state = prev->state;
2144
	vtime_task_switch(prev);
2145
	finish_arch_switch(prev);
2146
	perf_event_task_sched_in(prev, current);
2147
	finish_lock_switch(rq, prev);
2148
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2149

2150
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2151 2152
	if (mm)
		mmdrop(mm);
2153
	if (unlikely(prev_state == TASK_DEAD)) {
2154 2155 2156
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2157 2158 2159
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2160
		 */
2161
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2162
		put_task_struct(prev);
2163
	}
2164 2165

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2166 2167
}

2168 2169 2170 2171 2172 2173 2174 2175
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2176
		raw_spin_lock_irqsave(&rq->lock, flags);
2177 2178
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2179
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2180 2181 2182 2183 2184 2185

		rq->post_schedule = 0;
	}
}

#else
2186

2187 2188
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2189 2190
}

2191 2192
#endif

L
Linus Torvalds 已提交
2193 2194 2195 2196
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2197
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2198 2199
	__releases(rq->lock)
{
2200 2201
	struct rq *rq = this_rq();

2202
	finish_task_switch(rq, prev);
2203

2204 2205 2206 2207 2208
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2209

2210 2211 2212 2213
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2214
	if (current->set_child_tid)
2215
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220 2221
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2222
static inline void
2223
context_switch(struct rq *rq, struct task_struct *prev,
2224
	       struct task_struct *next)
L
Linus Torvalds 已提交
2225
{
I
Ingo Molnar 已提交
2226
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2227

2228
	prepare_task_switch(rq, prev, next);
2229

I
Ingo Molnar 已提交
2230 2231
	mm = next->mm;
	oldmm = prev->active_mm;
2232 2233 2234 2235 2236
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2237
	arch_start_context_switch(prev);
2238

2239
	if (!mm) {
L
Linus Torvalds 已提交
2240 2241 2242 2243 2244 2245
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2246
	if (!prev->mm) {
L
Linus Torvalds 已提交
2247 2248 2249
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2250 2251 2252 2253 2254 2255 2256
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2257
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2258
#endif
L
Linus Torvalds 已提交
2259

2260
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2261 2262 2263
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2264 2265 2266 2267 2268 2269 2270
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2271 2272 2273
}

/*
2274
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2275 2276
 *
 * externally visible scheduler statistics: current number of runnable
2277
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2287
}
L
Linus Torvalds 已提交
2288 2289

unsigned long long nr_context_switches(void)
2290
{
2291 2292
	int i;
	unsigned long long sum = 0;
2293

2294
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2295
		sum += cpu_rq(i)->nr_switches;
2296

L
Linus Torvalds 已提交
2297 2298
	return sum;
}
2299

L
Linus Torvalds 已提交
2300 2301 2302
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2303

2304
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2305
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2306

L
Linus Torvalds 已提交
2307 2308
	return sum;
}
2309

2310
unsigned long nr_iowait_cpu(int cpu)
2311
{
2312
	struct rq *this = cpu_rq(cpu);
2313 2314
	return atomic_read(&this->nr_iowait);
}
2315

I
Ingo Molnar 已提交
2316
#ifdef CONFIG_SMP
2317

2318
/*
P
Peter Zijlstra 已提交
2319 2320
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2321
 */
P
Peter Zijlstra 已提交
2322
void sched_exec(void)
2323
{
P
Peter Zijlstra 已提交
2324
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2325
	unsigned long flags;
2326
	int dest_cpu;
2327

2328
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2329
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2330 2331
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2332

2333
	if (likely(cpu_active(dest_cpu))) {
2334
		struct migration_arg arg = { p, dest_cpu };
2335

2336 2337
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2338 2339
		return;
	}
2340
unlock:
2341
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2342
}
I
Ingo Molnar 已提交
2343

L
Linus Torvalds 已提交
2344 2345 2346
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2347
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2348 2349

EXPORT_PER_CPU_SYMBOL(kstat);
2350
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2351 2352

/*
2353
 * Return any ns on the sched_clock that have not yet been accounted in
2354
 * @p in case that task is currently running.
2355 2356
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2357
 */
2358 2359 2360 2361 2362 2363
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2364
		ns = rq_clock_task(rq) - p->se.exec_start;
2365 2366 2367 2368 2369 2370 2371
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2372
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2373 2374
{
	unsigned long flags;
2375
	struct rq *rq;
2376
	u64 ns = 0;
2377

2378
	rq = task_rq_lock(p, &flags);
2379
	ns = do_task_delta_exec(p, rq);
2380
	task_rq_unlock(rq, p, &flags);
2381

2382 2383
	return ns;
}
2384

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
	 */
	if (!p->on_cpu)
		return p->se.sum_exec_runtime;
#endif

2410 2411
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2412
	task_rq_unlock(rq, p, &flags);
2413 2414 2415

	return ns;
}
2416

2417 2418 2419 2420 2421 2422 2423 2424
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2425
	struct task_struct *curr = rq->curr;
2426 2427

	sched_clock_tick();
I
Ingo Molnar 已提交
2428

2429
	raw_spin_lock(&rq->lock);
2430
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2431
	curr->sched_class->task_tick(rq, curr, 0);
2432
	update_cpu_load_active(rq);
2433
	raw_spin_unlock(&rq->lock);
2434

2435
	perf_event_task_tick();
2436

2437
#ifdef CONFIG_SMP
2438
	rq->idle_balance = idle_cpu(cpu);
2439
	trigger_load_balance(rq);
2440
#endif
2441
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2442 2443
}

2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2455 2456
 *
 * Return: Maximum deferment in nanoseconds.
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2468
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2469
}
2470
#endif
L
Linus Torvalds 已提交
2471

2472
notrace unsigned long get_parent_ip(unsigned long addr)
2473 2474 2475 2476 2477 2478 2479 2480
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2481

2482 2483 2484
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2485
void __kprobes preempt_count_add(int val)
L
Linus Torvalds 已提交
2486
{
2487
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2488 2489 2490
	/*
	 * Underflow?
	 */
2491 2492
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2493
#endif
2494
	__preempt_count_add(val);
2495
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2496 2497 2498
	/*
	 * Spinlock count overflowing soon?
	 */
2499 2500
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2501
#endif
2502 2503 2504 2505 2506 2507 2508
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2509
}
2510
EXPORT_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2511

2512
void __kprobes preempt_count_sub(int val)
L
Linus Torvalds 已提交
2513
{
2514
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2515 2516 2517
	/*
	 * Underflow?
	 */
2518
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2519
		return;
L
Linus Torvalds 已提交
2520 2521 2522
	/*
	 * Is the spinlock portion underflowing?
	 */
2523 2524 2525
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2526
#endif
2527

2528 2529
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2530
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2531
}
2532
EXPORT_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2533 2534 2535 2536

#endif

/*
I
Ingo Molnar 已提交
2537
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2538
 */
I
Ingo Molnar 已提交
2539
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2540
{
2541 2542 2543
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2544 2545
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2546

I
Ingo Molnar 已提交
2547
	debug_show_held_locks(prev);
2548
	print_modules();
I
Ingo Molnar 已提交
2549 2550
	if (irqs_disabled())
		print_irqtrace_events(prev);
2551 2552 2553 2554 2555 2556 2557
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2558
	dump_stack();
2559
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2560
}
L
Linus Torvalds 已提交
2561

I
Ingo Molnar 已提交
2562 2563 2564 2565 2566
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2567
	/*
I
Ingo Molnar 已提交
2568
	 * Test if we are atomic. Since do_exit() needs to call into
2569 2570
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2571
	 */
2572
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2573
		__schedule_bug(prev);
2574
	rcu_sleep_check();
I
Ingo Molnar 已提交
2575

L
Linus Torvalds 已提交
2576 2577
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2578
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2579 2580 2581 2582 2583 2584
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2585
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2586
{
2587
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2588
	struct task_struct *p;
L
Linus Torvalds 已提交
2589 2590

	/*
I
Ingo Molnar 已提交
2591 2592
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2593
	 */
2594
	if (likely(prev->sched_class == class &&
2595
		   rq->nr_running == rq->cfs.h_nr_running)) {
2596
		p = fair_sched_class.pick_next_task(rq, prev);
2597
		if (likely(p && p != RETRY_TASK))
I
Ingo Molnar 已提交
2598
			return p;
L
Linus Torvalds 已提交
2599 2600
	}

2601
again:
2602
	for_each_class(class) {
2603
		p = class->pick_next_task(rq, prev);
2604 2605 2606
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2607
			return p;
2608
		}
I
Ingo Molnar 已提交
2609
	}
2610 2611

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2612
}
L
Linus Torvalds 已提交
2613

I
Ingo Molnar 已提交
2614
/*
2615
 * __schedule() is the main scheduler function.
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2650
 */
2651
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2652 2653
{
	struct task_struct *prev, *next;
2654
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2655
	struct rq *rq;
2656
	int cpu;
I
Ingo Molnar 已提交
2657

2658 2659
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2660 2661
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2662
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2663 2664 2665
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2666

2667
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2668
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2669

2670 2671 2672 2673 2674 2675
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2676
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2677

2678
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2679
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2680
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2681
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2682
		} else {
2683 2684 2685
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2686
			/*
2687 2688 2689
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2699
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2700 2701
	}

2702 2703 2704 2705
	if (prev->on_rq || rq->skip_clock_update < 0)
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2706
	clear_tsk_need_resched(prev);
2707
	clear_preempt_need_resched();
2708
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2709 2710 2711 2712 2713 2714

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2715
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2716
		/*
2717 2718 2719 2720
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2721 2722 2723
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2724
	} else
2725
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2726

2727
	post_schedule(rq);
L
Linus Torvalds 已提交
2728

2729
	sched_preempt_enable_no_resched();
2730
	if (need_resched())
L
Linus Torvalds 已提交
2731 2732
		goto need_resched;
}
2733

2734 2735
static inline void sched_submit_work(struct task_struct *tsk)
{
2736
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2737 2738 2739 2740 2741 2742 2743 2744 2745
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2746
asmlinkage void __sched schedule(void)
2747
{
2748 2749 2750
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2751 2752
	__schedule();
}
L
Linus Torvalds 已提交
2753 2754
EXPORT_SYMBOL(schedule);

2755
#ifdef CONFIG_CONTEXT_TRACKING
2756 2757 2758 2759 2760 2761 2762 2763
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2764
	user_exit();
2765
	schedule();
2766
	user_enter();
2767 2768 2769
}
#endif

2770 2771 2772 2773 2774 2775 2776
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2777
	sched_preempt_enable_no_resched();
2778 2779 2780 2781
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2782 2783
#ifdef CONFIG_PREEMPT
/*
2784
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2785
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2786 2787
 * occur there and call schedule directly.
 */
2788
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2789 2790 2791
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2792
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2793
	 */
2794
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2795 2796
		return;

2797
	do {
2798
		__preempt_count_add(PREEMPT_ACTIVE);
2799
		__schedule();
2800
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2801

2802 2803 2804 2805 2806
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2807
	} while (need_resched());
L
Linus Torvalds 已提交
2808 2809
}
EXPORT_SYMBOL(preempt_schedule);
2810
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2811 2812

/*
2813
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2814 2815 2816 2817 2818 2819
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
2820
	enum ctx_state prev_state;
2821

2822
	/* Catch callers which need to be fixed */
2823
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2824

2825 2826
	prev_state = exception_enter();

2827
	do {
2828
		__preempt_count_add(PREEMPT_ACTIVE);
2829
		local_irq_enable();
2830
		__schedule();
2831
		local_irq_disable();
2832
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2833

2834 2835 2836 2837 2838
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2839
	} while (need_resched());
2840 2841

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2842 2843
}

P
Peter Zijlstra 已提交
2844
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2845
			  void *key)
L
Linus Torvalds 已提交
2846
{
P
Peter Zijlstra 已提交
2847
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2848 2849 2850
}
EXPORT_SYMBOL(default_wake_function);

2851 2852
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
2853
{
I
Ingo Molnar 已提交
2854 2855 2856 2857
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
2858

2859
	__set_current_state(state);
L
Linus Torvalds 已提交
2860

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2875 2876 2877
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
2878
long __sched
I
Ingo Molnar 已提交
2879
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2880
{
2881
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
2882 2883 2884
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
2885
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
2886
{
2887
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2888 2889 2890
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
2891
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2892
{
2893
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
2894 2895 2896
}
EXPORT_SYMBOL(sleep_on_timeout);

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2907 2908
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2909
 */
2910
void rt_mutex_setprio(struct task_struct *p, int prio)
2911
{
2912
	int oldprio, on_rq, running, enqueue_flag = 0;
2913
	struct rq *rq;
2914
	const struct sched_class *prev_class;
2915

2916
	BUG_ON(prio > MAX_PRIO);
2917

2918
	rq = __task_rq_lock(p);
2919

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

2938
	trace_sched_pi_setprio(p, prio);
2939
	p->pi_top_task = rt_mutex_get_top_task(p);
2940
	oldprio = p->prio;
2941
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
2942
	on_rq = p->on_rq;
2943
	running = task_current(rq, p);
2944
	if (on_rq)
2945
		dequeue_task(rq, p, 0);
2946 2947
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
2948

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
2966
		p->sched_class = &dl_sched_class;
2967 2968 2969 2970 2971
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
2972
		p->sched_class = &rt_sched_class;
2973 2974 2975
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
2976
		p->sched_class = &fair_sched_class;
2977
	}
I
Ingo Molnar 已提交
2978

2979 2980
	p->prio = prio;

2981 2982
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
2983
	if (on_rq)
2984
		enqueue_task(rq, p, enqueue_flag);
2985

P
Peter Zijlstra 已提交
2986
	check_class_changed(rq, p, prev_class, oldprio);
2987
out_unlock:
2988
	__task_rq_unlock(rq);
2989 2990
}
#endif
2991

2992
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
2993
{
I
Ingo Molnar 已提交
2994
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
2995
	unsigned long flags;
2996
	struct rq *rq;
L
Linus Torvalds 已提交
2997

2998
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3009
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3010
	 */
3011
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3012 3013 3014
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3015
	on_rq = p->on_rq;
3016
	if (on_rq)
3017
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3018 3019

	p->static_prio = NICE_TO_PRIO(nice);
3020
	set_load_weight(p);
3021 3022 3023
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3024

I
Ingo Molnar 已提交
3025
	if (on_rq) {
3026
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3027
		/*
3028 3029
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3030
		 */
3031
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3032 3033 3034
			resched_task(rq->curr);
	}
out_unlock:
3035
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3036 3037 3038
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3039 3040 3041 3042 3043
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3044
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3045
{
3046 3047
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3048

3049
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3050 3051 3052
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3062
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3063
{
3064
	long nice, retval;
L
Linus Torvalds 已提交
3065 3066 3067 3068 3069 3070

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3071 3072
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3073 3074 3075
	if (increment > 40)
		increment = 40;

3076
	nice = task_nice(current) + increment;
3077 3078 3079 3080
	if (nice < MIN_NICE)
		nice = MIN_NICE;
	if (nice > MAX_NICE)
		nice = MAX_NICE;
L
Linus Torvalds 已提交
3081

M
Matt Mackall 已提交
3082 3083 3084
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3099
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3100 3101 3102
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3103
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3104 3105 3106 3107 3108 3109 3110
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3111 3112
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3113 3114 3115
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3130 3131 3132 3133 3134
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3135 3136
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3137
 */
3138
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3139 3140 3141 3142 3143 3144 3145
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3146 3147
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3148
 */
A
Alexey Dobriyan 已提交
3149
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3150
{
3151
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3152 3153
}

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3170
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3171
	dl_se->flags = attr->sched_flags;
3172
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3173 3174 3175 3176
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
}

3177 3178
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3179
{
3180 3181
	int policy = attr->sched_policy;

3182 3183 3184
	if (policy == -1) /* setparam */
		policy = p->policy;

L
Linus Torvalds 已提交
3185
	p->policy = policy;
3186

3187 3188
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3189
	else if (fair_policy(policy))
3190 3191
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3192 3193 3194 3195 3196 3197
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3198 3199
	set_load_weight(p);
}
3200

3201 3202 3203 3204 3205
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3206

3207 3208 3209
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3210 3211 3212
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3213
}
3214 3215 3216 3217 3218 3219 3220 3221 3222

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3223
	attr->sched_period = dl_se->dl_period;
3224 3225 3226 3227 3228 3229
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3230
 * than the runtime, as well as the period of being zero or
3231 3232 3233
 * greater than deadline. Furthermore, we have to be sure that
 * user parameters are above the internal resolution (1us); we
 * check sched_runtime only since it is always the smaller one.
3234 3235 3236 3237 3238
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
	return attr && attr->sched_deadline != 0 &&
3239 3240
		(attr->sched_period == 0 ||
		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3241 3242
		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3243 3244
}

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3255 3256
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3257 3258 3259 3260
	rcu_read_unlock();
	return match;
}

3261 3262 3263
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3264
{
3265
	int newprio = MAX_RT_PRIO - 1 - attr->sched_priority;
3266
	int retval, oldprio, oldpolicy = -1, on_rq, running;
3267
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3268
	unsigned long flags;
3269
	const struct sched_class *prev_class;
3270
	struct rq *rq;
3271
	int reset_on_fork;
L
Linus Torvalds 已提交
3272

3273 3274
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3275 3276
recheck:
	/* double check policy once rq lock held */
3277 3278
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3279
		policy = oldpolicy = p->policy;
3280
	} else {
3281
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3282

3283 3284
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3285 3286 3287 3288 3289
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3290 3291 3292
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3293 3294
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3295 3296
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3297
	 */
3298
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3299
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3300
		return -EINVAL;
3301 3302
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3303 3304
		return -EINVAL;

3305 3306 3307
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3308
	if (user && !capable(CAP_SYS_NICE)) {
3309
		if (fair_policy(policy)) {
3310
			if (attr->sched_nice < task_nice(p) &&
3311
			    !can_nice(p, attr->sched_nice))
3312 3313 3314
				return -EPERM;
		}

3315
		if (rt_policy(policy)) {
3316 3317
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3318 3319 3320 3321 3322 3323

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3324 3325
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3326 3327
				return -EPERM;
		}
3328

3329 3330 3331 3332 3333 3334 3335 3336 3337
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3338
		/*
3339 3340
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3341
		 */
3342
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3343
			if (!can_nice(p, task_nice(p)))
3344 3345
				return -EPERM;
		}
3346

3347
		/* can't change other user's priorities */
3348
		if (!check_same_owner(p))
3349
			return -EPERM;
3350 3351 3352 3353

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3354
	}
L
Linus Torvalds 已提交
3355

3356
	if (user) {
3357
		retval = security_task_setscheduler(p);
3358 3359 3360 3361
		if (retval)
			return retval;
	}

3362 3363 3364
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3365
	 *
L
Lucas De Marchi 已提交
3366
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3367 3368
	 * runqueue lock must be held.
	 */
3369
	rq = task_rq_lock(p, &flags);
3370

3371 3372 3373 3374
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3375
		task_rq_unlock(rq, p, &flags);
3376 3377 3378
		return -EINVAL;
	}

3379
	/*
3380 3381
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3382
	 */
3383
	if (unlikely(policy == p->policy)) {
3384
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3385 3386 3387
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3388 3389
		if (dl_policy(policy))
			goto change;
3390

3391
		p->sched_reset_on_fork = reset_on_fork;
3392
		task_rq_unlock(rq, p, &flags);
3393 3394
		return 0;
	}
3395
change:
3396

3397
	if (user) {
3398
#ifdef CONFIG_RT_GROUP_SCHED
3399 3400 3401 3402 3403
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3404 3405
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3406
			task_rq_unlock(rq, p, &flags);
3407 3408 3409
			return -EPERM;
		}
#endif
3410 3411 3412 3413 3414 3415 3416 3417 3418
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3419 3420
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3421 3422 3423 3424 3425 3426
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3427

L
Linus Torvalds 已提交
3428 3429 3430
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3431
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3432 3433
		goto recheck;
	}
3434 3435 3436 3437 3438 3439

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3440
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3441 3442 3443 3444
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

P
Peter Zijlstra 已提交
3463
	on_rq = p->on_rq;
3464
	running = task_current(rq, p);
3465
	if (on_rq)
3466
		dequeue_task(rq, p, 0);
3467 3468
	if (running)
		p->sched_class->put_prev_task(rq, p);
3469

3470
	prev_class = p->sched_class;
3471
	__setscheduler(rq, p, attr);
3472

3473 3474
	if (running)
		p->sched_class->set_curr_task(rq);
3475 3476 3477 3478 3479 3480 3481
	if (on_rq) {
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3482

P
Peter Zijlstra 已提交
3483
	check_class_changed(rq, p, prev_class, oldprio);
3484
	task_rq_unlock(rq, p, &flags);
3485

3486 3487
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3488 3489
	return 0;
}
3490

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

	/*
	 * Fixup the legacy SCHED_RESET_ON_FORK hack
	 */
	if (policy & SCHED_RESET_ON_FORK) {
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3511 3512 3513 3514 3515 3516
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3517 3518
 * Return: 0 on success. An error code otherwise.
 *
3519 3520 3521
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3522
		       const struct sched_param *param)
3523
{
3524
	return _sched_setscheduler(p, policy, param, true);
3525
}
L
Linus Torvalds 已提交
3526 3527
EXPORT_SYMBOL_GPL(sched_setscheduler);

3528 3529 3530 3531 3532 3533
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3544 3545
 *
 * Return: 0 on success. An error code otherwise.
3546 3547
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3548
			       const struct sched_param *param)
3549
{
3550
	return _sched_setscheduler(p, policy, param, false);
3551 3552
}

I
Ingo Molnar 已提交
3553 3554
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3555 3556 3557
{
	struct sched_param lparam;
	struct task_struct *p;
3558
	int retval;
L
Linus Torvalds 已提交
3559 3560 3561 3562 3563

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3564 3565 3566

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3567
	p = find_process_by_pid(pid);
3568 3569 3570
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3571

L
Linus Torvalds 已提交
3572 3573 3574
	return retval;
}

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3637
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Linus Torvalds 已提交
3648 3649 3650 3651 3652
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3653 3654
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3655
 */
3656 3657
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3658
{
3659 3660 3661 3662
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3663 3664 3665 3666 3667 3668 3669
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3670 3671
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3672
 */
3673
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3674 3675 3676 3677
{
	return do_sched_setscheduler(pid, -1, param);
}

3678 3679 3680
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3681
 * @uattr: structure containing the extended parameters.
3682
 */
3683 3684
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3685 3686 3687 3688 3689
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3690
	if (!uattr || pid < 0 || flags)
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
		return -EINVAL;

	if (sched_copy_attr(uattr, &attr))
		return -EFAULT;

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3706 3707 3708
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3709 3710 3711
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3712
 */
3713
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3714
{
3715
	struct task_struct *p;
3716
	int retval;
L
Linus Torvalds 已提交
3717 3718

	if (pid < 0)
3719
		return -EINVAL;
L
Linus Torvalds 已提交
3720 3721

	retval = -ESRCH;
3722
	rcu_read_lock();
L
Linus Torvalds 已提交
3723 3724 3725 3726
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3727 3728
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3729
	}
3730
	rcu_read_unlock();
L
Linus Torvalds 已提交
3731 3732 3733 3734
	return retval;
}

/**
3735
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3736 3737
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3738 3739 3740
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3741
 */
3742
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3743 3744
{
	struct sched_param lp;
3745
	struct task_struct *p;
3746
	int retval;
L
Linus Torvalds 已提交
3747 3748

	if (!param || pid < 0)
3749
		return -EINVAL;
L
Linus Torvalds 已提交
3750

3751
	rcu_read_lock();
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3761 3762 3763 3764
	if (task_has_dl_policy(p)) {
		retval = -EINVAL;
		goto out_unlock;
	}
L
Linus Torvalds 已提交
3765
	lp.sched_priority = p->rt_priority;
3766
	rcu_read_unlock();
L
Linus Torvalds 已提交
3767 3768 3769 3770 3771 3772 3773 3774 3775

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3776
	rcu_read_unlock();
L
Linus Torvalds 已提交
3777 3778 3779
	return retval;
}

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
				goto err_size;
		}

		attr->size = usize;
	}

3809
	ret = copy_to_user(uattr, attr, attr->size);
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	if (ret)
		return -EFAULT;

out:
	return ret;

err_size:
	ret = -E2BIG;
	goto out;
}

/**
3822
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3823
 * @pid: the pid in question.
J
Juri Lelli 已提交
3824
 * @uattr: structure containing the extended parameters.
3825 3826
 * @size: sizeof(attr) for fwd/bwd comp.
 */
3827 3828
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3829 3830 3831 3832 3833 3834 3835 3836
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3837
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3851 3852
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3853 3854 3855
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3856 3857
		attr.sched_priority = p->rt_priority;
	else
3858
		attr.sched_nice = task_nice(p);
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3870
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3871
{
3872
	cpumask_var_t cpus_allowed, new_mask;
3873 3874
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3875

3876
	rcu_read_lock();
L
Linus Torvalds 已提交
3877 3878 3879

	p = find_process_by_pid(pid);
	if (!p) {
3880
		rcu_read_unlock();
L
Linus Torvalds 已提交
3881 3882 3883
		return -ESRCH;
	}

3884
	/* Prevent p going away */
L
Linus Torvalds 已提交
3885
	get_task_struct(p);
3886
	rcu_read_unlock();
L
Linus Torvalds 已提交
3887

3888 3889 3890 3891
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3892 3893 3894 3895 3896 3897 3898 3899
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3900
	retval = -EPERM;
E
Eric W. Biederman 已提交
3901 3902 3903 3904 3905 3906 3907 3908
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3909

3910
	retval = security_task_setscheduler(p);
3911 3912 3913
	if (retval)
		goto out_unlock;

3914 3915 3916 3917

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
	if (task_has_dl_policy(p)) {
		const struct cpumask *span = task_rq(p)->rd->span;

3928
		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3929 3930 3931 3932 3933
			retval = -EBUSY;
			goto out_unlock;
		}
	}
#endif
P
Peter Zijlstra 已提交
3934
again:
3935
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3936

P
Paul Menage 已提交
3937
	if (!retval) {
3938 3939
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3940 3941 3942 3943 3944
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3945
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3946 3947 3948
			goto again;
		}
	}
L
Linus Torvalds 已提交
3949
out_unlock:
3950 3951 3952 3953
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3954 3955 3956 3957 3958
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3959
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3960
{
3961 3962 3963 3964 3965
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3966 3967 3968 3969 3970 3971 3972 3973
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
3974 3975
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3976
 */
3977 3978
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3979
{
3980
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3981 3982
	int retval;

3983 3984
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3985

3986 3987 3988 3989 3990
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3991 3992
}

3993
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3994
{
3995
	struct task_struct *p;
3996
	unsigned long flags;
L
Linus Torvalds 已提交
3997 3998
	int retval;

3999
	rcu_read_lock();
L
Linus Torvalds 已提交
4000 4001 4002 4003 4004 4005

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4006 4007 4008 4009
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4010
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4011
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4012
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4013 4014

out_unlock:
4015
	rcu_read_unlock();
L
Linus Torvalds 已提交
4016

4017
	return retval;
L
Linus Torvalds 已提交
4018 4019 4020 4021 4022 4023 4024
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4025 4026
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4027
 */
4028 4029
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4030 4031
{
	int ret;
4032
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4033

A
Anton Blanchard 已提交
4034
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4035 4036
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4037 4038
		return -EINVAL;

4039 4040
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4041

4042 4043
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4044
		size_t retlen = min_t(size_t, len, cpumask_size());
4045 4046

		if (copy_to_user(user_mask_ptr, mask, retlen))
4047 4048
			ret = -EFAULT;
		else
4049
			ret = retlen;
4050 4051
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4052

4053
	return ret;
L
Linus Torvalds 已提交
4054 4055 4056 4057 4058
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4059 4060
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4061 4062
 *
 * Return: 0.
L
Linus Torvalds 已提交
4063
 */
4064
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4065
{
4066
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4067

4068
	schedstat_inc(rq, yld_count);
4069
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4070 4071 4072 4073 4074 4075

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4076
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4077
	do_raw_spin_unlock(&rq->lock);
4078
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4079 4080 4081 4082 4083 4084

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4085
static void __cond_resched(void)
L
Linus Torvalds 已提交
4086
{
4087
	__preempt_count_add(PREEMPT_ACTIVE);
4088
	__schedule();
4089
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4090 4091
}

4092
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4093
{
P
Peter Zijlstra 已提交
4094
	if (should_resched()) {
L
Linus Torvalds 已提交
4095 4096 4097 4098 4099
		__cond_resched();
		return 1;
	}
	return 0;
}
4100
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4101 4102

/*
4103
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4104 4105
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4106
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4107 4108 4109
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4110
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4111
{
P
Peter Zijlstra 已提交
4112
	int resched = should_resched();
J
Jan Kara 已提交
4113 4114
	int ret = 0;

4115 4116
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4117
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4118
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4119
		if (resched)
N
Nick Piggin 已提交
4120 4121 4122
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4123
		ret = 1;
L
Linus Torvalds 已提交
4124 4125
		spin_lock(lock);
	}
J
Jan Kara 已提交
4126
	return ret;
L
Linus Torvalds 已提交
4127
}
4128
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4129

4130
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4131 4132 4133
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4134
	if (should_resched()) {
4135
		local_bh_enable();
L
Linus Torvalds 已提交
4136 4137 4138 4139 4140 4141
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4142
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4143 4144 4145 4146

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169 4170 4171 4172
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4173 4174 4175 4176
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4177 4178
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4179 4180 4181 4182
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4183
 * Return:
4184 4185 4186
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4187 4188 4189 4190 4191 4192
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4193
	int yielded = 0;
4194 4195 4196 4197 4198 4199

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4200 4201 4202 4203 4204 4205 4206 4207 4208
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4209
	double_rq_lock(rq, p_rq);
4210
	if (task_rq(p) != p_rq) {
4211 4212 4213 4214 4215
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4216
		goto out_unlock;
4217 4218

	if (curr->sched_class != p->sched_class)
4219
		goto out_unlock;
4220 4221

	if (task_running(p_rq, p) || p->state)
4222
		goto out_unlock;
4223 4224

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4225
	if (yielded) {
4226
		schedstat_inc(rq, yld_count);
4227 4228 4229 4230 4231 4232 4233
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4234

4235
out_unlock:
4236
	double_rq_unlock(rq, p_rq);
4237
out_irq:
4238 4239
	local_irq_restore(flags);

4240
	if (yielded > 0)
4241 4242 4243 4244 4245 4246
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4247
/*
I
Ingo Molnar 已提交
4248
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4249 4250 4251 4252
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4253
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4254

4255
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4256
	atomic_inc(&rq->nr_iowait);
4257
	blk_flush_plug(current);
4258
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4259
	schedule();
4260
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4261
	atomic_dec(&rq->nr_iowait);
4262
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4263 4264 4265 4266 4267
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4268
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4269 4270
	long ret;

4271
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4272
	atomic_inc(&rq->nr_iowait);
4273
	blk_flush_plug(current);
4274
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4275
	ret = schedule_timeout(timeout);
4276
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4277
	atomic_dec(&rq->nr_iowait);
4278
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4279 4280 4281 4282 4283 4284 4285
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4286 4287 4288
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4289
 */
4290
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4291 4292 4293 4294 4295 4296 4297 4298
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4299
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4300
	case SCHED_NORMAL:
4301
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4302
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4313 4314 4315
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4316
 */
4317
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4318 4319 4320 4321 4322 4323 4324 4325
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4326
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4327
	case SCHED_NORMAL:
4328
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4329
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4342 4343 4344
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4345
 */
4346
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4347
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4348
{
4349
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4350
	unsigned int time_slice;
4351 4352
	unsigned long flags;
	struct rq *rq;
4353
	int retval;
L
Linus Torvalds 已提交
4354 4355 4356
	struct timespec t;

	if (pid < 0)
4357
		return -EINVAL;
L
Linus Torvalds 已提交
4358 4359

	retval = -ESRCH;
4360
	rcu_read_lock();
L
Linus Torvalds 已提交
4361 4362 4363 4364 4365 4366 4367 4368
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4369
	rq = task_rq_lock(p, &flags);
4370 4371 4372
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4373
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4374

4375
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4376
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4377 4378
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4379

L
Linus Torvalds 已提交
4380
out_unlock:
4381
	rcu_read_unlock();
L
Linus Torvalds 已提交
4382 4383 4384
	return retval;
}

4385
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4386

4387
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4388 4389
{
	unsigned long free = 0;
4390
	int ppid;
4391
	unsigned state;
L
Linus Torvalds 已提交
4392 4393

	state = p->state ? __ffs(p->state) + 1 : 0;
4394
	printk(KERN_INFO "%-15.15s %c", p->comm,
4395
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4396
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4397
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4398
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4399
	else
P
Peter Zijlstra 已提交
4400
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4401 4402
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4403
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4404
	else
P
Peter Zijlstra 已提交
4405
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4406 4407
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4408
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4409
#endif
4410 4411 4412
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4413
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4414
		task_pid_nr(p), ppid,
4415
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4416

4417
	print_worker_info(KERN_INFO, p);
4418
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4419 4420
}

I
Ingo Molnar 已提交
4421
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4422
{
4423
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4424

4425
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4426 4427
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4428
#else
P
Peter Zijlstra 已提交
4429 4430
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4431
#endif
4432
	rcu_read_lock();
L
Linus Torvalds 已提交
4433 4434 4435
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4436
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4437 4438
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4439
		if (!state_filter || (p->state & state_filter))
4440
			sched_show_task(p);
L
Linus Torvalds 已提交
4441 4442
	} while_each_thread(g, p);

4443 4444
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4445 4446 4447
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4448
	rcu_read_unlock();
I
Ingo Molnar 已提交
4449 4450 4451
	/*
	 * Only show locks if all tasks are dumped:
	 */
4452
	if (!state_filter)
I
Ingo Molnar 已提交
4453
		debug_show_all_locks();
L
Linus Torvalds 已提交
4454 4455
}

4456
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4457
{
I
Ingo Molnar 已提交
4458
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4459 4460
}

4461 4462 4463 4464 4465 4466 4467 4468
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4469
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4470
{
4471
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4472 4473
	unsigned long flags;

4474
	raw_spin_lock_irqsave(&rq->lock, flags);
4475

4476
	__sched_fork(0, idle);
4477
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4478 4479
	idle->se.exec_start = sched_clock();

4480
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4492
	__set_task_cpu(idle, cpu);
4493
	rcu_read_unlock();
L
Linus Torvalds 已提交
4494 4495

	rq->curr = rq->idle = idle;
4496
	idle->on_rq = 1;
P
Peter Zijlstra 已提交
4497 4498
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4499
#endif
4500
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4501 4502

	/* Set the preempt count _outside_ the spinlocks! */
4503
	init_idle_preempt_count(idle, cpu);
4504

I
Ingo Molnar 已提交
4505 4506 4507 4508
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4509
	ftrace_graph_init_idle_task(idle, cpu);
4510
	vtime_init_idle(idle, cpu);
4511 4512 4513
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4514 4515
}

L
Linus Torvalds 已提交
4516
#ifdef CONFIG_SMP
4517 4518 4519 4520
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4521 4522

	cpumask_copy(&p->cpus_allowed, new_mask);
4523
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4524 4525
}

L
Linus Torvalds 已提交
4526 4527 4528
/*
 * This is how migration works:
 *
4529 4530 4531 4532 4533 4534
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4535
 *    it and puts it into the right queue.
4536 4537
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4538 4539 4540 4541 4542 4543 4544 4545
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4546
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4547 4548
 * call is not atomic; no spinlocks may be held.
 */
4549
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4550 4551
{
	unsigned long flags;
4552
	struct rq *rq;
4553
	unsigned int dest_cpu;
4554
	int ret = 0;
L
Linus Torvalds 已提交
4555 4556

	rq = task_rq_lock(p, &flags);
4557

4558 4559 4560
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4561
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4562 4563 4564 4565
		ret = -EINVAL;
		goto out;
	}

4566
	do_set_cpus_allowed(p, new_mask);
4567

L
Linus Torvalds 已提交
4568
	/* Can the task run on the task's current CPU? If so, we're done */
4569
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4570 4571
		goto out;

4572
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4573
	if (p->on_rq) {
4574
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4575
		/* Need help from migration thread: drop lock and wait. */
4576
		task_rq_unlock(rq, p, &flags);
4577
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4578 4579 4580 4581
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4582
	task_rq_unlock(rq, p, &flags);
4583

L
Linus Torvalds 已提交
4584 4585
	return ret;
}
4586
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4587 4588

/*
I
Ingo Molnar 已提交
4589
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4590 4591 4592 4593 4594 4595
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4596 4597
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4598
 */
4599
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4600
{
4601
	struct rq *rq_dest, *rq_src;
4602
	int ret = 0;
L
Linus Torvalds 已提交
4603

4604
	if (unlikely(!cpu_active(dest_cpu)))
4605
		return ret;
L
Linus Torvalds 已提交
4606 4607 4608 4609

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4610
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4611 4612 4613
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4614
		goto done;
L
Linus Torvalds 已提交
4615
	/* Affinity changed (again). */
4616
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4617
		goto fail;
L
Linus Torvalds 已提交
4618

4619 4620 4621 4622
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4623
	if (p->on_rq) {
4624
		dequeue_task(rq_src, p, 0);
4625
		set_task_cpu(p, dest_cpu);
4626
		enqueue_task(rq_dest, p, 0);
4627
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4628
	}
L
Linus Torvalds 已提交
4629
done:
4630
	ret = 1;
L
Linus Torvalds 已提交
4631
fail:
L
Linus Torvalds 已提交
4632
	double_rq_unlock(rq_src, rq_dest);
4633
	raw_spin_unlock(&p->pi_lock);
4634
	return ret;
L
Linus Torvalds 已提交
4635 4636
}

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4652
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4653 4654
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
	bool on_rq, running;

	rq = task_rq_lock(p, &flags);
	on_rq = p->on_rq;
	running = task_current(rq, p);

	if (on_rq)
		dequeue_task(rq, p, 0);
	if (running)
		p->sched_class->put_prev_task(rq, p);

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
	if (on_rq)
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4683 4684
#endif

L
Linus Torvalds 已提交
4685
/*
4686 4687 4688
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4689
 */
4690
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4691
{
4692
	struct migration_arg *arg = data;
4693

4694 4695 4696 4697
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4698
	local_irq_disable();
4699
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4700
	local_irq_enable();
L
Linus Torvalds 已提交
4701
	return 0;
4702 4703
}

L
Linus Torvalds 已提交
4704
#ifdef CONFIG_HOTPLUG_CPU
4705

4706
/*
4707 4708
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4709
 */
4710
void idle_task_exit(void)
L
Linus Torvalds 已提交
4711
{
4712
	struct mm_struct *mm = current->active_mm;
4713

4714
	BUG_ON(cpu_online(smp_processor_id()));
4715

4716 4717 4718
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4719 4720 4721
}

/*
4722 4723 4724 4725 4726
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4727
 */
4728
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4729
{
4730 4731 4732
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4733 4734
}

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4751
/*
4752 4753 4754 4755 4756 4757
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4758
 */
4759
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4760
{
4761
	struct rq *rq = cpu_rq(dead_cpu);
4762 4763
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4764 4765

	/*
4766 4767 4768 4769 4770 4771 4772
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4773
	 */
4774
	rq->stop = NULL;
4775

4776 4777 4778 4779 4780 4781 4782
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4783
	for ( ; ; ) {
4784 4785 4786 4787 4788
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4789
			break;
4790

4791
		next = pick_next_task(rq, &fake_task);
4792
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4793
		next->sched_class->put_prev_task(rq, next);
4794

4795 4796 4797 4798 4799 4800 4801
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4802
	}
4803

4804
	rq->stop = stop;
4805
}
4806

L
Linus Torvalds 已提交
4807 4808
#endif /* CONFIG_HOTPLUG_CPU */

4809 4810 4811
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4812 4813
	{
		.procname	= "sched_domain",
4814
		.mode		= 0555,
4815
	},
4816
	{}
4817 4818 4819
};

static struct ctl_table sd_ctl_root[] = {
4820 4821
	{
		.procname	= "kernel",
4822
		.mode		= 0555,
4823 4824
		.child		= sd_ctl_dir,
	},
4825
	{}
4826 4827 4828 4829 4830
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4831
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4832 4833 4834 4835

	return entry;
}

4836 4837
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4838
	struct ctl_table *entry;
4839

4840 4841 4842
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4843
	 * will always be set. In the lowest directory the names are
4844 4845 4846
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4847 4848
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4849 4850 4851
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4852 4853 4854 4855 4856

	kfree(*tablep);
	*tablep = NULL;
}

4857
static int min_load_idx = 0;
4858
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4859

4860
static void
4861
set_table_entry(struct ctl_table *entry,
4862
		const char *procname, void *data, int maxlen,
4863 4864
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4865 4866 4867 4868 4869 4870
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4871 4872 4873 4874 4875

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4876 4877 4878 4879 4880
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4881
	struct ctl_table *table = sd_alloc_ctl_entry(14);
4882

4883 4884 4885
	if (table == NULL)
		return NULL;

4886
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4887
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4888
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4889
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4890
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4891
		sizeof(int), 0644, proc_dointvec_minmax, true);
4892
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4893
		sizeof(int), 0644, proc_dointvec_minmax, true);
4894
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4895
		sizeof(int), 0644, proc_dointvec_minmax, true);
4896
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4897
		sizeof(int), 0644, proc_dointvec_minmax, true);
4898
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4899
		sizeof(int), 0644, proc_dointvec_minmax, true);
4900
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4901
		sizeof(int), 0644, proc_dointvec_minmax, false);
4902
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4903
		sizeof(int), 0644, proc_dointvec_minmax, false);
4904
	set_table_entry(&table[9], "cache_nice_tries",
4905
		&sd->cache_nice_tries,
4906
		sizeof(int), 0644, proc_dointvec_minmax, false);
4907
	set_table_entry(&table[10], "flags", &sd->flags,
4908
		sizeof(int), 0644, proc_dointvec_minmax, false);
4909 4910 4911 4912
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
4913
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4914
	/* &table[13] is terminator */
4915 4916 4917 4918

	return table;
}

4919
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4920 4921 4922 4923 4924 4925 4926 4927 4928
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4929 4930
	if (table == NULL)
		return NULL;
4931 4932 4933 4934 4935

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4936
		entry->mode = 0555;
4937 4938 4939 4940 4941 4942 4943 4944
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4945
static void register_sched_domain_sysctl(void)
4946
{
4947
	int i, cpu_num = num_possible_cpus();
4948 4949 4950
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4951 4952 4953
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4954 4955 4956
	if (entry == NULL)
		return;

4957
	for_each_possible_cpu(i) {
4958 4959
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4960
		entry->mode = 0555;
4961
		entry->child = sd_alloc_ctl_cpu_table(i);
4962
		entry++;
4963
	}
4964 4965

	WARN_ON(sd_sysctl_header);
4966 4967
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4968

4969
/* may be called multiple times per register */
4970 4971
static void unregister_sched_domain_sysctl(void)
{
4972 4973
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4974
	sd_sysctl_header = NULL;
4975 4976
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4977
}
4978
#else
4979 4980 4981 4982
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4983 4984 4985 4986
{
}
#endif

4987 4988 4989 4990 4991
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4992
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5012
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5013 5014 5015 5016
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5017 5018 5019 5020
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5021
static int
5022
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5023
{
5024
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5025
	unsigned long flags;
5026
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5027

5028
	switch (action & ~CPU_TASKS_FROZEN) {
5029

L
Linus Torvalds 已提交
5030
	case CPU_UP_PREPARE:
5031
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5032
		break;
5033

L
Linus Torvalds 已提交
5034
	case CPU_ONLINE:
5035
		/* Update our root-domain */
5036
		raw_spin_lock_irqsave(&rq->lock, flags);
5037
		if (rq->rd) {
5038
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5039 5040

			set_rq_online(rq);
5041
		}
5042
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5043
		break;
5044

L
Linus Torvalds 已提交
5045
#ifdef CONFIG_HOTPLUG_CPU
5046
	case CPU_DYING:
5047
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5048
		/* Update our root-domain */
5049
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5050
		if (rq->rd) {
5051
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5052
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5053
		}
5054 5055
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5056
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5057
		break;
5058

5059
	case CPU_DEAD:
5060
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5061
		break;
L
Linus Torvalds 已提交
5062 5063
#endif
	}
5064 5065 5066

	update_max_interval();

L
Linus Torvalds 已提交
5067 5068 5069
	return NOTIFY_OK;
}

5070 5071 5072
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5073
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5074
 */
5075
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5076
	.notifier_call = migration_call,
5077
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5078 5079
};

5080
static int sched_cpu_active(struct notifier_block *nfb,
5081 5082 5083
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5084
	case CPU_STARTING:
5085 5086 5087 5088 5089 5090 5091 5092
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5093
static int sched_cpu_inactive(struct notifier_block *nfb,
5094 5095
					unsigned long action, void *hcpu)
{
5096 5097 5098
	unsigned long flags;
	long cpu = (long)hcpu;

5099 5100
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			struct dl_bw *dl_b = dl_bw_of(cpu);
			bool overflow;
			int cpus;

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5117 5118
		return NOTIFY_OK;
	}
5119 5120

	return NOTIFY_DONE;
5121 5122
}

5123
static int __init migration_init(void)
L
Linus Torvalds 已提交
5124 5125
{
	void *cpu = (void *)(long)smp_processor_id();
5126
	int err;
5127

5128
	/* Initialize migration for the boot CPU */
5129 5130
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5131 5132
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5133

5134 5135 5136 5137
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5138
	return 0;
L
Linus Torvalds 已提交
5139
}
5140
early_initcall(migration_init);
L
Linus Torvalds 已提交
5141 5142 5143
#endif

#ifdef CONFIG_SMP
5144

5145 5146
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5147
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5148

5149
static __read_mostly int sched_debug_enabled;
5150

5151
static int __init sched_debug_setup(char *str)
5152
{
5153
	sched_debug_enabled = 1;
5154 5155 5156

	return 0;
}
5157 5158 5159 5160 5161 5162
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5163

5164
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5165
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5166
{
I
Ingo Molnar 已提交
5167
	struct sched_group *group = sd->groups;
5168
	char str[256];
L
Linus Torvalds 已提交
5169

R
Rusty Russell 已提交
5170
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5171
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5172 5173 5174 5175

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5176
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5177
		if (sd->parent)
P
Peter Zijlstra 已提交
5178 5179
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5180
		return -1;
N
Nick Piggin 已提交
5181 5182
	}

P
Peter Zijlstra 已提交
5183
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5184

5185
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5186 5187
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5188
	}
5189
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5190 5191
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5192
	}
L
Linus Torvalds 已提交
5193

I
Ingo Molnar 已提交
5194
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5195
	do {
I
Ingo Molnar 已提交
5196
		if (!group) {
P
Peter Zijlstra 已提交
5197 5198
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5199 5200 5201
			break;
		}

5202 5203 5204 5205 5206 5207
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5208 5209 5210
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5211 5212
			break;
		}
L
Linus Torvalds 已提交
5213

5214
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5215 5216
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5217 5218
			break;
		}
L
Linus Torvalds 已提交
5219

5220 5221
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5222 5223
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5224 5225
			break;
		}
L
Linus Torvalds 已提交
5226

5227
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5228

R
Rusty Russell 已提交
5229
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5230

P
Peter Zijlstra 已提交
5231
		printk(KERN_CONT " %s", str);
5232
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5233
			printk(KERN_CONT " (cpu_power = %d)",
5234
				group->sgp->power);
5235
		}
L
Linus Torvalds 已提交
5236

I
Ingo Molnar 已提交
5237 5238
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5239
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5240

5241
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5242
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5243

5244 5245
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5246 5247
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5248 5249
	return 0;
}
L
Linus Torvalds 已提交
5250

I
Ingo Molnar 已提交
5251 5252 5253
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5254

5255
	if (!sched_debug_enabled)
5256 5257
		return;

I
Ingo Molnar 已提交
5258 5259 5260 5261
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5262

I
Ingo Molnar 已提交
5263 5264 5265
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5266
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5267
			break;
L
Linus Torvalds 已提交
5268 5269
		level++;
		sd = sd->parent;
5270
		if (!sd)
I
Ingo Molnar 已提交
5271 5272
			break;
	}
L
Linus Torvalds 已提交
5273
}
5274
#else /* !CONFIG_SCHED_DEBUG */
5275
# define sched_domain_debug(sd, cpu) do { } while (0)
5276 5277 5278 5279
static inline bool sched_debug(void)
{
	return false;
}
5280
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5281

5282
static int sd_degenerate(struct sched_domain *sd)
5283
{
5284
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5285 5286 5287 5288 5289 5290
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5291 5292 5293
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5294 5295 5296 5297 5298
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5299
	if (sd->flags & (SD_WAKE_AFFINE))
5300 5301 5302 5303 5304
		return 0;

	return 1;
}

5305 5306
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5307 5308 5309 5310 5311 5312
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5313
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5314 5315 5316 5317 5318 5319 5320
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5321 5322
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
5323 5324
				SD_SHARE_PKG_RESOURCES |
				SD_PREFER_SIBLING);
5325 5326
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5327 5328 5329 5330 5331 5332 5333
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5334
static void free_rootdomain(struct rcu_head *rcu)
5335
{
5336
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5337

5338
	cpupri_cleanup(&rd->cpupri);
5339
	cpudl_cleanup(&rd->cpudl);
5340
	free_cpumask_var(rd->dlo_mask);
5341 5342 5343 5344 5345 5346
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5347 5348
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5349
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5350 5351
	unsigned long flags;

5352
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5353 5354

	if (rq->rd) {
I
Ingo Molnar 已提交
5355
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5356

5357
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5358
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5359

5360
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5361

I
Ingo Molnar 已提交
5362
		/*
5363
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5364 5365 5366 5367 5368
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5369 5370 5371 5372 5373
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5374
	cpumask_set_cpu(rq->cpu, rd->span);
5375
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5376
		set_rq_online(rq);
G
Gregory Haskins 已提交
5377

5378
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5379 5380

	if (old_rd)
5381
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5382 5383
}

5384
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5385 5386 5387
{
	memset(rd, 0, sizeof(*rd));

5388
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5389
		goto out;
5390
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5391
		goto free_span;
5392
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5393
		goto free_online;
5394 5395
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5396

5397
	init_dl_bw(&rd->dl_bw);
5398 5399
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5400

5401
	if (cpupri_init(&rd->cpupri) != 0)
5402
		goto free_rto_mask;
5403
	return 0;
5404

5405 5406
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5407 5408
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5409 5410 5411 5412
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5413
out:
5414
	return -ENOMEM;
G
Gregory Haskins 已提交
5415 5416
}

5417 5418 5419 5420 5421 5422
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5423 5424
static void init_defrootdomain(void)
{
5425
	init_rootdomain(&def_root_domain);
5426

G
Gregory Haskins 已提交
5427 5428 5429
	atomic_set(&def_root_domain.refcount, 1);
}

5430
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5431 5432 5433 5434 5435 5436 5437
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5438
	if (init_rootdomain(rd) != 0) {
5439 5440 5441
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5442 5443 5444 5445

	return rd;
}

5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5465 5466 5467
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5468 5469 5470 5471 5472 5473 5474 5475

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5476
		kfree(sd->groups->sgp);
5477
		kfree(sd->groups);
5478
	}
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5493 5494 5495 5496 5497 5498 5499
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5500
 * two cpus are in the same cache domain, see cpus_share_cache().
5501 5502
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5503
DEFINE_PER_CPU(int, sd_llc_size);
5504
DEFINE_PER_CPU(int, sd_llc_id);
5505
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5506 5507
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5508 5509 5510 5511

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5512
	struct sched_domain *busy_sd = NULL;
5513
	int id = cpu;
5514
	int size = 1;
5515 5516

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5517
	if (sd) {
5518
		id = cpumask_first(sched_domain_span(sd));
5519
		size = cpumask_weight(sched_domain_span(sd));
5520
		busy_sd = sd->parent; /* sd_busy */
5521
	}
5522
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5523 5524

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5525
	per_cpu(sd_llc_size, cpu) = size;
5526
	per_cpu(sd_llc_id, cpu) = id;
5527 5528 5529

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5530 5531 5532

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5533 5534
}

L
Linus Torvalds 已提交
5535
/*
I
Ingo Molnar 已提交
5536
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5537 5538
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5539 5540
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5541
{
5542
	struct rq *rq = cpu_rq(cpu);
5543 5544 5545
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5546
	for (tmp = sd; tmp; ) {
5547 5548 5549
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5550

5551
		if (sd_parent_degenerate(tmp, parent)) {
5552
			tmp->parent = parent->parent;
5553 5554
			if (parent->parent)
				parent->parent->child = tmp;
5555 5556 5557 5558 5559 5560 5561
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5562
			destroy_sched_domain(parent, cpu);
5563 5564
		} else
			tmp = tmp->parent;
5565 5566
	}

5567
	if (sd && sd_degenerate(sd)) {
5568
		tmp = sd;
5569
		sd = sd->parent;
5570
		destroy_sched_domain(tmp, cpu);
5571 5572 5573
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5574

5575
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5576

G
Gregory Haskins 已提交
5577
	rq_attach_root(rq, rd);
5578
	tmp = rq->sd;
N
Nick Piggin 已提交
5579
	rcu_assign_pointer(rq->sd, sd);
5580
	destroy_sched_domains(tmp, cpu);
5581 5582

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5583 5584 5585
}

/* cpus with isolated domains */
5586
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5587 5588 5589 5590

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5591
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5592
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5593 5594 5595
	return 1;
}

I
Ingo Molnar 已提交
5596
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5597

5598 5599 5600 5601 5602
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5603 5604 5605
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5606
	struct sched_group_power **__percpu sgp;
5607 5608
};

5609
struct s_data {
5610
	struct sched_domain ** __percpu sd;
5611 5612 5613
	struct root_domain	*rd;
};

5614 5615
enum s_alloc {
	sa_rootdomain,
5616
	sa_sd,
5617
	sa_sd_storage,
5618 5619 5620
	sa_none,
};

5621 5622 5623
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5624 5625
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5626 5627
#define SDTL_OVERLAP	0x01

5628
struct sched_domain_topology_level {
5629 5630
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5631
	int		    flags;
5632
	int		    numa_level;
5633
	struct sd_data      data;
5634 5635
};

P
Peter Zijlstra 已提交
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5692 5693 5694 5695 5696 5697
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5698
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5699
				GFP_KERNEL, cpu_to_node(cpu));
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5713
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5714 5715 5716
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5717 5718 5719 5720 5721 5722
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5723
		sg->sgp->power_orig = sg->sgp->power;
5724

P
Peter Zijlstra 已提交
5725 5726 5727 5728 5729
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5730
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5731
		    group_balance_cpu(sg) == cpu)
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5751
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5752
{
5753 5754
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5755

5756 5757
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5758

5759
	if (sg) {
5760
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5761
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5762
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5763
	}
5764 5765

	return cpu;
5766 5767
}

5768
/*
5769 5770 5771
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5772 5773
 *
 * Assumes the sched_domain tree is fully constructed
5774
 */
5775 5776
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5777
{
5778 5779 5780
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5781
	struct cpumask *covered;
5782
	int i;
5783

5784 5785 5786
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5787
	if (cpu != cpumask_first(span))
5788 5789
		return 0;

5790 5791 5792
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5793
	cpumask_clear(covered);
5794

5795 5796
	for_each_cpu(i, span) {
		struct sched_group *sg;
5797
		int group, j;
5798

5799 5800
		if (cpumask_test_cpu(i, covered))
			continue;
5801

5802
		group = get_group(i, sdd, &sg);
5803
		cpumask_clear(sched_group_cpus(sg));
5804
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5805
		cpumask_setall(sched_group_mask(sg));
5806

5807 5808 5809
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5810

5811 5812 5813
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5814

5815 5816 5817 5818 5819 5820 5821
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5822 5823

	return 0;
5824
}
5825

5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5838
	struct sched_group *sg = sd->groups;
5839

5840
	WARN_ON(!sg);
5841 5842 5843 5844 5845

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5846

P
Peter Zijlstra 已提交
5847
	if (cpu != group_balance_cpu(sg))
5848
		return;
5849

5850
	update_group_power(sd, cpu);
5851
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5852 5853
}

5854 5855 5856
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5857 5858
}

5859 5860 5861 5862 5863
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5864 5865 5866 5867 5868 5869
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5870 5871 5872 5873 5874 5875 5876 5877 5878
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5879 5880 5881 5882 5883 5884 5885 5886 5887
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5888 5889 5890
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5891

5892
static int default_relax_domain_level = -1;
5893
int sched_domain_level_max;
5894 5895 5896

static int __init setup_relax_domain_level(char *str)
{
5897 5898
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5899

5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5918
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5919 5920
	} else {
		/* turn on idle balance on this domain */
5921
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5922 5923 5924
	}
}

5925 5926 5927
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5928 5929 5930 5931 5932
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5933 5934
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5935 5936
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5937
	case sa_sd_storage:
5938
		__sdt_free(cpu_map); /* fall through */
5939 5940 5941 5942
	case sa_none:
		break;
	}
}
5943

5944 5945 5946
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5947 5948
	memset(d, 0, sizeof(*d));

5949 5950
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5951 5952 5953
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5954
	d->rd = alloc_rootdomain();
5955
	if (!d->rd)
5956
		return sa_sd;
5957 5958
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5959

5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5972
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5973
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5974 5975

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5976
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5977 5978
}

5979 5980
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5981
{
5982
	return topology_thread_cpumask(cpu);
5983
}
5984
#endif
5985

5986 5987 5988
/*
 * Topology list, bottom-up.
 */
5989
static struct sched_domain_topology_level default_topology[] = {
5990 5991
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5992
#endif
5993
#ifdef CONFIG_SCHED_MC
5994
	{ sd_init_MC, cpu_coregroup_mask, },
5995
#endif
5996 5997 5998 5999
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6000 6001 6002 6003 6004
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6005 6006 6007
#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->init; tl++)

6008 6009 6010 6011 6012 6013 6014 6015 6016
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6017
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6035
		.imbalance_pct		= 125,
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
6053
					| 1*SD_NUMA
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6156
		}
6157 6158 6159 6160 6161 6162

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6163 6164 6165 6166 6167
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6168
	 * The sched_domains_numa_distance[] array includes the actual distance
6169 6170 6171
	 * numbers.
	 */

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6198
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6199 6200 6201 6202 6203 6204
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6205
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6237 6238

	sched_domains_numa_levels = level;
6239
}
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6287 6288 6289 6290 6291
}
#else
static inline void sched_init_numa(void)
{
}
6292 6293 6294 6295 6296 6297 6298

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6299 6300
#endif /* CONFIG_NUMA */

6301 6302 6303 6304 6305
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6306
	for_each_sd_topology(tl) {
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6317 6318 6319 6320
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6321 6322 6323
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6324
			struct sched_group_power *sgp;
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6338 6339
			sg->next = sg;

6340
			*per_cpu_ptr(sdd->sg, j) = sg;
6341

P
Peter Zijlstra 已提交
6342
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6343 6344 6345 6346 6347
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6359
	for_each_sd_topology(tl) {
6360 6361 6362
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6376 6377
		}
		free_percpu(sdd->sd);
6378
		sdd->sd = NULL;
6379
		free_percpu(sdd->sg);
6380
		sdd->sg = NULL;
6381
		free_percpu(sdd->sgp);
6382
		sdd->sgp = NULL;
6383 6384 6385
	}
}

6386
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6387 6388
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6389
{
6390
	struct sched_domain *sd = tl->init(tl, cpu);
6391
	if (!sd)
6392
		return child;
6393 6394

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6395 6396 6397
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6398
		child->parent = sd;
6399
		sd->child = child;
6400
	}
6401
	set_domain_attribute(sd, attr);
6402 6403 6404 6405

	return sd;
}

6406 6407 6408 6409
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6410 6411
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6412
{
6413
	enum s_alloc alloc_state;
6414
	struct sched_domain *sd;
6415
	struct s_data d;
6416
	int i, ret = -ENOMEM;
6417

6418 6419 6420
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6421

6422
	/* Set up domains for cpus specified by the cpu_map. */
6423
	for_each_cpu(i, cpu_map) {
6424 6425
		struct sched_domain_topology_level *tl;

6426
		sd = NULL;
6427
		for_each_sd_topology(tl) {
6428
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6429 6430
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6431 6432
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6433 6434
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6435
		}
6436 6437 6438 6439 6440 6441
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6442 6443 6444 6445 6446 6447 6448
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6449
		}
6450
	}
6451

L
Linus Torvalds 已提交
6452
	/* Calculate CPU power for physical packages and nodes */
6453 6454 6455
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6456

6457 6458
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6459
			init_sched_groups_power(i, sd);
6460
		}
6461
	}
6462

L
Linus Torvalds 已提交
6463
	/* Attach the domains */
6464
	rcu_read_lock();
6465
	for_each_cpu(i, cpu_map) {
6466
		sd = *per_cpu_ptr(d.sd, i);
6467
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6468
	}
6469
	rcu_read_unlock();
6470

6471
	ret = 0;
6472
error:
6473
	__free_domain_allocs(&d, alloc_state, cpu_map);
6474
	return ret;
L
Linus Torvalds 已提交
6475
}
P
Paul Jackson 已提交
6476

6477
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6478
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6479 6480
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6481 6482 6483

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6484 6485
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6486
 */
6487
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6488

6489 6490 6491 6492 6493 6494
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6495
{
6496
	return 0;
6497 6498
}

6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6524
/*
I
Ingo Molnar 已提交
6525
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6526 6527
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6528
 */
6529
static int init_sched_domains(const struct cpumask *cpu_map)
6530
{
6531 6532
	int err;

6533
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6534
	ndoms_cur = 1;
6535
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6536
	if (!doms_cur)
6537 6538
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6539
	err = build_sched_domains(doms_cur[0], NULL);
6540
	register_sched_domain_sysctl();
6541 6542

	return err;
6543 6544 6545 6546 6547 6548
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6549
static void detach_destroy_domains(const struct cpumask *cpu_map)
6550 6551 6552
{
	int i;

6553
	rcu_read_lock();
6554
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6555
		cpu_attach_domain(NULL, &def_root_domain, i);
6556
	rcu_read_unlock();
6557 6558
}

6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6575 6576
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6577
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6578 6579 6580
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6581
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6582 6583 6584
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6585 6586 6587
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6588 6589 6590 6591 6592 6593
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6594
 *
6595
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6596 6597
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6598
 *
P
Paul Jackson 已提交
6599 6600
 * Call with hotplug lock held
 */
6601
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6602
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6603
{
6604
	int i, j, n;
6605
	int new_topology;
P
Paul Jackson 已提交
6606

6607
	mutex_lock(&sched_domains_mutex);
6608

6609 6610 6611
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6612 6613 6614
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6615
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6616 6617 6618

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6619
		for (j = 0; j < n && !new_topology; j++) {
6620
			if (cpumask_equal(doms_cur[i], doms_new[j])
6621
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6622 6623 6624
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6625
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6626 6627 6628 6629
match1:
		;
	}

6630
	n = ndoms_cur;
6631
	if (doms_new == NULL) {
6632
		n = 0;
6633
		doms_new = &fallback_doms;
6634
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6635
		WARN_ON_ONCE(dattr_new);
6636 6637
	}

P
Paul Jackson 已提交
6638 6639
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6640
		for (j = 0; j < n && !new_topology; j++) {
6641
			if (cpumask_equal(doms_new[i], doms_cur[j])
6642
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6643 6644 6645
				goto match2;
		}
		/* no match - add a new doms_new */
6646
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6647 6648 6649 6650 6651
match2:
		;
	}

	/* Remember the new sched domains */
6652 6653
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6654
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6655
	doms_cur = doms_new;
6656
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6657
	ndoms_cur = ndoms_new;
6658 6659

	register_sched_domain_sysctl();
6660

6661
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6662 6663
}

6664 6665
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6666
/*
6667 6668 6669
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6670 6671 6672
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6673
 */
6674 6675
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6676
{
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6699
	case CPU_ONLINE:
6700
	case CPU_DOWN_FAILED:
6701
		cpuset_update_active_cpus(true);
6702
		break;
6703 6704 6705
	default:
		return NOTIFY_DONE;
	}
6706
	return NOTIFY_OK;
6707
}
6708

6709 6710
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6711
{
6712
	switch (action) {
6713
	case CPU_DOWN_PREPARE:
6714
		cpuset_update_active_cpus(false);
6715 6716 6717 6718 6719
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6720 6721 6722
	default:
		return NOTIFY_DONE;
	}
6723
	return NOTIFY_OK;
6724 6725
}

L
Linus Torvalds 已提交
6726 6727
void __init sched_init_smp(void)
{
6728 6729 6730
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6731
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6732

6733 6734
	sched_init_numa();

6735 6736 6737 6738 6739
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6740
	mutex_lock(&sched_domains_mutex);
6741
	init_sched_domains(cpu_active_mask);
6742 6743 6744
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6745
	mutex_unlock(&sched_domains_mutex);
6746

6747
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6748 6749
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6750

6751
	init_hrtick();
6752 6753

	/* Move init over to a non-isolated CPU */
6754
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6755
		BUG();
I
Ingo Molnar 已提交
6756
	sched_init_granularity();
6757
	free_cpumask_var(non_isolated_cpus);
6758

6759
	init_sched_rt_class();
6760
	init_sched_dl_class();
L
Linus Torvalds 已提交
6761 6762 6763 6764
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6765
	sched_init_granularity();
L
Linus Torvalds 已提交
6766 6767 6768
}
#endif /* CONFIG_SMP */

6769 6770
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6771 6772 6773 6774 6775 6776 6777
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6778
#ifdef CONFIG_CGROUP_SCHED
6779 6780 6781 6782
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6783
struct task_group root_task_group;
6784
LIST_HEAD(task_groups);
6785
#endif
P
Peter Zijlstra 已提交
6786

6787
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6788

L
Linus Torvalds 已提交
6789 6790
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6791
	int i, j;
6792 6793 6794 6795 6796 6797 6798
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6799
#endif
6800
#ifdef CONFIG_CPUMASK_OFFSTACK
6801
	alloc_size += num_possible_cpus() * cpumask_size();
6802 6803
#endif
	if (alloc_size) {
6804
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6805 6806

#ifdef CONFIG_FAIR_GROUP_SCHED
6807
		root_task_group.se = (struct sched_entity **)ptr;
6808 6809
		ptr += nr_cpu_ids * sizeof(void **);

6810
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6811
		ptr += nr_cpu_ids * sizeof(void **);
6812

6813
#endif /* CONFIG_FAIR_GROUP_SCHED */
6814
#ifdef CONFIG_RT_GROUP_SCHED
6815
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6816 6817
		ptr += nr_cpu_ids * sizeof(void **);

6818
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6819 6820
		ptr += nr_cpu_ids * sizeof(void **);

6821
#endif /* CONFIG_RT_GROUP_SCHED */
6822 6823
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6824
			per_cpu(load_balance_mask, i) = (void *)ptr;
6825 6826 6827
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6828
	}
I
Ingo Molnar 已提交
6829

6830 6831 6832
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
6833
			global_rt_period(), global_rt_runtime());
6834

G
Gregory Haskins 已提交
6835 6836 6837 6838
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6839
#ifdef CONFIG_RT_GROUP_SCHED
6840
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6841
			global_rt_period(), global_rt_runtime());
6842
#endif /* CONFIG_RT_GROUP_SCHED */
6843

D
Dhaval Giani 已提交
6844
#ifdef CONFIG_CGROUP_SCHED
6845 6846
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6847
	INIT_LIST_HEAD(&root_task_group.siblings);
6848
	autogroup_init(&init_task);
6849

D
Dhaval Giani 已提交
6850
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6851

6852
	for_each_possible_cpu(i) {
6853
		struct rq *rq;
L
Linus Torvalds 已提交
6854 6855

		rq = cpu_rq(i);
6856
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6857
		rq->nr_running = 0;
6858 6859
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6860
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6861
		init_rt_rq(&rq->rt, rq);
6862
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
6863
#ifdef CONFIG_FAIR_GROUP_SCHED
6864
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6865
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6866
		/*
6867
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6868 6869 6870 6871
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6872
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6873 6874 6875
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6876
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6877 6878 6879
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6880
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6881
		 *
6882 6883
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6884
		 */
6885
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6886
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6887 6888 6889
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6890
#ifdef CONFIG_RT_GROUP_SCHED
6891
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6892
#endif
L
Linus Torvalds 已提交
6893

I
Ingo Molnar 已提交
6894 6895
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6896 6897 6898

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6899
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6900
		rq->sd = NULL;
G
Gregory Haskins 已提交
6901
		rq->rd = NULL;
6902
		rq->cpu_power = SCHED_POWER_SCALE;
6903
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6904
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6905
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6906
		rq->push_cpu = 0;
6907
		rq->cpu = i;
6908
		rq->online = 0;
6909 6910
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6911
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6912 6913 6914

		INIT_LIST_HEAD(&rq->cfs_tasks);

6915
		rq_attach_root(rq, &def_root_domain);
6916
#ifdef CONFIG_NO_HZ_COMMON
6917
		rq->nohz_flags = 0;
6918
#endif
6919 6920 6921
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6922
#endif
P
Peter Zijlstra 已提交
6923
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6924 6925 6926
		atomic_set(&rq->nr_iowait, 0);
	}

6927
	set_load_weight(&init_task);
6928

6929 6930 6931 6932
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6946 6947 6948

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6949 6950 6951 6952
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6953

6954
#ifdef CONFIG_SMP
6955
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6956 6957 6958
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6959
	idle_thread_set_boot_cpu();
6960 6961
#endif
	init_sched_fair_class();
6962

6963
	scheduler_running = 1;
L
Linus Torvalds 已提交
6964 6965
}

6966
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6967 6968
static inline int preempt_count_equals(int preempt_offset)
{
6969
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6970

A
Arnd Bergmann 已提交
6971
	return (nested == preempt_offset);
6972 6973
}

6974
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6975 6976 6977
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6978
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6979 6980
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6981
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6982 6983 6984 6985 6986
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6987 6988 6989 6990 6991 6992 6993
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6994 6995 6996 6997

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6998 6999 7000 7001 7002 7003 7004
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7005
	dump_stack();
L
Linus Torvalds 已提交
7006 7007 7008 7009 7010
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7011 7012
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7013
	const struct sched_class *prev_class = p->sched_class;
7014 7015 7016
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7017
	int old_prio = p->prio;
7018
	int on_rq;
7019

P
Peter Zijlstra 已提交
7020
	on_rq = p->on_rq;
7021
	if (on_rq)
7022
		dequeue_task(rq, p, 0);
7023
	__setscheduler(rq, p, &attr);
7024
	if (on_rq) {
7025
		enqueue_task(rq, p, 0);
7026 7027
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7028 7029

	check_class_changed(rq, p, prev_class, old_prio);
7030 7031
}

L
Linus Torvalds 已提交
7032 7033
void normalize_rt_tasks(void)
{
7034
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7035
	unsigned long flags;
7036
	struct rq *rq;
L
Linus Torvalds 已提交
7037

7038
	read_lock_irqsave(&tasklist_lock, flags);
7039
	do_each_thread(g, p) {
7040 7041 7042 7043 7044 7045
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7046 7047
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7048 7049 7050
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7051
#endif
I
Ingo Molnar 已提交
7052

7053
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7054 7055 7056 7057
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7058
			if (task_nice(p) < 0 && p->mm)
I
Ingo Molnar 已提交
7059
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7060
			continue;
I
Ingo Molnar 已提交
7061
		}
L
Linus Torvalds 已提交
7062

7063
		raw_spin_lock(&p->pi_lock);
7064
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7065

7066
		normalize_task(rq, p);
7067

7068
		__task_rq_unlock(rq);
7069
		raw_spin_unlock(&p->pi_lock);
7070 7071
	} while_each_thread(g, p);

7072
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7073 7074 7075
}

#endif /* CONFIG_MAGIC_SYSRQ */
7076

7077
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7078
/*
7079
 * These functions are only useful for the IA64 MCA handling, or kdb.
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7093 7094
 *
 * Return: The current task for @cpu.
7095
 */
7096
struct task_struct *curr_task(int cpu)
7097 7098 7099 7100
{
	return cpu_curr(cpu);
}

7101 7102 7103
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7104 7105 7106 7107 7108 7109
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7110 7111
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7112 7113 7114 7115 7116 7117 7118
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7119
void set_curr_task(int cpu, struct task_struct *p)
7120 7121 7122 7123 7124
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7125

D
Dhaval Giani 已提交
7126
#ifdef CONFIG_CGROUP_SCHED
7127 7128 7129
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7130 7131 7132 7133
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7134
	autogroup_free(tg);
7135 7136 7137 7138
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7139
struct task_group *sched_create_group(struct task_group *parent)
7140 7141 7142 7143 7144 7145 7146
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7147
	if (!alloc_fair_sched_group(tg, parent))
7148 7149
		goto err;

7150
	if (!alloc_rt_sched_group(tg, parent))
7151 7152
		goto err;

7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7164
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7165
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7166 7167 7168 7169 7170

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7171
	list_add_rcu(&tg->siblings, &parent->children);
7172
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7173 7174
}

7175
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7176
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7177 7178
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7179
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7180 7181
}

7182
/* Destroy runqueue etc associated with a task group */
7183
void sched_destroy_group(struct task_group *tg)
7184 7185 7186 7187 7188 7189
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7190
{
7191
	unsigned long flags;
7192
	int i;
S
Srivatsa Vaddagiri 已提交
7193

7194 7195
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7196
		unregister_fair_sched_group(tg, i);
7197 7198

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7199
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7200
	list_del_rcu(&tg->siblings);
7201
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7202 7203
}

7204
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7205 7206 7207
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7208 7209
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7210
{
P
Peter Zijlstra 已提交
7211
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7212 7213 7214 7215 7216 7217
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7218
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7219
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7220

7221
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7222
		dequeue_task(rq, tsk, 0);
7223 7224
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7225

7226
	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
P
Peter Zijlstra 已提交
7227 7228 7229 7230 7231
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7232
#ifdef CONFIG_FAIR_GROUP_SCHED
7233 7234 7235
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7236
#endif
7237
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7238

7239 7240 7241
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7242
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7243

7244
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7245
}
D
Dhaval Giani 已提交
7246
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7247

7248 7249 7250 7251 7252
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7253

P
Peter Zijlstra 已提交
7254 7255
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7256
{
P
Peter Zijlstra 已提交
7257
	struct task_struct *g, *p;
7258

P
Peter Zijlstra 已提交
7259
	do_each_thread(g, p) {
7260
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7261 7262
			return 1;
	} while_each_thread(g, p);
7263

P
Peter Zijlstra 已提交
7264 7265
	return 0;
}
7266

P
Peter Zijlstra 已提交
7267 7268 7269 7270 7271
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7272

7273
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7274 7275 7276 7277 7278
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7279

P
Peter Zijlstra 已提交
7280 7281
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7282

P
Peter Zijlstra 已提交
7283 7284 7285
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7286 7287
	}

7288 7289 7290 7291 7292
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7293

7294 7295 7296
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7297 7298
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7299

P
Peter Zijlstra 已提交
7300
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7301

7302 7303 7304 7305 7306
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7307

7308 7309 7310
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7311 7312 7313
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7314

P
Peter Zijlstra 已提交
7315 7316 7317 7318
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7319

P
Peter Zijlstra 已提交
7320
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7321
	}
P
Peter Zijlstra 已提交
7322

P
Peter Zijlstra 已提交
7323 7324 7325 7326
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7327 7328
}

P
Peter Zijlstra 已提交
7329
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7330
{
7331 7332
	int ret;

P
Peter Zijlstra 已提交
7333 7334 7335 7336 7337 7338
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7339 7340 7341 7342 7343
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7344 7345
}

7346
static int tg_set_rt_bandwidth(struct task_group *tg,
7347
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7348
{
P
Peter Zijlstra 已提交
7349
	int i, err = 0;
P
Peter Zijlstra 已提交
7350 7351

	mutex_lock(&rt_constraints_mutex);
7352
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7353 7354
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7355
		goto unlock;
P
Peter Zijlstra 已提交
7356

7357
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7358 7359
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7360 7361 7362 7363

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7364
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7365
		rt_rq->rt_runtime = rt_runtime;
7366
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7367
	}
7368
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7369
unlock:
7370
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7371 7372 7373
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7374 7375
}

7376
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7377 7378 7379 7380 7381 7382 7383 7384
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7385
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7386 7387
}

7388
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7389 7390 7391
{
	u64 rt_runtime_us;

7392
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7393 7394
		return -1;

7395
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7396 7397 7398
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7399

7400
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7401 7402 7403 7404 7405 7406
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7407 7408 7409
	if (rt_period == 0)
		return -EINVAL;

7410
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7411 7412
}

7413
static long sched_group_rt_period(struct task_group *tg)
7414 7415 7416 7417 7418 7419 7420
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7421
#endif /* CONFIG_RT_GROUP_SCHED */
7422

7423
#ifdef CONFIG_RT_GROUP_SCHED
7424 7425 7426 7427 7428
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7429
	read_lock(&tasklist_lock);
7430
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7431
	read_unlock(&tasklist_lock);
7432 7433 7434 7435
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7436

7437
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7438 7439 7440 7441 7442 7443 7444 7445
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7446
#else /* !CONFIG_RT_GROUP_SCHED */
7447 7448
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7449
	unsigned long flags;
7450
	int i, ret = 0;
7451

7452
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7453 7454 7455
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7456
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7457
		rt_rq->rt_runtime = global_rt_runtime();
7458
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7459
	}
7460
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7461

7462
	return ret;
7463
}
7464
#endif /* CONFIG_RT_GROUP_SCHED */
7465

7466 7467
static int sched_dl_global_constraints(void)
{
7468 7469
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7470
	u64 new_bw = to_ratio(period, runtime);
7471
	int cpu, ret = 0;
7472
	unsigned long flags;
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7483 7484
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);
7485

7486
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7487 7488
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7489
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7490 7491 7492

		if (ret)
			break;
7493 7494
	}

7495
	return ret;
7496 7497
}

7498
static void sched_dl_do_global(void)
7499
{
7500 7501
	u64 new_bw = -1;
	int cpu;
7502
	unsigned long flags;
7503

7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);

7516
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7517
		dl_b->bw = new_bw;
7518
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7519
	}
7520 7521 7522 7523 7524 7525 7526
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7527 7528
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7529 7530 7531 7532 7533 7534 7535 7536 7537
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7538 7539
}

7540
int sched_rt_handler(struct ctl_table *table, int write,
7541
		void __user *buffer, size_t *lenp,
7542 7543 7544 7545
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7546
	int ret;
7547 7548 7549 7550 7551

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7552
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7553 7554

	if (!ret && write) {
7555 7556 7557 7558
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7559
		ret = sched_rt_global_constraints();
7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7574 7575 7576 7577 7578
	}
	mutex_unlock(&mutex);

	return ret;
}
7579

7580
int sched_rr_handler(struct ctl_table *table, int write,
7581 7582 7583 7584 7585 7586 7587 7588
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7589 7590
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7591
	if (!ret && write) {
7592 7593
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7594 7595 7596 7597 7598
	}
	mutex_unlock(&mutex);
	return ret;
}

7599
#ifdef CONFIG_CGROUP_SCHED
7600

7601
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7602
{
7603
	return css ? container_of(css, struct task_group, css) : NULL;
7604 7605
}

7606 7607
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7608
{
7609 7610
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7611

7612
	if (!parent) {
7613
		/* This is early initialization for the top cgroup */
7614
		return &root_task_group.css;
7615 7616
	}

7617
	tg = sched_create_group(parent);
7618 7619 7620 7621 7622 7623
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7624
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7625
{
7626 7627
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css_parent(css));
7628

T
Tejun Heo 已提交
7629 7630
	if (parent)
		sched_online_group(tg, parent);
7631 7632 7633
	return 0;
}

7634
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7635
{
7636
	struct task_group *tg = css_tg(css);
7637 7638 7639 7640

	sched_destroy_group(tg);
}

7641
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7642
{
7643
	struct task_group *tg = css_tg(css);
7644 7645 7646 7647

	sched_offline_group(tg);
}

7648
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7649
				 struct cgroup_taskset *tset)
7650
{
7651 7652
	struct task_struct *task;

7653
	cgroup_taskset_for_each(task, css, tset) {
7654
#ifdef CONFIG_RT_GROUP_SCHED
7655
		if (!sched_rt_can_attach(css_tg(css), task))
7656
			return -EINVAL;
7657
#else
7658 7659 7660
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7661
#endif
7662
	}
7663 7664
	return 0;
}
7665

7666
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7667
			      struct cgroup_taskset *tset)
7668
{
7669 7670
	struct task_struct *task;

7671
	cgroup_taskset_for_each(task, css, tset)
7672
		sched_move_task(task);
7673 7674
}

7675 7676 7677
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7690
#ifdef CONFIG_FAIR_GROUP_SCHED
7691 7692
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7693
{
7694
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7695 7696
}

7697 7698
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7699
{
7700
	struct task_group *tg = css_tg(css);
7701

7702
	return (u64) scale_load_down(tg->shares);
7703
}
7704 7705

#ifdef CONFIG_CFS_BANDWIDTH
7706 7707
static DEFINE_MUTEX(cfs_constraints_mutex);

7708 7709 7710
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7711 7712
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7713 7714
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7715
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7716
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7737 7738 7739 7740 7741
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7742
	runtime_enabled = quota != RUNTIME_INF;
7743
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7744 7745 7746 7747 7748 7749
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7750 7751 7752
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7753

P
Paul Turner 已提交
7754
	__refill_cfs_bandwidth_runtime(cfs_b);
7755 7756 7757 7758 7759 7760
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7761 7762 7763 7764
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7765
		struct rq *rq = cfs_rq->rq;
7766 7767

		raw_spin_lock_irq(&rq->lock);
7768
		cfs_rq->runtime_enabled = runtime_enabled;
7769
		cfs_rq->runtime_remaining = 0;
7770

7771
		if (cfs_rq->throttled)
7772
			unthrottle_cfs_rq(cfs_rq);
7773 7774
		raw_spin_unlock_irq(&rq->lock);
	}
7775 7776
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7777 7778
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7779

7780
	return ret;
7781 7782 7783 7784 7785 7786
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7787
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7800
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7801 7802
		return -1;

7803
	quota_us = tg->cfs_bandwidth.quota;
7804 7805 7806 7807 7808 7809 7810 7811 7812 7813
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7814
	quota = tg->cfs_bandwidth.quota;
7815 7816 7817 7818 7819 7820 7821 7822

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7823
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7824 7825 7826 7827 7828
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7829 7830
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7831
{
7832
	return tg_get_cfs_quota(css_tg(css));
7833 7834
}

7835 7836
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7837
{
7838
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7839 7840
}

7841 7842
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7843
{
7844
	return tg_get_cfs_period(css_tg(css));
7845 7846
}

7847 7848
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7849
{
7850
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7851 7852
}

7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7885
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7886 7887 7888 7889 7890
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7891
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7912
	int ret;
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7924 7925 7926 7927 7928
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7929
}
7930

7931
static int cpu_stats_show(struct seq_file *sf, void *v)
7932
{
7933
	struct task_group *tg = css_tg(seq_css(sf));
7934
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7935

7936 7937 7938
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7939 7940 7941

	return 0;
}
7942
#endif /* CONFIG_CFS_BANDWIDTH */
7943
#endif /* CONFIG_FAIR_GROUP_SCHED */
7944

7945
#ifdef CONFIG_RT_GROUP_SCHED
7946 7947
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7948
{
7949
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7950 7951
}

7952 7953
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7954
{
7955
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7956
}
7957

7958 7959
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7960
{
7961
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7962 7963
}

7964 7965
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7966
{
7967
	return sched_group_rt_period(css_tg(css));
7968
}
7969
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7970

7971
static struct cftype cpu_files[] = {
7972
#ifdef CONFIG_FAIR_GROUP_SCHED
7973 7974
	{
		.name = "shares",
7975 7976
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7977
	},
7978
#endif
7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7990 7991
	{
		.name = "stat",
7992
		.seq_show = cpu_stats_show,
7993
	},
7994
#endif
7995
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7996
	{
P
Peter Zijlstra 已提交
7997
		.name = "rt_runtime_us",
7998 7999
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8000
	},
8001 8002
	{
		.name = "rt_period_us",
8003 8004
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8005
	},
8006
#endif
8007
	{ }	/* terminate */
8008 8009 8010
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8011
	.name		= "cpu",
8012 8013
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8014 8015
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8016 8017
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8018
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8019
	.subsys_id	= cpu_cgroup_subsys_id,
8020
	.base_cftypes	= cpu_files,
8021 8022 8023
	.early_init	= 1,
};

8024
#endif	/* CONFIG_CGROUP_SCHED */
8025

8026 8027 8028 8029 8030
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}