hugetlb.c 118.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25
#include <linux/jhash.h>
26

D
David Gibson 已提交
27 28
#include <asm/page.h>
#include <asm/pgtable.h>
29
#include <asm/tlb.h>
D
David Gibson 已提交
30

31
#include <linux/io.h>
D
David Gibson 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include <linux/node.h>
35
#include "internal.h"
L
Linus Torvalds 已提交
36

37
int hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
42 43 44 45 46
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
47

48 49
__initdata LIST_HEAD(huge_boot_pages);

50 51 52
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
53
static unsigned long __initdata default_hstate_size;
54
static bool __initdata parsed_valid_hugepagesz = true;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
165 166 167
	return ret;
}

168 169 170 171 172 173 174
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 176
				       long delta)
{
177 178
	long ret = delta;

179
	if (!spool)
180
		return delta;
181 182

	spin_lock(&spool->lock);
183 184 185 186

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

187 188
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
203
	unlock_or_release_subpool(spool);
204 205

	return ret;
206 207 208 209 210 211 212 213 214
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
215
	return subpool_inode(file_inode(vma->vm_file));
216 217
}

218 219 220
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
221
 *
222 223 224 225 226 227 228 229 230 231 232 233 234 235
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
236 237 238 239 240 241 242
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

243 244
/*
 * Add the huge page range represented by [f, t) to the reserve
245 246 247 248 249 250 251 252
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
253 254 255
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
256
 */
257
static long region_add(struct resv_map *resv, long f, long t)
258
{
259
	struct list_head *head = &resv->regions;
260
	struct file_region *rg, *nrg, *trg;
261
	long add = 0;
262

263
	spin_lock(&resv->lock);
264 265 266 267 268
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
309 310 311 312 313
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
314 315 316 317
			list_del(&rg->link);
			kfree(rg);
		}
	}
318 319

	add += (nrg->from - f);		/* Added to beginning of region */
320
	nrg->from = f;
321
	add += t - nrg->to;		/* Added to end of region */
322
	nrg->to = t;
323

324 325
out_locked:
	resv->adds_in_progress--;
326
	spin_unlock(&resv->lock);
327 328
	VM_BUG_ON(add < 0);
	return add;
329 330
}

331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
344 345 346 347 348 349 350 351
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
352
 */
353
static long region_chg(struct resv_map *resv, long f, long t)
354
{
355
	struct list_head *head = &resv->regions;
356
	struct file_region *rg, *nrg = NULL;
357 358
	long chg = 0;

359 360
retry:
	spin_lock(&resv->lock);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 378
		if (!trg) {
			kfree(nrg);
379
			return -ENOMEM;
380
		}
381 382 383 384 385 386 387

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

388 389 390 391 392 393 394 395 396
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
397
		if (!nrg) {
398
			resv->adds_in_progress--;
399 400 401 402 403 404 405 406 407 408
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
409

410 411 412
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
413 414 415 416 417 418 419 420 421 422 423 424
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
425
			goto out;
426

L
Lucas De Marchi 已提交
427
		/* We overlap with this area, if it extends further than
428 429 430 431 432 433 434 435
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
436 437 438 439 440 441 442 443

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
444 445 446
	return chg;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

466
/*
467 468 469 470 471 472 473 474 475 476 477 478
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
479
 */
480
static long region_del(struct resv_map *resv, long f, long t)
481
{
482
	struct list_head *head = &resv->regions;
483
	struct file_region *rg, *trg;
484 485
	struct file_region *nrg = NULL;
	long del = 0;
486

487
retry:
488
	spin_lock(&resv->lock);
489
	list_for_each_entry_safe(rg, trg, head, link) {
490 491 492 493 494 495 496 497
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498
			continue;
499

500
		if (rg->from >= t)
501 502
			break;

503 504 505 506 507 508 509 510 511 512 513 514 515
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
537
			break;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
554
	}
555 556

	spin_unlock(&resv->lock);
557 558
	kfree(nrg);
	return del;
559 560
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (restore_reserve && rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

583 584 585 586
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
587
static long region_count(struct resv_map *resv, long f, long t)
588
{
589
	struct list_head *head = &resv->regions;
590 591 592
	struct file_region *rg;
	long chg = 0;

593
	spin_lock(&resv->lock);
594 595
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
596 597
		long seg_from;
		long seg_to;
598 599 600 601 602 603 604 605 606 607 608

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
609
	spin_unlock(&resv->lock);
610 611 612 613

	return chg;
}

614 615 616 617
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
618 619
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
620
{
621 622
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
623 624
}

625 626 627 628 629 630
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

631 632 633 634 635 636 637 638 639 640 641 642 643
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

644
	return 1UL << huge_page_shift(hstate);
645
}
646
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647

648 649 650 651 652 653 654 655 656 657 658 659 660
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

661 662 663 664 665 666 667
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
668
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
669

670 671 672 673 674 675 676 677 678
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
679 680 681 682 683 684 685 686 687
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
688
 */
689 690 691 692 693 694 695 696 697 698 699
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

700
struct resv_map *resv_map_alloc(void)
701 702
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
703 704 705 706 707
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
708
		return NULL;
709
	}
710 711

	kref_init(&resv_map->refs);
712
	spin_lock_init(&resv_map->lock);
713 714
	INIT_LIST_HEAD(&resv_map->regions);

715 716 717 718 719 720
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

721 722 723
	return resv_map;
}

724
void resv_map_release(struct kref *ref)
725 726
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
727 728
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
729 730

	/* Clear out any active regions before we release the map. */
731
	region_del(resv_map, 0, LONG_MAX);
732 733 734 735 736 737 738 739 740

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

741 742 743
	kfree(resv_map);
}

744 745 746 747 748
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

749
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
750
{
751
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
752 753 754 755 756 757 758
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
759 760
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
761
	}
762 763
}

764
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
765
{
766 767
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
768

769 770
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
771 772 773 774
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
775 776
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
777 778

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
779 780 781 782
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
783
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
784 785

	return (get_vma_private_data(vma) & flag) != 0;
786 787
}

788
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
789 790
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
791
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
792
	if (!(vma->vm_flags & VM_MAYSHARE))
793 794 795 796
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
797
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
798
{
799 800 801 802 803 804 805 806 807 808 809
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
810
			return true;
811
		else
812
			return false;
813
	}
814 815

	/* Shared mappings always use reserves */
816 817 818 819 820 821 822 823 824 825 826 827 828
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
829 830 831 832 833

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
834
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
835
		return true;
836

837
	return false;
838 839
}

840
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
841 842
{
	int nid = page_to_nid(page);
843
	list_move(&page->lru, &h->hugepage_freelists[nid]);
844 845
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
846 847
}

848 849 850 851
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

852 853 854 855 856 857 858 859
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
860
		return NULL;
861
	list_move(&page->lru, &h->hugepage_activelist);
862
	set_page_refcounted(page);
863 864 865 866 867
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

868 869 870
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
871
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
872 873 874 875 876
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

877 878
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
879 880
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
881
{
882
	struct page *page = NULL;
883
	struct mempolicy *mpol;
884
	nodemask_t *nodemask;
885
	struct zonelist *zonelist;
886 887
	struct zone *zone;
	struct zoneref *z;
888
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
889

890 891 892 893 894
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
895
	if (!vma_has_reserves(vma, chg) &&
896
			h->free_huge_pages - h->resv_huge_pages == 0)
897
		goto err;
898

899
	/* If reserves cannot be used, ensure enough pages are in the pool */
900
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
901
		goto err;
902

903
retry_cpuset:
904
	cpuset_mems_cookie = read_mems_allowed_begin();
905
	zonelist = huge_zonelist(vma, address,
906
					htlb_alloc_mask(h), &mpol, &nodemask);
907

908 909
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
910
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
911 912
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
913 914 915 916 917
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

918
				SetPagePrivate(page);
919
				h->resv_huge_pages--;
920 921
				break;
			}
A
Andrew Morton 已提交
922
		}
L
Linus Torvalds 已提交
923
	}
924

925
	mpol_cond_put(mpol);
926
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
927
		goto retry_cpuset;
L
Linus Torvalds 已提交
928
	return page;
929 930 931

err:
	return NULL;
L
Linus Torvalds 已提交
932 933
}

934 935 936 937 938 939 940 941 942
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
943
	nid = next_node_in(nid, *nodes_allowed);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1005
#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1006
static void destroy_compound_gigantic_page(struct page *page,
1007
					unsigned int order)
1008 1009 1010 1011 1012 1013
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014
		clear_compound_head(p);
1015 1016 1017 1018 1019 1020 1021
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1022
static void free_gigantic_page(struct page *page, unsigned int order)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1066
static struct page *alloc_gigantic_page(int nid, unsigned int order)
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1102
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
1135
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1136
static inline void destroy_compound_gigantic_page(struct page *page,
1137
						unsigned int order) { }
1138 1139 1140 1141
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1142
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1143 1144
{
	int i;
1145

1146 1147
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1148

1149 1150 1151
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1152 1153
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1154 1155
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1156
	}
1157
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1158
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1159
	set_page_refcounted(page);
1160 1161 1162 1163 1164 1165
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1204
void free_huge_page(struct page *page)
1205
{
1206 1207 1208 1209
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1210
	struct hstate *h = page_hstate(page);
1211
	int nid = page_to_nid(page);
1212 1213
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1214
	bool restore_reserve;
1215

1216
	set_page_private(page, 0);
1217
	page->mapping = NULL;
1218 1219
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1220
	restore_reserve = PagePrivate(page);
1221
	ClearPagePrivate(page);
1222

1223 1224 1225 1226 1227 1228 1229 1230
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1231
	spin_lock(&hugetlb_lock);
1232
	clear_page_huge_active(page);
1233 1234
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1235 1236 1237
	if (restore_reserve)
		h->resv_huge_pages++;

1238
	if (h->surplus_huge_pages_node[nid]) {
1239 1240
		/* remove the page from active list */
		list_del(&page->lru);
1241 1242 1243
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1244
	} else {
1245
		arch_clear_hugepage_flags(page);
1246
		enqueue_huge_page(h, page);
1247
	}
1248 1249 1250
	spin_unlock(&hugetlb_lock);
}

1251
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1252
{
1253
	INIT_LIST_HEAD(&page->lru);
1254
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1255
	spin_lock(&hugetlb_lock);
1256
	set_hugetlb_cgroup(page, NULL);
1257 1258
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1259 1260 1261 1262
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1263
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1264 1265 1266 1267 1268 1269 1270
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1271
	__ClearPageReserved(page);
1272
	__SetPageHead(page);
1273
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1287
		set_page_count(p, 0);
1288
		set_compound_head(p, page);
1289
	}
1290
	atomic_set(compound_mapcount_ptr(page), -1);
1291 1292
}

A
Andrew Morton 已提交
1293 1294 1295 1296 1297
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1298 1299 1300 1301 1302 1303
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1304
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1305
}
1306 1307
EXPORT_SYMBOL_GPL(PageHuge);

1308 1309 1310 1311 1312 1313 1314 1315 1316
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1317
	return get_compound_page_dtor(page_head) == free_huge_page;
1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1337
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1338 1339
{
	struct page *page;
1340

1341
	page = __alloc_pages_node(nid,
1342
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1343
						__GFP_REPEAT|__GFP_NOWARN,
1344
		huge_page_order(h));
L
Linus Torvalds 已提交
1345
	if (page) {
1346
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1347
	}
1348 1349 1350 1351

	return page;
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1374 1375 1376 1377 1378 1379
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1380 1381
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1382
{
1383
	int nr_nodes, node;
1384 1385
	int ret = 0;

1386
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1387 1388 1389 1390
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1391 1392
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1393
			struct page *page =
1394
				list_entry(h->hugepage_freelists[node].next,
1395 1396 1397
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1398
			h->free_huge_pages_node[node]--;
1399 1400
			if (acct_surplus) {
				h->surplus_huge_pages--;
1401
				h->surplus_huge_pages_node[node]--;
1402
			}
1403 1404
			update_and_free_page(h, page);
			ret = 1;
1405
			break;
1406
		}
1407
	}
1408 1409 1410 1411

	return ret;
}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1439 1440 1441
	if (!hugepages_supported())
		return;

1442 1443
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1444 1445 1446
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1465 1466 1467 1468 1469 1470
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1471
	 */
D
Dave Hansen 已提交
1472
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1489 1490
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1523 1524
{
	struct page *page;
1525
	unsigned int r_nid;
1526

1527
	if (hstate_is_gigantic(h))
1528 1529
		return NULL;

1530 1531 1532 1533 1534 1535
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1536 1537
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1538
	}
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1563
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1564 1565 1566
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1567 1568
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1569 1570 1571
	}
	spin_unlock(&hugetlb_lock);

1572
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1573 1574

	spin_lock(&hugetlb_lock);
1575
	if (page) {
1576
		INIT_LIST_HEAD(&page->lru);
1577
		r_nid = page_to_nid(page);
1578
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1579
		set_hugetlb_cgroup(page, NULL);
1580 1581 1582
		/*
		 * We incremented the global counters already
		 */
1583 1584
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1585
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1586
	} else {
1587 1588
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1589
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1590
	}
1591
	spin_unlock(&hugetlb_lock);
1592 1593 1594 1595

	return page;
}

1596 1597 1598 1599 1600
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1601
static
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1612
static
1613 1614 1615 1616 1617 1618
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1619 1620 1621 1622 1623 1624 1625
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1626
	struct page *page = NULL;
1627 1628

	spin_lock(&hugetlb_lock);
1629 1630
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1631 1632
	spin_unlock(&hugetlb_lock);

1633
	if (!page)
1634
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1635 1636 1637 1638

	return page;
}

1639
/*
L
Lucas De Marchi 已提交
1640
 * Increase the hugetlb pool such that it can accommodate a reservation
1641 1642
 * of size 'delta'.
 */
1643
static int gather_surplus_pages(struct hstate *h, int delta)
1644 1645 1646 1647 1648
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1649
	bool alloc_ok = true;
1650

1651
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1652
	if (needed <= 0) {
1653
		h->resv_huge_pages += delta;
1654
		return 0;
1655
	}
1656 1657 1658 1659 1660 1661 1662 1663

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1664
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1665 1666 1667 1668
		if (!page) {
			alloc_ok = false;
			break;
		}
1669 1670
		list_add(&page->lru, &surplus_list);
	}
1671
	allocated += i;
1672 1673 1674 1675 1676 1677

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1678 1679
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1690 1691
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1692
	 * needed to accommodate the reservation.  Add the appropriate number
1693
	 * of pages to the hugetlb pool and free the extras back to the buddy
1694 1695 1696
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1697 1698
	 */
	needed += allocated;
1699
	h->resv_huge_pages += delta;
1700
	ret = 0;
1701

1702
	/* Free the needed pages to the hugetlb pool */
1703
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1704 1705
		if ((--needed) < 0)
			break;
1706 1707 1708 1709 1710
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1711
		VM_BUG_ON_PAGE(page_count(page), page);
1712
		enqueue_huge_page(h, page);
1713
	}
1714
free:
1715
	spin_unlock(&hugetlb_lock);
1716 1717

	/* Free unnecessary surplus pages to the buddy allocator */
1718 1719
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1720
	spin_lock(&hugetlb_lock);
1721 1722 1723 1724 1725 1726 1727 1728

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1729
 * Called with hugetlb_lock held.
1730
 */
1731 1732
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1733 1734 1735
{
	unsigned long nr_pages;

1736
	/* Uncommit the reservation */
1737
	h->resv_huge_pages -= unused_resv_pages;
1738

1739
	/* Cannot return gigantic pages currently */
1740
	if (hstate_is_gigantic(h))
1741 1742
		return;

1743
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1744

1745 1746
	/*
	 * We want to release as many surplus pages as possible, spread
1747 1748 1749 1750 1751
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1752 1753
	 */
	while (nr_pages--) {
1754
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1755
			break;
1756
		cond_resched_lock(&hugetlb_lock);
1757 1758 1759
	}
}

1760

1761
/*
1762
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1763
 * are used by the huge page allocation routines to manage reservations.
1764 1765 1766 1767 1768 1769
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1770 1771 1772
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1773 1774 1775 1776 1777 1778
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1779
 */
1780 1781 1782
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1783
	VMA_END_RESV,
1784
};
1785 1786
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1787
				enum vma_resv_mode mode)
1788
{
1789 1790
	struct resv_map *resv;
	pgoff_t idx;
1791
	long ret;
1792

1793 1794
	resv = vma_resv_map(vma);
	if (!resv)
1795
		return 1;
1796

1797
	idx = vma_hugecache_offset(h, vma, addr);
1798 1799
	switch (mode) {
	case VMA_NEEDS_RESV:
1800
		ret = region_chg(resv, idx, idx + 1);
1801 1802 1803 1804
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1805
	case VMA_END_RESV:
1806 1807 1808 1809 1810 1811
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1812

1813
	if (vma->vm_flags & VM_MAYSHARE)
1814
		return ret;
1815
	else
1816
		return ret < 0 ? ret : 0;
1817
}
1818 1819

static long vma_needs_reservation(struct hstate *h,
1820
			struct vm_area_struct *vma, unsigned long addr)
1821
{
1822
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1823
}
1824

1825 1826 1827
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1828 1829 1830
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1831
static void vma_end_reservation(struct hstate *h,
1832 1833
			struct vm_area_struct *vma, unsigned long addr)
{
1834
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1835 1836
}

1837
struct page *alloc_huge_page(struct vm_area_struct *vma,
1838
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1839
{
1840
	struct hugepage_subpool *spool = subpool_vma(vma);
1841
	struct hstate *h = hstate_vma(vma);
1842
	struct page *page;
1843 1844
	long map_chg, map_commit;
	long gbl_chg;
1845 1846
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1847

1848
	idx = hstate_index(h);
1849
	/*
1850 1851 1852
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1853
	 */
1854 1855
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1856
		return ERR_PTR(-ENOMEM);
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
1868
			vma_end_reservation(h, vma, addr);
1869
			return ERR_PTR(-ENOSPC);
1870
		}
L
Linus Torvalds 已提交
1871

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

1884
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1885 1886 1887
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1888
	spin_lock(&hugetlb_lock);
1889 1890 1891 1892 1893 1894
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1895
	if (!page) {
1896
		spin_unlock(&hugetlb_lock);
1897
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1898 1899
		if (!page)
			goto out_uncharge_cgroup;
1900 1901 1902 1903
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
1904 1905
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1906
		/* Fall through */
K
Ken Chen 已提交
1907
	}
1908 1909
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1910

1911
	set_page_private(page, (unsigned long)spool);
1912

1913 1914
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1929
	return page;
1930 1931 1932 1933

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
1934
	if (map_chg || avoid_reserve)
1935
		hugepage_subpool_put_pages(spool, 1);
1936
	vma_end_reservation(h, vma, addr);
1937
	return ERR_PTR(-ENOSPC);
1938 1939
}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1954
int __weak alloc_bootmem_huge_page(struct hstate *h)
1955 1956
{
	struct huge_bootmem_page *m;
1957
	int nr_nodes, node;
1958

1959
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1960 1961
		void *addr;

1962 1963 1964
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1965 1966 1967 1968 1969 1970 1971
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1972
			goto found;
1973 1974 1975 1976 1977
		}
	}
	return 0;

found:
1978
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1979 1980 1981 1982 1983 1984
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1985 1986
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
1987 1988 1989 1990 1991 1992 1993
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1994 1995 1996 1997 1998 1999 2000
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2001 2002 2003 2004
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2005 2006
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2007 2008 2009
#else
		page = virt_to_page(m);
#endif
2010
		WARN_ON(page_count(page) != 1);
2011
		prep_compound_huge_page(page, h->order);
2012
		WARN_ON(PageReserved(page));
2013
		prep_new_huge_page(h, page, page_to_nid(page));
2014 2015 2016 2017 2018 2019
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2020
		if (hstate_is_gigantic(h))
2021
			adjust_managed_page_count(page, 1 << h->order);
2022 2023 2024
	}
}

2025
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2026 2027
{
	unsigned long i;
2028

2029
	for (i = 0; i < h->max_huge_pages; ++i) {
2030
		if (hstate_is_gigantic(h)) {
2031 2032
			if (!alloc_bootmem_huge_page(h))
				break;
2033
		} else if (!alloc_fresh_huge_page(h,
2034
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2035 2036
			break;
	}
2037
	h->max_huge_pages = i;
2038 2039 2040 2041 2042 2043 2044
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2045 2046 2047
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2048
		/* oversize hugepages were init'ed in early boot */
2049
		if (!hstate_is_gigantic(h))
2050
			hugetlb_hstate_alloc_pages(h);
2051
	}
2052
	VM_BUG_ON(minimum_order == UINT_MAX);
2053 2054
}

A
Andi Kleen 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2066 2067 2068 2069 2070
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2071
		char buf[32];
2072
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2073 2074
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2075 2076 2077
	}
}

L
Linus Torvalds 已提交
2078
#ifdef CONFIG_HIGHMEM
2079 2080
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2081
{
2082 2083
	int i;

2084
	if (hstate_is_gigantic(h))
2085 2086
		return;

2087
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2088
		struct page *page, *next;
2089 2090 2091
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2092
				return;
L
Linus Torvalds 已提交
2093 2094 2095
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2096
			update_and_free_page(h, page);
2097 2098
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2099 2100 2101 2102
		}
	}
}
#else
2103 2104
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2105 2106 2107 2108
{
}
#endif

2109 2110 2111 2112 2113
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2114 2115
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2116
{
2117
	int nr_nodes, node;
2118 2119 2120

	VM_BUG_ON(delta != -1 && delta != 1);

2121 2122 2123 2124
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2125
		}
2126 2127 2128 2129 2130
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2131
		}
2132 2133
	}
	return 0;
2134

2135 2136 2137 2138
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2139 2140
}

2141
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2142 2143
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2144
{
2145
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2146

2147
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2148 2149
		return h->max_huge_pages;

2150 2151 2152 2153
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2154
	 *
N
Naoya Horiguchi 已提交
2155
	 * We might race with __alloc_buddy_huge_page() here and be unable
2156 2157 2158 2159
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2160
	 */
L
Linus Torvalds 已提交
2161
	spin_lock(&hugetlb_lock);
2162
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2163
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2164 2165 2166
			break;
	}

2167
	while (count > persistent_huge_pages(h)) {
2168 2169 2170 2171 2172 2173
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2174 2175 2176 2177
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2178 2179 2180 2181
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2182 2183 2184
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2185 2186 2187 2188 2189 2190 2191 2192
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2193 2194 2195 2196
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2197
	 * __alloc_buddy_huge_page() is checking the global counter,
2198 2199 2200
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2201
	 */
2202
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2203
	min_count = max(count, min_count);
2204
	try_to_free_low(h, min_count, nodes_allowed);
2205
	while (min_count < persistent_huge_pages(h)) {
2206
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2207
			break;
2208
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2209
	}
2210
	while (count < persistent_huge_pages(h)) {
2211
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2212 2213 2214
			break;
	}
out:
2215
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2216
	spin_unlock(&hugetlb_lock);
2217
	return ret;
L
Linus Torvalds 已提交
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2230 2231 2232
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2233 2234
{
	int i;
2235

2236
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2237 2238 2239
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2240
			return &hstates[i];
2241 2242 2243
		}

	return kobj_to_node_hstate(kobj, nidp);
2244 2245
}

2246
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2247 2248
					struct kobj_attribute *attr, char *buf)
{
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2260
}
2261

2262 2263 2264
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2265 2266
{
	int err;
2267
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2268

2269
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2270 2271 2272 2273
		err = -EINVAL;
		goto out;
	}

2274 2275 2276 2277 2278 2279 2280
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2281
			nodes_allowed = &node_states[N_MEMORY];
2282 2283 2284 2285 2286 2287 2288 2289 2290
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2291
		nodes_allowed = &node_states[N_MEMORY];
2292

2293
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2294

2295
	if (nodes_allowed != &node_states[N_MEMORY])
2296 2297 2298
		NODEMASK_FREE(nodes_allowed);

	return len;
2299 2300 2301
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2302 2303
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2321 2322 2323 2324 2325 2326 2327 2328 2329
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2330
	return nr_hugepages_store_common(false, kobj, buf, len);
2331 2332 2333
}
HSTATE_ATTR(nr_hugepages);

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2349
	return nr_hugepages_store_common(true, kobj, buf, len);
2350 2351 2352 2353 2354
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2355 2356 2357
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2358
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2359 2360
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2361

2362 2363 2364 2365 2366
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2367
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2368

2369
	if (hstate_is_gigantic(h))
2370 2371
		return -EINVAL;

2372
	err = kstrtoul(buf, 10, &input);
2373
	if (err)
2374
		return err;
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2398 2399 2400 2401 2402 2403
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2404
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2405 2406 2407 2408 2409 2410 2411
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2423 2424 2425 2426 2427 2428 2429 2430 2431
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2432 2433 2434
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2435 2436 2437 2438 2439 2440 2441
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2442 2443 2444
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2445 2446
{
	int retval;
2447
	int hi = hstate_index(h);
2448

2449 2450
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2451 2452
		return -ENOMEM;

2453
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2454
	if (retval)
2455
		kobject_put(hstate_kobjs[hi]);
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2470 2471
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2472
		if (err)
2473
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2474 2475 2476
	}
}

2477 2478 2479 2480
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2481 2482 2483
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2484 2485 2486 2487 2488 2489
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2490
static struct node_hstate node_hstates[MAX_NUMNODES];
2491 2492

/*
2493
 * A subset of global hstate attributes for node devices
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2507
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2530
 * Unregister hstate attributes from a single node device.
2531 2532
 * No-op if no hstate attributes attached.
 */
2533
static void hugetlb_unregister_node(struct node *node)
2534 2535
{
	struct hstate *h;
2536
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2537 2538

	if (!nhs->hugepages_kobj)
2539
		return;		/* no hstate attributes */
2540

2541 2542 2543 2544 2545
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2546
		}
2547
	}
2548 2549 2550 2551 2552 2553 2554

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2555
 * Register hstate attributes for a single node device.
2556 2557
 * No-op if attributes already registered.
 */
2558
static void hugetlb_register_node(struct node *node)
2559 2560
{
	struct hstate *h;
2561
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2562 2563 2564 2565 2566 2567
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2568
							&node->dev.kobj);
2569 2570 2571 2572 2573 2574 2575 2576
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2577 2578
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2579 2580 2581 2582 2583 2584 2585
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2586
 * hugetlb init time:  register hstate attributes for all registered node
2587 2588
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2589
 */
2590
static void __init hugetlb_register_all_nodes(void)
2591 2592 2593
{
	int nid;

2594
	for_each_node_state(nid, N_MEMORY) {
2595
		struct node *node = node_devices[nid];
2596
		if (node->dev.id == nid)
2597 2598 2599 2600
			hugetlb_register_node(node);
	}

	/*
2601
	 * Let the node device driver know we're here so it can
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2621 2622
static int __init hugetlb_init(void)
{
2623 2624
	int i;

2625
	if (!hugepages_supported())
2626
		return 0;
2627

2628 2629 2630 2631
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2632
	}
2633
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2634 2635 2636 2637
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2638 2639

	hugetlb_init_hstates();
2640
	gather_bootmem_prealloc();
2641 2642 2643
	report_hugepages();

	hugetlb_sysfs_init();
2644
	hugetlb_register_all_nodes();
2645
	hugetlb_cgroup_file_init();
2646

2647 2648 2649 2650 2651
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2652
	hugetlb_fault_mutex_table =
2653
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2654
	BUG_ON(!hugetlb_fault_mutex_table);
2655 2656

	for (i = 0; i < num_fault_mutexes; i++)
2657
		mutex_init(&hugetlb_fault_mutex_table[i]);
2658 2659
	return 0;
}
2660
subsys_initcall(hugetlb_init);
2661 2662

/* Should be called on processing a hugepagesz=... option */
2663 2664 2665 2666 2667
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2668
void __init hugetlb_add_hstate(unsigned int order)
2669 2670
{
	struct hstate *h;
2671 2672
	unsigned long i;

2673
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2674
		pr_warn("hugepagesz= specified twice, ignoring\n");
2675 2676
		return;
	}
2677
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2678
	BUG_ON(order == 0);
2679
	h = &hstates[hugetlb_max_hstate++];
2680 2681
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2682 2683 2684 2685
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2686
	INIT_LIST_HEAD(&h->hugepage_activelist);
2687 2688
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2689 2690
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2691

2692 2693 2694
	parsed_hstate = h;
}

2695
static int __init hugetlb_nrpages_setup(char *s)
2696 2697
{
	unsigned long *mhp;
2698
	static unsigned long *last_mhp;
2699

2700 2701 2702 2703 2704 2705
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2706
	/*
2707
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2708 2709
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2710
	else if (!hugetlb_max_hstate)
2711 2712 2713 2714
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2715
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2716
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2717 2718 2719
		return 1;
	}

2720 2721 2722
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2723 2724 2725 2726 2727
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2728
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2729 2730 2731 2732
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2733 2734
	return 1;
}
2735 2736 2737 2738 2739 2740 2741 2742
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2756 2757 2758
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2759
{
2760
	struct hstate *h = &default_hstate;
2761
	unsigned long tmp = h->max_huge_pages;
2762
	int ret;
2763

2764
	if (!hugepages_supported())
2765
		return -EOPNOTSUPP;
2766

2767 2768
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2769 2770 2771
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2772

2773 2774 2775
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2776 2777
out:
	return ret;
L
Linus Torvalds 已提交
2778
}
2779

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2797
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2798
			void __user *buffer,
2799 2800
			size_t *length, loff_t *ppos)
{
2801
	struct hstate *h = &default_hstate;
2802
	unsigned long tmp;
2803
	int ret;
2804

2805
	if (!hugepages_supported())
2806
		return -EOPNOTSUPP;
2807

2808
	tmp = h->nr_overcommit_huge_pages;
2809

2810
	if (write && hstate_is_gigantic(h))
2811 2812
		return -EINVAL;

2813 2814
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2815 2816 2817
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2818 2819 2820 2821 2822 2823

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2824 2825
out:
	return ret;
2826 2827
}

L
Linus Torvalds 已提交
2828 2829
#endif /* CONFIG_SYSCTL */

2830
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2831
{
2832
	struct hstate *h = &default_hstate;
2833 2834
	if (!hugepages_supported())
		return;
2835
	seq_printf(m,
2836 2837 2838 2839 2840
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2841 2842 2843 2844 2845
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2846 2847 2848 2849
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2850
	struct hstate *h = &default_hstate;
2851 2852
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2853 2854
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2855 2856
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2857 2858 2859
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2860 2861
}

2862 2863 2864 2865 2866
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2867 2868 2869
	if (!hugepages_supported())
		return;

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

2880 2881 2882 2883 2884 2885
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2886 2887 2888
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2889 2890 2891 2892 2893 2894
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2895 2896
}

2897
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2920
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2921 2922
			goto out;

2923 2924
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2925 2926 2927 2928 2929 2930
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2931
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2932 2933 2934 2935 2936 2937

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2938 2939
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2940
	struct resv_map *resv = vma_resv_map(vma);
2941 2942 2943 2944 2945

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2946
	 * has a reference to the reservation map it cannot disappear until
2947 2948 2949
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2950
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2951
		kref_get(&resv->refs);
2952 2953
}

2954 2955
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2956
	struct hstate *h = hstate_vma(vma);
2957
	struct resv_map *resv = vma_resv_map(vma);
2958
	struct hugepage_subpool *spool = subpool_vma(vma);
2959
	unsigned long reserve, start, end;
2960
	long gbl_reserve;
2961

2962 2963
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2964

2965 2966
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2967

2968
	reserve = (end - start) - region_count(resv, start, end);
2969

2970 2971 2972
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2973 2974 2975 2976 2977 2978
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2979
	}
2980 2981
}

L
Linus Torvalds 已提交
2982 2983 2984 2985 2986 2987
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2988
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2989 2990
{
	BUG();
N
Nick Piggin 已提交
2991
	return 0;
L
Linus Torvalds 已提交
2992 2993
}

2994
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2995
	.fault = hugetlb_vm_op_fault,
2996
	.open = hugetlb_vm_op_open,
2997
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2998 2999
};

3000 3001
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3002 3003 3004
{
	pte_t entry;

3005
	if (writable) {
3006 3007
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3008
	} else {
3009 3010
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3011 3012 3013
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3014
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3015 3016 3017 3018

	return entry;
}

3019 3020 3021 3022 3023
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3024
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3025
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3026
		update_mmu_cache(vma, address, ptep);
3027 3028
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3054

D
David Gibson 已提交
3055 3056 3057 3058 3059
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3060
	unsigned long addr;
3061
	int cow;
3062 3063
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3064 3065 3066
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3067 3068

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3069

3070 3071 3072 3073 3074
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3075
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3076
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3077 3078 3079
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3080
		dst_pte = huge_pte_alloc(dst, addr, sz);
3081 3082 3083 3084
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3085 3086 3087 3088 3089

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3090 3091 3092
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3111
			if (cow) {
3112
				huge_ptep_set_wrprotect(src, addr, src_pte);
3113 3114 3115
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3116
			entry = huge_ptep_get(src_pte);
3117 3118
			ptepage = pte_page(entry);
			get_page(ptepage);
3119
			page_dup_rmap(ptepage, true);
3120
			set_huge_pte_at(dst, addr, dst_pte, entry);
3121
			hugetlb_count_add(pages_per_huge_page(h), dst);
3122
		}
3123 3124
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3125 3126
	}

3127 3128 3129 3130
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3131 3132
}

3133 3134 3135
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3136
{
3137
	int force_flush = 0;
D
David Gibson 已提交
3138 3139
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3140
	pte_t *ptep;
D
David Gibson 已提交
3141
	pte_t pte;
3142
	spinlock_t *ptl;
D
David Gibson 已提交
3143
	struct page *page;
3144 3145
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3146 3147
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3148

D
David Gibson 已提交
3149
	WARN_ON(!is_vm_hugetlb_page(vma));
3150 3151
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3152

3153
	tlb_start_vma(tlb, vma);
3154
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3155
	address = start;
3156
again:
3157
	for (; address < end; address += sz) {
3158
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3159
		if (!ptep)
3160 3161
			continue;

3162
		ptl = huge_pte_lock(h, mm, ptep);
3163
		if (huge_pmd_unshare(mm, &address, ptep))
3164
			goto unlock;
3165

3166 3167
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
3168
			goto unlock;
3169 3170

		/*
3171 3172
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3173
		 */
3174
		if (unlikely(!pte_present(pte))) {
3175
			huge_pte_clear(mm, address, ptep);
3176
			goto unlock;
3177
		}
3178 3179

		page = pte_page(pte);
3180 3181 3182 3183 3184 3185 3186
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
3187
				goto unlock;
3188 3189 3190 3191 3192 3193 3194 3195 3196

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3197
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3198
		tlb_remove_tlb_entry(tlb, ptep, address);
3199
		if (huge_pte_dirty(pte))
3200
			set_page_dirty(page);
3201

3202
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3203
		page_remove_rmap(page, true);
3204
		force_flush = !__tlb_remove_page(tlb, page);
3205
		if (force_flush) {
3206
			address += sz;
3207
			spin_unlock(ptl);
3208
			break;
3209
		}
3210
		/* Bail out after unmapping reference page if supplied */
3211 3212
		if (ref_page) {
			spin_unlock(ptl);
3213
			break;
3214 3215 3216
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
3217
	}
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
3228
	}
3229
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3230
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3231
}
D
David Gibson 已提交
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3245
	 * is to clear it before releasing the i_mmap_rwsem. This works
3246
	 * because in the context this is called, the VMA is about to be
3247
	 * destroyed and the i_mmap_rwsem is held.
3248 3249 3250 3251
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3252
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3253
			  unsigned long end, struct page *ref_page)
3254
{
3255 3256 3257 3258 3259
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3260
	tlb_gather_mmu(&tlb, mm, start, end);
3261 3262
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3263 3264
}

3265 3266 3267 3268 3269 3270
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3271 3272
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3273
{
3274
	struct hstate *h = hstate_vma(vma);
3275 3276 3277 3278 3279 3280 3281 3282
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3283
	address = address & huge_page_mask(h);
3284 3285
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
3286
	mapping = file_inode(vma->vm_file)->i_mapping;
3287

3288 3289 3290 3291 3292
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3293
	i_mmap_lock_write(mapping);
3294
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3295 3296 3297 3298
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3299 3300 3301 3302 3303 3304 3305 3306
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3307 3308 3309 3310 3311 3312 3313 3314
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3315 3316
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3317
	}
3318
	i_mmap_unlock_write(mapping);
3319 3320
}

3321 3322
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3323 3324 3325
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3326
 */
3327
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3328
			unsigned long address, pte_t *ptep, pte_t pte,
3329
			struct page *pagecache_page, spinlock_t *ptl)
3330
{
3331
	struct hstate *h = hstate_vma(vma);
3332
	struct page *old_page, *new_page;
3333
	int ret = 0, outside_reserve = 0;
3334 3335
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3336 3337 3338

	old_page = pte_page(pte);

3339
retry_avoidcopy:
3340 3341
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3342 3343
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
3344
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3345
		return 0;
3346 3347
	}

3348 3349 3350 3351 3352 3353 3354 3355 3356
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3357
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3358 3359 3360
			old_page != pagecache_page)
		outside_reserve = 1;

3361
	get_page(old_page);
3362

3363 3364 3365 3366
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3367
	spin_unlock(ptl);
3368
	new_page = alloc_huge_page(vma, address, outside_reserve);
3369

3370
	if (IS_ERR(new_page)) {
3371 3372 3373 3374 3375 3376 3377 3378
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3379
			put_page(old_page);
3380
			BUG_ON(huge_pte_none(pte));
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3393 3394
		}

3395 3396 3397
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3398 3399
	}

3400 3401 3402 3403
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3404
	if (unlikely(anon_vma_prepare(vma))) {
3405 3406
		ret = VM_FAULT_OOM;
		goto out_release_all;
3407
	}
3408

A
Andrea Arcangeli 已提交
3409 3410
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3411
	__SetPageUptodate(new_page);
3412
	set_page_huge_active(new_page);
3413

3414 3415 3416
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3417

3418
	/*
3419
	 * Retake the page table lock to check for racing updates
3420 3421
	 * before the page tables are altered
	 */
3422
	spin_lock(ptl);
3423
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3424
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3425 3426
		ClearPagePrivate(new_page);

3427
		/* Break COW */
3428
		huge_ptep_clear_flush(vma, address, ptep);
3429
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3430 3431
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3432
		page_remove_rmap(old_page, true);
3433
		hugepage_add_new_anon_rmap(new_page, vma, address);
3434 3435 3436
		/* Make the old page be freed below */
		new_page = old_page;
	}
3437
	spin_unlock(ptl);
3438
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3439
out_release_all:
3440
	put_page(new_page);
3441
out_release_old:
3442
	put_page(old_page);
3443

3444 3445
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3446 3447
}

3448
/* Return the pagecache page at a given address within a VMA */
3449 3450
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3451 3452
{
	struct address_space *mapping;
3453
	pgoff_t idx;
3454 3455

	mapping = vma->vm_file->f_mapping;
3456
	idx = vma_hugecache_offset(h, vma, address);
3457 3458 3459 3460

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3461 3462 3463 3464 3465
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3498
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3499 3500
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3501
{
3502
	struct hstate *h = hstate_vma(vma);
3503
	int ret = VM_FAULT_SIGBUS;
3504
	int anon_rmap = 0;
A
Adam Litke 已提交
3505 3506
	unsigned long size;
	struct page *page;
3507
	pte_t new_pte;
3508
	spinlock_t *ptl;
A
Adam Litke 已提交
3509

3510 3511 3512
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3513
	 * COW. Warn that such a situation has occurred as it may not be obvious
3514 3515
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3516
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3517
			   current->pid);
3518 3519 3520
		return ret;
	}

A
Adam Litke 已提交
3521 3522 3523 3524
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3525 3526 3527
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3528
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3529 3530
		if (idx >= size)
			goto out;
3531
		page = alloc_huge_page(vma, address, 0);
3532
		if (IS_ERR(page)) {
3533 3534 3535 3536 3537
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3538 3539
			goto out;
		}
A
Andrea Arcangeli 已提交
3540
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3541
		__SetPageUptodate(page);
3542
		set_page_huge_active(page);
3543

3544
		if (vma->vm_flags & VM_MAYSHARE) {
3545
			int err = huge_add_to_page_cache(page, mapping, idx);
3546 3547 3548 3549 3550 3551
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3552
		} else {
3553
			lock_page(page);
3554 3555 3556 3557
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3558
			anon_rmap = 1;
3559
		}
3560
	} else {
3561 3562 3563 3564 3565 3566
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3567
			ret = VM_FAULT_HWPOISON |
3568
				VM_FAULT_SET_HINDEX(hstate_index(h));
3569 3570
			goto backout_unlocked;
		}
3571
	}
3572

3573 3574 3575 3576 3577 3578
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3579
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3580 3581 3582 3583
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3584
		/* Just decrements count, does not deallocate */
3585
		vma_end_reservation(h, vma, address);
3586
	}
3587

3588 3589
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3590
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3591 3592 3593
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3594
	ret = 0;
3595
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3596 3597
		goto backout;

3598 3599
	if (anon_rmap) {
		ClearPagePrivate(page);
3600
		hugepage_add_new_anon_rmap(page, vma, address);
3601
	} else
3602
		page_dup_rmap(page, true);
3603 3604 3605 3606
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3607
	hugetlb_count_add(pages_per_huge_page(h), mm);
3608
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3609
		/* Optimization, do the COW without a second fault */
3610
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3611 3612
	}

3613
	spin_unlock(ptl);
A
Adam Litke 已提交
3614 3615
	unlock_page(page);
out:
3616
	return ret;
A
Adam Litke 已提交
3617 3618

backout:
3619
	spin_unlock(ptl);
3620
backout_unlocked:
A
Adam Litke 已提交
3621 3622 3623
	unlock_page(page);
	put_page(page);
	goto out;
3624 3625
}

3626
#ifdef CONFIG_SMP
3627
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3652
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3653 3654 3655 3656 3657 3658 3659 3660
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3661
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3662
			unsigned long address, unsigned int flags)
3663
{
3664
	pte_t *ptep, entry;
3665
	spinlock_t *ptl;
3666
	int ret;
3667 3668
	u32 hash;
	pgoff_t idx;
3669
	struct page *page = NULL;
3670
	struct page *pagecache_page = NULL;
3671
	struct hstate *h = hstate_vma(vma);
3672
	struct address_space *mapping;
3673
	int need_wait_lock = 0;
3674

3675 3676
	address &= huge_page_mask(h);

3677 3678 3679
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3680
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3681
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3682 3683
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3684
			return VM_FAULT_HWPOISON_LARGE |
3685
				VM_FAULT_SET_HINDEX(hstate_index(h));
3686 3687 3688 3689
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3690 3691
	}

3692 3693 3694
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3695 3696 3697 3698 3699
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3700 3701
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3702

3703 3704
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3705
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3706
		goto out_mutex;
3707
	}
3708

N
Nick Piggin 已提交
3709
	ret = 0;
3710

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3721 3722 3723 3724 3725 3726 3727 3728
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3729
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3730 3731
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3732
			goto out_mutex;
3733
		}
3734
		/* Just decrements count, does not deallocate */
3735
		vma_end_reservation(h, vma, address);
3736

3737
		if (!(vma->vm_flags & VM_MAYSHARE))
3738 3739 3740 3741
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3742 3743 3744 3745 3746 3747
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3748 3749 3750 3751 3752 3753 3754
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3755 3756 3757 3758
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3759

3760
	get_page(page);
3761

3762
	if (flags & FAULT_FLAG_WRITE) {
3763
		if (!huge_pte_write(entry)) {
3764
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3765
					pagecache_page, ptl);
3766
			goto out_put_page;
3767
		}
3768
		entry = huge_pte_mkdirty(entry);
3769 3770
	}
	entry = pte_mkyoung(entry);
3771 3772
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3773
		update_mmu_cache(vma, address, ptep);
3774 3775 3776 3777
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3778 3779
out_ptl:
	spin_unlock(ptl);
3780 3781 3782 3783 3784

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3785
out_mutex:
3786
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3787 3788 3789 3790 3791 3792 3793 3794 3795
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3796
	return ret;
3797 3798
}

3799 3800 3801 3802
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3803
{
3804 3805
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3806
	unsigned long remainder = *nr_pages;
3807
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3808 3809

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3810
		pte_t *pte;
3811
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3812
		int absent;
A
Adam Litke 已提交
3813
		struct page *page;
D
David Gibson 已提交
3814

3815 3816 3817 3818 3819 3820 3821 3822 3823
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3824 3825
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3826
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3827
		 * first, for the page indexing below to work.
3828 3829
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3830
		 */
3831
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3832 3833
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3834 3835 3836 3837
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3838 3839 3840 3841
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3842
		 */
H
Hugh Dickins 已提交
3843 3844
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3845 3846
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3847 3848 3849
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3850

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3862 3863
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3864
			int ret;
D
David Gibson 已提交
3865

3866 3867
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3868 3869
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3870
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3871
				continue;
D
David Gibson 已提交
3872

A
Adam Litke 已提交
3873 3874 3875 3876
			remainder = 0;
			break;
		}

3877
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3878
		page = pte_page(huge_ptep_get(pte));
3879
same_page:
3880
		if (pages) {
H
Hugh Dickins 已提交
3881
			pages[i] = mem_map_offset(page, pfn_offset);
3882
			get_page(pages[i]);
3883
		}
D
David Gibson 已提交
3884 3885 3886 3887 3888

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3889
		++pfn_offset;
D
David Gibson 已提交
3890 3891
		--remainder;
		++i;
3892
		if (vaddr < vma->vm_end && remainder &&
3893
				pfn_offset < pages_per_huge_page(h)) {
3894 3895 3896 3897 3898 3899
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3900
		spin_unlock(ptl);
D
David Gibson 已提交
3901
	}
3902
	*nr_pages = remainder;
D
David Gibson 已提交
3903 3904
	*position = vaddr;

H
Hugh Dickins 已提交
3905
	return i ? i : -EFAULT;
D
David Gibson 已提交
3906
}
3907

3908
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3909 3910 3911 3912 3913 3914
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3915
	struct hstate *h = hstate_vma(vma);
3916
	unsigned long pages = 0;
3917 3918 3919 3920

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3921
	mmu_notifier_invalidate_range_start(mm, start, end);
3922
	i_mmap_lock_write(vma->vm_file->f_mapping);
3923
	for (; address < end; address += huge_page_size(h)) {
3924
		spinlock_t *ptl;
3925 3926 3927
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3928
		ptl = huge_pte_lock(h, mm, ptep);
3929 3930
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3931
			spin_unlock(ptl);
3932
			continue;
3933
		}
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3954
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3955
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3956
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3957
			set_huge_pte_at(mm, address, ptep, pte);
3958
			pages++;
3959
		}
3960
		spin_unlock(ptl);
3961
	}
3962
	/*
3963
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3964
	 * may have cleared our pud entry and done put_page on the page table:
3965
	 * once we release i_mmap_rwsem, another task can do the final put_page
3966 3967
	 * and that page table be reused and filled with junk.
	 */
3968
	flush_tlb_range(vma, start, end);
3969
	mmu_notifier_invalidate_range(mm, start, end);
3970
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3971
	mmu_notifier_invalidate_range_end(mm, start, end);
3972 3973

	return pages << h->order;
3974 3975
}

3976 3977
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3978
					struct vm_area_struct *vma,
3979
					vm_flags_t vm_flags)
3980
{
3981
	long ret, chg;
3982
	struct hstate *h = hstate_inode(inode);
3983
	struct hugepage_subpool *spool = subpool_inode(inode);
3984
	struct resv_map *resv_map;
3985
	long gbl_reserve;
3986

3987 3988 3989
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3990
	 * without using reserves
3991
	 */
3992
	if (vm_flags & VM_NORESERVE)
3993 3994
		return 0;

3995 3996 3997 3998 3999 4000
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4001
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4002
		resv_map = inode_resv_map(inode);
4003

4004
		chg = region_chg(resv_map, from, to);
4005 4006 4007

	} else {
		resv_map = resv_map_alloc();
4008 4009 4010
		if (!resv_map)
			return -ENOMEM;

4011
		chg = to - from;
4012

4013 4014 4015 4016
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4017 4018 4019 4020
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4021

4022 4023 4024 4025 4026 4027 4028
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4029 4030 4031
		ret = -ENOSPC;
		goto out_err;
	}
4032 4033

	/*
4034
	 * Check enough hugepages are available for the reservation.
4035
	 * Hand the pages back to the subpool if there are not
4036
	 */
4037
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4038
	if (ret < 0) {
4039 4040
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4041
		goto out_err;
K
Ken Chen 已提交
4042
	}
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4073
	return 0;
4074
out_err:
4075 4076
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4077 4078
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4079
	return ret;
4080 4081
}

4082 4083
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4084
{
4085
	struct hstate *h = hstate_inode(inode);
4086
	struct resv_map *resv_map = inode_resv_map(inode);
4087
	long chg = 0;
4088
	struct hugepage_subpool *spool = subpool_inode(inode);
4089
	long gbl_reserve;
K
Ken Chen 已提交
4090

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4102
	spin_lock(&inode->i_lock);
4103
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4104 4105
	spin_unlock(&inode->i_lock);

4106 4107 4108 4109 4110 4111
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4112 4113

	return 0;
4114
}
4115

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4127 4128
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4142
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4143 4144 4145 4146 4147 4148 4149 4150 4151
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4152 4153
		return true;
	return false;
4154 4155 4156 4157 4158 4159 4160
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4161
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4175
	spinlock_t *ptl;
4176 4177 4178 4179

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4180
	i_mmap_lock_write(mapping);
4181 4182 4183 4184 4185 4186 4187 4188
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
4189
				mm_inc_nr_pmds(mm);
4190 4191 4192 4193 4194 4195 4196 4197 4198
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4199 4200
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4201
	if (pud_none(*pud)) {
4202 4203
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4204
	} else {
4205
		put_page(virt_to_page(spte));
4206 4207
		mm_inc_nr_pmds(mm);
	}
4208
	spin_unlock(ptl);
4209 4210
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4211
	i_mmap_unlock_write(mapping);
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4222
 * called with page table lock held.
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4238
	mm_dec_nr_pmds(mm);
4239 4240 4241
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4242 4243 4244 4245 4246 4247
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4248 4249 4250 4251 4252

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4253
#define want_pmd_share()	(0)
4254 4255
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4314
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4315
		pmd_t *pmd, int flags)
4316
{
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4329
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4345 4346 4347
	return page;
}

4348
struct page * __weak
4349
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4350
		pud_t *pud, int flags)
4351
{
4352 4353
	if (flags & FOLL_GET)
		return NULL;
4354

4355
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4356 4357
}

4358 4359
#ifdef CONFIG_MEMORY_FAILURE

4360 4361 4362 4363
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
4364
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4365 4366 4367
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4368
	int ret = -EBUSY;
4369 4370

	spin_lock(&hugetlb_lock);
4371 4372 4373 4374 4375
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4376 4377 4378 4379 4380 4381 4382
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4383
		set_page_refcounted(hpage);
4384 4385 4386 4387
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4388
	spin_unlock(&hugetlb_lock);
4389
	return ret;
4390
}
4391
#endif
4392 4393 4394

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4395 4396
	bool ret = true;

4397
	VM_BUG_ON_PAGE(!PageHead(page), page);
4398
	spin_lock(&hugetlb_lock);
4399 4400 4401 4402 4403
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4404
	list_move_tail(&page->lru, list);
4405
unlock:
4406
	spin_unlock(&hugetlb_lock);
4407
	return ret;
4408 4409 4410 4411
}

void putback_active_hugepage(struct page *page)
{
4412
	VM_BUG_ON_PAGE(!PageHead(page), page);
4413
	spin_lock(&hugetlb_lock);
4414
	set_page_huge_active(page);
4415 4416 4417 4418
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}