fib_trie.c 66.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52

53
#include <linux/cache.h>
54
#include <linux/uaccess.h>
J
Jiri Slaby 已提交
55
#include <linux/bitops.h>
56 57 58 59 60 61 62 63 64
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
65
#include <linux/inetdevice.h>
66 67 68
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
69
#include <linux/rcupdate.h>
70 71 72 73
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
74
#include <linux/slab.h>
75
#include <linux/export.h>
76
#include <linux/vmalloc.h>
77
#include <linux/notifier.h>
78
#include <net/net_namespace.h>
79 80 81 82 83 84
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
85
#include <net/fib_notifier.h>
D
David Ahern 已提交
86
#include <trace/events/fib.h>
87 88
#include "fib_lookup.h"

89 90
static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
				   enum fib_event_type event_type, u32 dst,
91
				   int dst_len, struct fib_alias *fa)
92 93 94 95
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
96 97 98 99
		.fi = fa->fa_info,
		.tos = fa->fa_tos,
		.type = fa->fa_type,
		.tb_id = fa->tb_id,
100
	};
101
	return call_fib4_notifier(nb, net, event_type, &info.info);
102 103
}

104 105
static int call_fib_entry_notifiers(struct net *net,
				    enum fib_event_type event_type, u32 dst,
D
David Ahern 已提交
106 107
				    int dst_len, struct fib_alias *fa,
				    struct netlink_ext_ack *extack)
108 109
{
	struct fib_entry_notifier_info info = {
D
David Ahern 已提交
110
		.info.extack = extack,
111 112
		.dst = dst,
		.dst_len = dst_len,
113 114 115 116
		.fi = fa->fa_info,
		.tos = fa->fa_tos,
		.type = fa->fa_type,
		.tb_id = fa->tb_id,
117
	};
118
	return call_fib4_notifiers(net, event_type, &info.info);
119 120
}

R
Robert Olsson 已提交
121
#define MAX_STAT_DEPTH 32
122

123 124
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
125 126 127

typedef unsigned int t_key;

128 129 130
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
131

132
struct key_vector {
133 134
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
135
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
136
	unsigned char slen;
A
Alexander Duyck 已提交
137
	union {
138
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
139
		struct hlist_head leaf;
140
		/* This array is valid if (pos | bits) > 0 (TNODE) */
141
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
142
	};
143 144
};

145
struct tnode {
146
	struct rcu_head rcu;
147 148
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
149
	struct key_vector __rcu *parent;
150
	struct key_vector kv[1];
151
#define tn_bits kv[0].bits
152 153 154
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
155 156
#define LEAF_SIZE	TNODE_SIZE(1)

157 158 159 160 161 162 163
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
164
	unsigned int resize_node_skipped;
165 166 167 168 169 170 171 172 173
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
174
	unsigned int prefixes;
R
Robert Olsson 已提交
175
	unsigned int nodesizes[MAX_STAT_DEPTH];
176
};
177 178

struct trie {
179
	struct key_vector kv[1];
180
#ifdef CONFIG_IP_FIB_TRIE_STATS
181
	struct trie_use_stats __percpu *stats;
182 183 184
#endif
};

185
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
186 187 188 189 190 191 192 193
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
194

195 196
static struct kmem_cache *fn_alias_kmem __ro_after_init;
static struct kmem_cache *trie_leaf_kmem __ro_after_init;
197

198 199 200 201 202
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

203
/* caller must hold RTNL */
204
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
205
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
206

207
/* caller must hold RCU read lock or RTNL */
208
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
209
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
210

211
/* wrapper for rcu_assign_pointer */
212
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
213
{
A
Alexander Duyck 已提交
214
	if (n)
215
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
216 217
}

218
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
219 220 221

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
222
 */
223
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
224
{
225
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
226
}
R
Robert Olsson 已提交
227

228 229
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

230 231 232 233
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

234 235 236
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

237 238 239
	return index >> kv->pos;
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
286
 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
287 288 289 290 291 292 293 294
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
295
 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
296 297
 * at this point.
 */
298

299 300
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
301
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
302
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
303 304

static void __alias_free_mem(struct rcu_head *head)
305
{
R
Robert Olsson 已提交
306 307
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
308 309
}

R
Robert Olsson 已提交
310
static inline void alias_free_mem_rcu(struct fib_alias *fa)
311
{
R
Robert Olsson 已提交
312 313
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
314

315
#define TNODE_KMALLOC_MAX \
316
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
317
#define TNODE_VMALLOC_MAX \
318
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
319

320
static void __node_free_rcu(struct rcu_head *head)
321
{
322
	struct tnode *n = container_of(head, struct tnode, rcu);
323

324
	if (!n->tn_bits)
325 326
		kmem_cache_free(trie_leaf_kmem, n);
	else
327
		kvfree(n);
328 329
}

330
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
331

332
static struct tnode *tnode_alloc(int bits)
333
{
334 335 336 337 338 339 340 341 342
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
343
	if (size <= PAGE_SIZE)
344
		return kzalloc(size, GFP_KERNEL);
345
	else
346
		return vzalloc(size);
347
}
R
Robert Olsson 已提交
348

349
static inline void empty_child_inc(struct key_vector *n)
350
{
351
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
352 353
}

354
static inline void empty_child_dec(struct key_vector *n)
355
{
356
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
357 358
}

359
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
360
{
361 362
	struct key_vector *l;
	struct tnode *kv;
363

364
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
365 366 367 368
	if (!kv)
		return NULL;

	/* initialize key vector */
369
	l = kv->kv;
370 371 372 373 374 375 376 377 378
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
379 380 381
	return l;
}

382
static struct key_vector *tnode_new(t_key key, int pos, int bits)
383
{
384
	unsigned int shift = pos + bits;
385 386
	struct key_vector *tn;
	struct tnode *tnode;
387 388 389

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
390

391
	tnode = tnode_alloc(bits);
392 393 394
	if (!tnode)
		return NULL;

395 396 397
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

398
	if (bits == KEYLENGTH)
399
		tnode->full_children = 1;
400
	else
401
		tnode->empty_children = 1ul << bits;
402

403
	tn = tnode->kv;
404 405 406 407 408
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

409 410 411
	return tn;
}

412
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
413 414
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
415
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
416
{
417
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
418 419
}

420 421 422
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
423 424
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
425
{
426
	struct key_vector *chi = get_child(tn, i);
427
	int isfull, wasfull;
428

429
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
430

431
	/* update emptyChildren, overflow into fullChildren */
432
	if (!n && chi)
433
		empty_child_inc(tn);
434
	if (n && !chi)
435
		empty_child_dec(tn);
436

437
	/* update fullChildren */
438
	wasfull = tnode_full(tn, chi);
439
	isfull = tnode_full(tn, n);
440

441
	if (wasfull && !isfull)
442
		tn_info(tn)->full_children--;
443
	else if (!wasfull && isfull)
444
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
445

446 447 448
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

449
	rcu_assign_pointer(tn->tnode[i], n);
450 451
}

452
static void update_children(struct key_vector *tn)
453 454 455 456
{
	unsigned long i;

	/* update all of the child parent pointers */
457
	for (i = child_length(tn); i;) {
458
		struct key_vector *inode = get_child(tn, --i);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

474 475
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
476
{
477 478
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
479
	else
480
		put_child(tp, get_index(key, tp), n);
481 482
}

483
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
484
{
485
	tn_info(tn)->rcu.next = NULL;
486 487
}

488 489
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
490
{
491 492
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
493
}
E
Eric Dumazet 已提交
494

495
static void tnode_free(struct key_vector *tn)
496
{
497
	struct callback_head *head = &tn_info(tn)->rcu;
498 499 500

	while (head) {
		head = head->next;
501
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
502 503
		node_free(tn);

504
		tn = container_of(head, struct tnode, rcu)->kv;
505 506 507 508 509
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
510 511 512
	}
}

513 514 515
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
516
{
517
	struct key_vector *tp = node_parent(oldtnode);
518 519 520 521
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
522
	put_child_root(tp, tn->key, tn);
523 524 525 526 527 528 529 530

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
531
	for (i = child_length(tn); i;) {
532
		struct key_vector *inode = get_child(tn, --i);
533 534 535

		/* resize child node */
		if (tnode_full(tn, inode))
536
			tn = resize(t, inode);
537
	}
538

539
	return tp;
540 541
}

542 543
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
544
{
545
	struct key_vector *tn;
546
	unsigned long i;
547
	t_key m;
548

S
Stephen Hemminger 已提交
549
	pr_debug("In inflate\n");
550

551
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
552
	if (!tn)
553
		goto notnode;
554

555 556 557
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

558 559 560 561
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
562
	 */
563
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
564
		struct key_vector *inode = get_child(oldtnode, --i);
565
		struct key_vector *node0, *node1;
566
		unsigned long j, k;
567

568
		/* An empty child */
569
		if (!inode)
570 571 572
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
573
		if (!tnode_full(oldtnode, inode)) {
574
			put_child(tn, get_index(inode->key, tn), inode);
575 576 577
			continue;
		}

578 579 580
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

581 582
		/* An internal node with two children */
		if (inode->bits == 1) {
583 584
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
585
			continue;
586 587
		}

O
Olof Johansson 已提交
588
		/* We will replace this node 'inode' with two new
589
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
590 591 592 593 594
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
595
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
596 597
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
598 599 600
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
601
		 */
602 603 604
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
605
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
606

607
		tnode_free_append(tn, node1);
608 609 610 611 612
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
613
		for (k = child_length(inode), j = k / 2; j;) {
614 615 616 617
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
618
		}
619

620 621 622
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
623

624 625 626 627
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
628

629
	/* setup the parent pointers into and out of this node */
630
	return replace(t, oldtnode, tn);
631
nomem:
632 633
	/* all pointers should be clean so we are done */
	tnode_free(tn);
634 635
notnode:
	return NULL;
636 637
}

638 639
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
640
{
641
	struct key_vector *tn;
642
	unsigned long i;
643

S
Stephen Hemminger 已提交
644
	pr_debug("In halve\n");
645

646
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
647
	if (!tn)
648
		goto notnode;
649

650 651 652
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

653 654 655 656
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
657
	 */
658
	for (i = child_length(oldtnode); i;) {
659 660
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
661
		struct key_vector *inode;
662

663 664 665 666 667
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
668

669
		/* Two nonempty children */
670
		inode = tnode_new(node0->key, oldtnode->pos, 1);
671 672
		if (!inode)
			goto nomem;
673
		tnode_free_append(tn, inode);
674

675 676 677 678 679 680 681
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
682
	}
683

684
	/* setup the parent pointers into and out of this node */
685 686 687 688 689 690
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
691 692
}

693 694
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
695
{
696
	struct key_vector *n, *tp;
697 698 699
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
700
	for (n = NULL, i = child_length(oldtnode); !n && i;)
701
		n = get_child(oldtnode, --i);
702 703 704

	/* compress one level */
	tp = node_parent(oldtnode);
705
	put_child_root(tp, oldtnode->key, n);
706 707 708 709
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
710 711

	return tp;
712 713
}

714
static unsigned char update_suffix(struct key_vector *tn)
715 716 717
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;
718 719 720 721 722 723 724
	unsigned char slen_max;

	/* only vector 0 can have a suffix length greater than or equal to
	 * tn->pos + tn->bits, the second highest node will have a suffix
	 * length at most of tn->pos + tn->bits - 1
	 */
	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
725 726 727 728 729 730

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
731
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
732
		struct key_vector *n = get_child(tn, i);
733 734 735 736 737 738 739 740 741

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

742 743
		/* stop searching if we have hit the maximum possible value */
		if (slen >= slen_max)
744 745 746 747 748 749 750 751
			break;
	}

	tn->slen = slen;

	return slen;
}

752 753 754 755 756 757 758 759
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
760
 * child_length() and instead of multiplying by 2 (since the
761 762 763 764
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
765
 * The left-hand side may look a bit weird: child_length(tn)
766 767 768 769 770 771 772 773 774
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
775
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
776 777
 *     tn->full_children;
 *
778
 * new_child_length = child_length(tn) * 2;
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
795
 * 100 * (child_length(tn) - tn->empty_children +
796 797 798
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
799
 * 100 * (child_length(tn) - tn->empty_children +
800
 *    tn->full_children) >=
801
 *      inflate_threshold * child_length(tn) * 2
802 803
 *
 * shorten again:
804
 * 50 * (tn->full_children + child_length(tn) -
805
 *    tn->empty_children) >= inflate_threshold *
806
 *    child_length(tn)
807 808
 *
 */
809
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
810
{
811
	unsigned long used = child_length(tn);
812 813 814
	unsigned long threshold = used;

	/* Keep root node larger */
815
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
816 817
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
818

819 820 821
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
822 823
}

824
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
825
{
826
	unsigned long used = child_length(tn);
827 828 829
	unsigned long threshold = used;

	/* Keep root node larger */
830
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
831
	used -= tn_info(tn)->empty_children;
832

833 834 835 836 837
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

838
static inline bool should_collapse(struct key_vector *tn)
839
{
840
	unsigned long used = child_length(tn);
841

842
	used -= tn_info(tn)->empty_children;
843 844

	/* account for bits == KEYLENGTH case */
845
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
846 847 848 849
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
850 851
}

852
#define MAX_WORK 10
853
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
854
{
855 856 857
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
858
	struct key_vector *tp = node_parent(tn);
859
	unsigned long cindex = get_index(tn->key, tp);
860
	int max_work = MAX_WORK;
861 862 863 864

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

865 866 867 868
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
869
	BUG_ON(tn != get_child(tp, cindex));
870

871 872
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
873
	 */
874
	while (should_inflate(tp, tn) && max_work) {
875 876
		tp = inflate(t, tn);
		if (!tp) {
877
#ifdef CONFIG_IP_FIB_TRIE_STATS
878
			this_cpu_inc(stats->resize_node_skipped);
879 880 881
#endif
			break;
		}
882

883
		max_work--;
884
		tn = get_child(tp, cindex);
885 886
	}

887 888 889
	/* update parent in case inflate failed */
	tp = node_parent(tn);

890 891
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
892
		return tp;
893

894
	/* Halve as long as the number of empty children in this
895 896
	 * node is above threshold.
	 */
897
	while (should_halve(tp, tn) && max_work) {
898 899
		tp = halve(t, tn);
		if (!tp) {
900
#ifdef CONFIG_IP_FIB_TRIE_STATS
901
			this_cpu_inc(stats->resize_node_skipped);
902 903 904 905
#endif
			break;
		}

906
		max_work--;
907
		tn = get_child(tp, cindex);
908
	}
909 910

	/* Only one child remains */
911 912 913
	if (should_collapse(tn))
		return collapse(t, tn);

914
	/* update parent in case halve failed */
915
	return node_parent(tn);
916 917
}

918
static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
919
{
920 921 922 923 924
	unsigned char node_slen = tn->slen;

	while ((node_slen > tn->pos) && (node_slen > slen)) {
		slen = update_suffix(tn);
		if (node_slen == slen)
925
			break;
926 927 928

		tn = node_parent(tn);
		node_slen = tn->slen;
929 930 931
	}
}

932
static void node_push_suffix(struct key_vector *tn, unsigned char slen)
933
{
934 935
	while (tn->slen < slen) {
		tn->slen = slen;
936 937 938 939
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
940
/* rcu_read_lock needs to be hold by caller from readside */
941 942
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
943
{
944 945 946 947 948 949 950 951 952
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
953

954
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
955 956 957 958 959 960

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
961
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
962
		 *     we have a mismatch in skip bits and failed
963 964
		 *   else
		 *     we know the value is cindex
965 966 967 968
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
969
		 */
970 971 972 973
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
974

975 976
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
977

978
	*tp = pn;
979

A
Alexander Duyck 已提交
980
	return n;
981 982
}

983 984 985
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
986
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
987
					u8 tos, u32 prio, u32 tb_id)
988 989 990 991 992 993
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

994
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
995 996 997 998
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
999 1000 1001 1002
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
1003 1004 1005 1006 1007 1008 1009 1010 1011
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

1012
static void trie_rebalance(struct trie *t, struct key_vector *tn)
1013
{
1014 1015
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
1016 1017
}

1018
static int fib_insert_node(struct trie *t, struct key_vector *tp,
1019
			   struct fib_alias *new, t_key key)
1020
{
1021
	struct key_vector *n, *l;
1022

1023
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
1024
	if (!l)
1025
		goto noleaf;
1026 1027

	/* retrieve child from parent node */
1028
	n = get_child(tp, get_index(key, tp));
1029

1030 1031 1032 1033 1034 1035 1036
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1037
		struct key_vector *tn;
1038

1039
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1040 1041
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1042

1043 1044 1045
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1046

1047
		/* start adding routes into the node */
1048
		put_child_root(tp, key, tn);
1049
		node_set_parent(n, tn);
1050

1051
		/* parent now has a NULL spot where the leaf can go */
1052
		tp = tn;
1053
	}
O
Olof Johansson 已提交
1054

1055
	/* Case 3: n is NULL, and will just insert a new leaf */
1056
	node_push_suffix(tp, new->fa_slen);
1057
	NODE_INIT_PARENT(l, tp);
1058
	put_child_root(tp, key, l);
1059 1060 1061
	trie_rebalance(t, tp);

	return 0;
1062 1063 1064 1065
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1066 1067
}

1068 1069 1070
/* fib notifier for ADD is sent before calling fib_insert_alias with
 * the expectation that the only possible failure ENOMEM
 */
1071 1072
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1073 1074 1075 1076 1077 1078 1079
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1080
	} else {
1081 1082 1083 1084 1085
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1086 1087 1088
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1089 1090 1091 1092 1093 1094 1095
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1096
	}
R
Robert Olsson 已提交
1097

1098 1099 1100
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
1101
		node_push_suffix(tp, new->fa_slen);
1102 1103 1104
	}

	return 0;
1105 1106
}

1107
static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1108
{
1109 1110
	if (plen > KEYLENGTH) {
		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1111
		return false;
1112
	}
1113

1114 1115 1116
	if ((plen < KEYLENGTH) && (key << plen)) {
		NL_SET_ERR_MSG(extack,
			       "Invalid prefix for given prefix length");
1117
		return false;
1118
	}
1119 1120 1121 1122

	return true;
}

1123
/* Caller must hold RTNL. */
1124
int fib_table_insert(struct net *net, struct fib_table *tb,
1125
		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1126
{
1127
	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1128
	struct trie *t = (struct trie *)tb->tb_data;
1129
	struct fib_alias *fa, *new_fa;
1130
	struct key_vector *l, *tp;
1131
	u16 nlflags = NLM_F_EXCL;
1132
	struct fib_info *fi;
A
Alexander Duyck 已提交
1133 1134
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1135
	u8 tos = cfg->fc_tos;
1136
	u32 key;
1137 1138
	int err;

1139
	key = ntohl(cfg->fc_dst);
1140

1141
	if (!fib_valid_key_len(key, plen, extack))
1142 1143
		return -EINVAL;

1144 1145
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);

1146
	fi = fib_create_info(cfg, extack);
1147 1148
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1149
		goto err;
1150
	}
1151

1152
	l = fib_find_node(t, &tp, key);
1153 1154
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1155 1156 1157 1158 1159 1160

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1161 1162
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1163 1164
	 */

1165 1166 1167
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1168 1169

		err = -EEXIST;
1170
		if (cfg->fc_nlflags & NLM_F_EXCL)
1171 1172
			goto out;

1173 1174
		nlflags &= ~NLM_F_EXCL;

1175 1176 1177 1178 1179 1180 1181
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1182
		hlist_for_each_entry_from(fa, fa_list) {
1183 1184 1185
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1196
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1197 1198 1199
			struct fib_info *fi_drop;
			u8 state;

1200
			nlflags |= NLM_F_REPLACE;
1201 1202 1203 1204
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1205
				goto out;
1206
			}
R
Robert Olsson 已提交
1207
			err = -ENOBUFS;
1208
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1209
			if (!new_fa)
R
Robert Olsson 已提交
1210
				goto out;
1211 1212

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1213 1214
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1215
			new_fa->fa_type = cfg->fc_type;
1216
			state = fa->fa_state;
1217
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1218
			new_fa->fa_slen = fa->fa_slen;
1219
			new_fa->tb_id = tb->tb_id;
1220
			new_fa->fa_default = -1;
1221

1222 1223 1224 1225 1226 1227 1228
			err = call_fib_entry_notifiers(net,
						       FIB_EVENT_ENTRY_REPLACE,
						       key, plen, new_fa,
						       extack);
			if (err)
				goto out_free_new_fa;

1229 1230 1231
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				  tb->tb_id, &cfg->fc_nlinfo, nlflags);

1232
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1233

R
Robert Olsson 已提交
1234
			alias_free_mem_rcu(fa);
1235 1236 1237

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1238
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1239

O
Olof Johansson 已提交
1240
			goto succeeded;
1241 1242 1243 1244 1245
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1246 1247
		if (fa_match)
			goto out;
1248

1249 1250
		if (cfg->fc_nlflags & NLM_F_APPEND) {
			event = FIB_EVENT_ENTRY_APPEND;
1251
			nlflags |= NLM_F_APPEND;
1252
		} else {
1253
			fa = fa_first;
1254
		}
1255 1256
	}
	err = -ENOENT;
1257
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1258 1259
		goto out;

1260
	nlflags |= NLM_F_CREATE;
1261
	err = -ENOBUFS;
1262
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1263
	if (!new_fa)
1264 1265 1266 1267
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1268
	new_fa->fa_type = cfg->fc_type;
1269
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1270
	new_fa->fa_slen = slen;
1271
	new_fa->tb_id = tb->tb_id;
1272
	new_fa->fa_default = -1;
1273

1274 1275 1276 1277
	err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
	if (err)
		goto out_free_new_fa;

1278
	/* Insert new entry to the list. */
1279 1280
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1281
		goto out_fib_notif;
1282

1283 1284 1285
	if (!plen)
		tb->tb_num_default++;

1286
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1287
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1288
		  &cfg->fc_nlinfo, nlflags);
1289 1290
succeeded:
	return 0;
1291

1292 1293 1294 1295 1296 1297 1298 1299
out_fib_notif:
	/* notifier was sent that entry would be added to trie, but
	 * the add failed and need to recover. Only failure for
	 * fib_insert_alias is ENOMEM.
	 */
	NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
				 plen, new_fa, NULL);
1300 1301
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1302 1303
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1304
err:
1305 1306 1307
	return err;
}

1308
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1309 1310 1311 1312 1313 1314
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1315
/* should be called with rcu_read_lock */
1316
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1317
		     struct fib_result *res, int fib_flags)
1318
{
1319
	struct trie *t = (struct trie *) tb->tb_data;
1320 1321 1322
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1323
	const t_key key = ntohl(flp->daddr);
1324
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1325
	struct fib_alias *fa;
1326
	unsigned long index;
1327
	t_key cindex;
O
Olof Johansson 已提交
1328

1329 1330 1331 1332
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1333 1334
	if (!n) {
		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1335
		return -EAGAIN;
1336
	}
1337 1338

#ifdef CONFIG_IP_FIB_TRIE_STATS
1339
	this_cpu_inc(stats->gets);
1340 1341
#endif

1342 1343
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1344
		index = get_cindex(key, n);
1345 1346 1347 1348 1349 1350

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1351
		 *   if (index >= (1ul << bits))
1352
		 *     we have a mismatch in skip bits and failed
1353 1354
		 *   else
		 *     we know the value is cindex
1355 1356 1357 1358
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1359
		 */
1360
		if (index >= (1ul << n->bits))
1361
			break;
1362

1363 1364
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1365
			goto found;
1366

1367 1368
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1369
		 */
1370
		if (n->slen > n->pos) {
1371 1372
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1373
		}
1374

1375
		n = get_child_rcu(n, index);
1376 1377 1378
		if (unlikely(!n))
			goto backtrace;
	}
1379

1380 1381 1382
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1383
		struct key_vector __rcu **cptr = n->tnode;
1384

1385 1386 1387
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1388
		 */
1389
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1390
			goto backtrace;
O
Olof Johansson 已提交
1391

1392 1393 1394
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1395

1396 1397 1398
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1399 1400
		 */

1401
		while ((n = rcu_dereference(*cptr)) == NULL) {
1402 1403
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1404 1405
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1406
#endif
1407 1408 1409 1410 1411 1412 1413 1414
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1415 1416 1417 1418
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
1419 1420 1421
				if (IS_TRIE(pn)) {
					trace_fib_table_lookup(tb->tb_id, flp,
							       NULL, -EAGAIN);
1422
					return -EAGAIN;
1423
				}
1424 1425 1426 1427
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1428
				pn = node_parent_rcu(pn);
1429 1430 1431 1432 1433 1434 1435
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1436
			cptr = &pn->tnode[cindex];
1437
		}
1438
	}
1439

1440
found:
1441 1442 1443
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1444
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1445 1446 1447
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1448

1449 1450 1451 1452
		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
			if (index >= (1ul << fa->fa_slen))
				continue;
		}
A
Alexander Duyck 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1462
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1463
			this_cpu_inc(stats->semantic_match_passed);
1464
#endif
1465
			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
A
Alexander Duyck 已提交
1466 1467 1468 1469 1470 1471
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1472
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1473 1474 1475

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1476 1477 1478 1479 1480
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
1481
			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1482 1483 1484 1485
				if (flp->flowi4_oif &&
				    flp->flowi4_oif != nh->nh_oif)
					continue;
			}
A
Alexander Duyck 已提交
1486 1487

			if (!(fib_flags & FIB_LOOKUP_NOREF))
1488
				refcount_inc(&fi->fib_clntref);
A
Alexander Duyck 已提交
1489

1490
			res->prefix = htonl(n->key);
A
Alexander Duyck 已提交
1491 1492 1493 1494 1495 1496 1497
			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1498
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1499
			this_cpu_inc(stats->semantic_match_passed);
1500
#endif
1501
			trace_fib_table_lookup(tb->tb_id, flp, nh, err);
D
David Ahern 已提交
1502

A
Alexander Duyck 已提交
1503
			return err;
1504
		}
1505
	}
1506
#ifdef CONFIG_IP_FIB_TRIE_STATS
1507
	this_cpu_inc(stats->semantic_match_miss);
1508 1509
#endif
	goto backtrace;
1510
}
1511
EXPORT_SYMBOL_GPL(fib_table_lookup);
1512

1513 1514
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1527 1528
		if (tp->slen == l->slen)
			node_pull_suffix(tp, tp->pos);
1529
		put_child_root(tp, l->key, NULL);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
1541
	node_pull_suffix(tp, fa->fa_slen);
1542 1543 1544
}

/* Caller must hold RTNL. */
1545
int fib_table_delete(struct net *net, struct fib_table *tb,
1546
		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1547 1548 1549
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1550
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1551 1552
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1553 1554
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1555

1556
	key = ntohl(cfg->fc_dst);
1557

1558
	if (!fib_valid_key_len(key, plen, extack))
1559 1560
		return -EINVAL;

1561
	l = fib_find_node(t, &tp, key);
1562
	if (!l)
1563 1564
		return -ESRCH;

1565
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1566 1567 1568
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1569
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1570 1571

	fa_to_delete = NULL;
1572
	hlist_for_each_entry_from(fa, fa_list) {
1573 1574
		struct fib_info *fi = fa->fa_info;

1575 1576 1577
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1578 1579
			break;

1580 1581
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1582
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1583 1584
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1585 1586
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
1587 1588
		    fib_nh_match(cfg, fi, extack) == 0 &&
		    fib_metrics_match(cfg, fi)) {
1589 1590 1591 1592 1593
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1594 1595
	if (!fa_to_delete)
		return -ESRCH;
1596

1597
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
D
David Ahern 已提交
1598
				 fa_to_delete, extack);
1599
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1600
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1601

1602 1603 1604
	if (!plen)
		tb->tb_num_default--;

1605
	fib_remove_alias(t, tp, l, fa_to_delete);
1606

1607
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1608
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1609

1610 1611
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1612
	return 0;
1613 1614
}

1615
/* Scan for the next leaf starting at the provided key value */
1616
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1617
{
1618
	struct key_vector *pn, *n = *tn;
1619
	unsigned long cindex;
1620

1621
	/* this loop is meant to try and find the key in the trie */
1622
	do {
1623 1624
		/* record parent and next child index */
		pn = n;
1625
		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1626 1627 1628

		if (cindex >> pn->bits)
			break;
1629

1630
		/* descend into the next child */
1631
		n = get_child_rcu(pn, cindex++);
1632 1633 1634 1635 1636 1637 1638
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1639

1640
	/* this loop will search for the next leaf with a greater key */
1641
	while (!IS_TRIE(pn)) {
1642 1643 1644
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1645

1646 1647 1648 1649
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1650

1651
		/* grab the next available node */
1652
		n = get_child_rcu(pn, cindex++);
1653 1654
		if (!n)
			continue;
1655

1656 1657 1658
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1659

1660 1661 1662 1663
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1664

1665 1666 1667 1668
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1669
	*tn = pn;
1670
	return n;
1671 1672
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1770 1771
					     NULL, l->key)) {
				kmem_cache_free(fn_alias_kmem, new_fa);
1772
				goto out;
1773
			}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;

1810 1811 1812 1813
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;
		}

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
	}
}

1858
/* Caller must hold RTNL. */
1859
int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1860
{
1861
	struct trie *t = (struct trie *)tb->tb_data;
1862 1863
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1864 1865
	struct hlist_node *tmp;
	struct fib_alias *fa;
1866
	int found = 0;
1867

1868 1869 1870 1871
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1872

1873 1874
		if (!(cindex--)) {
			t_key pkey = pn->key;
1875

1876 1877 1878
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1879

1880 1881 1882 1883
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1884 1885 1886
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1887

1888 1889
			continue;
		}
1890

1891 1892 1893 1894
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1895

1896 1897 1898 1899
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1900

1901 1902
			continue;
		}
1903

1904 1905
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
			if (!fi || tb->tb_id != fa->tb_id ||
			    (!(fi->fib_flags & RTNH_F_DEAD) &&
			     !fib_props[fa->fa_type].error)) {
				slen = fa->fa_slen;
				continue;
			}

			/* Do not flush error routes if network namespace is
			 * not being dismantled
			 */
			if (!flush_all && fib_props[fa->fa_type].error) {
1918 1919 1920
				slen = fa->fa_slen;
				continue;
			}
1921

1922 1923
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
						 n->key,
D
David Ahern 已提交
1924 1925
						 KEYLENGTH - fa->fa_slen, fa,
						 NULL);
1926 1927 1928 1929
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1930 1931
		}

1932 1933
		/* update leaf slen */
		n->slen = slen;
1934

1935 1936 1937 1938
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1939
	}
1940

S
Stephen Hemminger 已提交
1941
	pr_debug("trie_flush found=%d\n", found);
1942 1943 1944
	return found;
}

1945
static void fib_leaf_notify(struct net *net, struct key_vector *l,
1946
			    struct fib_table *tb, struct notifier_block *nb)
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
{
	struct fib_alias *fa;

	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (!fi)
			continue;

		/* local and main table can share the same trie,
		 * so don't notify twice for the same entry.
		 */
		if (tb->tb_id != fa->tb_id)
			continue;

1962
		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1963
					KEYLENGTH - fa->fa_slen, fa);
1964 1965 1966 1967
	}
}

static void fib_table_notify(struct net *net, struct fib_table *tb,
1968
			     struct notifier_block *nb)
1969 1970 1971 1972 1973 1974
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *l, *tp = t->kv;
	t_key key = 0;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1975
		fib_leaf_notify(net, l, tb, nb);
1976 1977 1978 1979 1980 1981 1982 1983

		key = l->key + 1;
		/* stop in case of wrap around */
		if (key < l->key)
			break;
	}
}

1984
void fib_notify(struct net *net, struct notifier_block *nb)
1985 1986 1987 1988 1989 1990 1991 1992
{
	unsigned int h;

	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1993
			fib_table_notify(net, tb, nb);
1994 1995 1996
	}
}

1997
static void __trie_free_rcu(struct rcu_head *head)
1998
{
1999
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2000 2001 2002
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

2003 2004
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
2005
#endif /* CONFIG_IP_FIB_TRIE_STATS */
2006 2007 2008
	kfree(tb);
}

2009 2010 2011 2012 2013
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

2014
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2015 2016
			     struct sk_buff *skb, struct netlink_callback *cb,
			     struct fib_dump_filter *filter)
2017
{
2018
	unsigned int flags = NLM_F_MULTI;
A
Alexander Duyck 已提交
2019
	__be32 xkey = htonl(l->key);
2020
	struct fib_alias *fa;
A
Alexander Duyck 已提交
2021
	int i, s_i;
2022

2023 2024 2025
	if (filter->filter_set)
		flags |= NLM_F_DUMP_FILTERED;

A
Alexander Duyck 已提交
2026
	s_i = cb->args[4];
2027 2028
	i = 0;

R
Robert Olsson 已提交
2029
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
2030
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2031 2032
		int err;

2033 2034
		if (i < s_i)
			goto next;
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		if (tb->tb_id != fa->tb_id)
			goto next;

		if (filter->filter_set) {
			if (filter->rt_type && fa->fa_type != filter->rt_type)
				goto next;

			if ((filter->protocol &&
			     fa->fa_info->fib_protocol != filter->protocol))
				goto next;

			if (filter->dev &&
			    !fib_info_nh_uses_dev(fa->fa_info, filter->dev))
				goto next;
2050 2051
		}

2052 2053 2054 2055
		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
				    tb->tb_id, fa->fa_type,
				    xkey, KEYLENGTH - fa->fa_slen,
2056
				    fa->fa_tos, fa->fa_info, flags);
2057
		if (err < 0) {
2058
			cb->args[4] = i;
2059
			return err;
2060
		}
2061
next:
2062
		i++;
2063
	}
2064

2065
	cb->args[4] = i;
2066 2067 2068
	return skb->len;
}

2069
/* rcu_read_lock needs to be hold by caller from readside */
2070
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2071
		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2072
{
2073
	struct trie *t = (struct trie *)tb->tb_data;
2074
	struct key_vector *l, *tp = t->kv;
2075 2076 2077
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
2078 2079
	int count = cb->args[2];
	t_key key = cb->args[3];
2080

2081
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2082 2083
		int err;

2084
		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2085
		if (err < 0) {
2086 2087
			cb->args[3] = key;
			cb->args[2] = count;
2088
			return err;
2089
		}
2090

2091
		++count;
2092 2093
		key = l->key + 1;

2094 2095
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2096 2097 2098 2099

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
2100
	}
2101 2102 2103 2104

	cb->args[3] = key;
	cb->args[2] = count;

2105 2106 2107
	return skb->len;
}

2108
void __init fib_trie_init(void)
2109
{
2110 2111
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
2112 2113 2114
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2115
					   LEAF_SIZE,
2116
					   0, SLAB_PANIC, NULL);
2117
}
2118

2119
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2120 2121 2122
{
	struct fib_table *tb;
	struct trie *t;
2123 2124 2125 2126
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
2127

2128
	tb = kzalloc(sz, GFP_KERNEL);
2129
	if (!tb)
2130 2131 2132
		return NULL;

	tb->tb_id = id;
2133
	tb->tb_num_default = 0;
2134 2135 2136 2137
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
2138 2139

	t = (struct trie *) tb->tb_data;
2140 2141
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2142 2143 2144 2145 2146 2147 2148
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2149 2150 2151 2152

	return tb;
}

2153 2154 2155
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2156
	struct seq_net_private p;
2157
	struct fib_table *tb;
2158
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2159 2160
	unsigned int index;
	unsigned int depth;
2161
};
2162

2163
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2164
{
2165
	unsigned long cindex = iter->index;
2166 2167
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2168

2169 2170
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2171

2172 2173 2174 2175 2176 2177 2178
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2179
			if (IS_LEAF(n)) {
2180 2181
				iter->tnode = pn;
				iter->index = cindex;
2182 2183
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2184
				iter->tnode = n;
2185 2186 2187
				iter->index = 0;
				++iter->depth;
			}
2188

2189 2190
			return n;
		}
2191

2192 2193 2194 2195
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2196
		--iter->depth;
2197
	}
2198

2199 2200 2201 2202
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2203
	return NULL;
2204 2205
}

2206 2207
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2208
{
2209
	struct key_vector *n, *pn;
2210

S
Stephen Hemminger 已提交
2211
	if (!t)
2212 2213
		return NULL;

2214
	pn = t->kv;
2215
	n = rcu_dereference(pn->tnode[0]);
2216
	if (!n)
2217
		return NULL;
2218

2219
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2220
		iter->tnode = n;
2221 2222 2223
		iter->index = 0;
		iter->depth = 1;
	} else {
2224
		iter->tnode = pn;
2225 2226
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2227
	}
2228 2229

	return n;
2230
}
O
Olof Johansson 已提交
2231

2232 2233
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2234
	struct key_vector *n;
2235
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2236

2237
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2238

2239
	rcu_read_lock();
2240
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2241
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2242
			struct fib_alias *fa;
2243

2244 2245 2246 2247
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2248

A
Alexander Duyck 已提交
2249
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2250
				++s->prefixes;
2251 2252
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2253 2254
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2255
			s->nullpointers += tn_info(n)->empty_children;
2256 2257
		}
	}
R
Robert Olsson 已提交
2258
	rcu_read_unlock();
2259 2260
}

2261 2262 2263 2264
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2265
{
E
Eric Dumazet 已提交
2266
	unsigned int i, max, pointers, bytes, avdepth;
2267

2268 2269 2270 2271
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2272

2273 2274
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2275
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2276

2277
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2278
	bytes = LEAF_SIZE * stat->leaves;
2279 2280

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2281
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2282

2283
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2284
	bytes += TNODE_SIZE(0) * stat->tnodes;
2285

R
Robert Olsson 已提交
2286 2287
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2288
		max--;
2289

2290
	pointers = 0;
2291
	for (i = 1; i < max; i++)
2292
		if (stat->nodesizes[i] != 0) {
2293
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2294 2295 2296
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2297
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2298

2299
	bytes += sizeof(struct key_vector *) * pointers;
2300 2301
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2302
}
R
Robert Olsson 已提交
2303

2304
#ifdef CONFIG_IP_FIB_TRIE_STATS
2305
static void trie_show_usage(struct seq_file *seq,
2306
			    const struct trie_use_stats __percpu *stats)
2307
{
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2323
	seq_printf(seq, "\nCounters:\n---------\n");
2324 2325
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2326
	seq_printf(seq, "semantic match passed = %u\n",
2327 2328 2329 2330
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2331
}
2332 2333
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2334
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2335
{
2336 2337 2338 2339 2340 2341
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2342
}
2343

2344

2345 2346
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2347
	struct net *net = (struct net *)seq->private;
2348
	unsigned int h;
2349

2350
	seq_printf(seq,
2351
		   "Basic info: size of leaf:"
2352
		   " %zd bytes, size of tnode: %zd bytes.\n",
2353
		   LEAF_SIZE, TNODE_SIZE(0));
2354

2355 2356 2357 2358
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2359
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2360 2361
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2362

2363 2364 2365 2366 2367 2368 2369 2370
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2371
			trie_show_usage(seq, t->stats);
2372 2373 2374
#endif
		}
	}
2375

2376
	return 0;
2377 2378
}

2379
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2380
{
2381 2382
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2383
	loff_t idx = 0;
2384
	unsigned int h;
2385

2386 2387 2388
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2389

2390
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2391
			struct key_vector *n;
2392 2393 2394 2395 2396 2397 2398 2399 2400

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2401
	}
2402

2403 2404 2405
	return NULL;
}

2406
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2407
	__acquires(RCU)
2408
{
2409
	rcu_read_lock();
2410
	return fib_trie_get_idx(seq, *pos);
2411 2412
}

2413
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2414
{
2415
	struct fib_trie_iter *iter = seq->private;
2416
	struct net *net = seq_file_net(seq);
2417 2418 2419
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2420
	struct key_vector *n;
2421

2422
	++*pos;
2423 2424 2425 2426
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2427

2428 2429
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2430
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2431 2432 2433 2434 2435
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2436

2437 2438 2439
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2440
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2441 2442 2443 2444 2445
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2446
	return NULL;
2447 2448 2449 2450

found:
	iter->tb = tb;
	return n;
2451
}
2452

2453
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2454
	__releases(RCU)
2455
{
2456 2457
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2458

2459 2460
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2461 2462
	while (n-- > 0)
		seq_puts(seq, "   ");
2463
}
2464

2465
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2466
{
S
Stephen Hemminger 已提交
2467
	switch (s) {
2468 2469 2470 2471 2472 2473
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2474
		snprintf(buf, len, "scope=%d", s);
2475 2476 2477
		return buf;
	}
}
2478

2479
static const char *const rtn_type_names[__RTN_MAX] = {
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2493

E
Eric Dumazet 已提交
2494
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2495 2496 2497
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2498
	snprintf(buf, len, "type %u", t);
2499
	return buf;
2500 2501
}

2502 2503
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2504
{
2505
	const struct fib_trie_iter *iter = seq->private;
2506
	struct key_vector *n = v;
2507

2508
	if (IS_TRIE(node_parent_rcu(n)))
2509
		fib_table_print(seq, iter->tb);
2510

2511
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2512
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2513

2514 2515 2516
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2517 2518
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2519
	} else {
A
Alexander Duyck 已提交
2520
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2521
		struct fib_alias *fa;
2522 2523

		seq_indent(seq, iter->depth);
2524
		seq_printf(seq, "  |-- %pI4\n", &val);
2525

A
Alexander Duyck 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2539
		}
2540
	}
2541

2542 2543 2544
	return 0;
}

2545
static const struct seq_operations fib_trie_seq_ops = {
2546 2547 2548 2549
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2550 2551
};

2552 2553
struct fib_route_iter {
	struct seq_net_private p;
2554
	struct fib_table *main_tb;
2555
	struct key_vector *tnode;
2556 2557 2558 2559
	loff_t	pos;
	t_key	key;
};

2560 2561
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2562
{
2563
	struct key_vector *l, **tp = &iter->tnode;
2564
	t_key key;
2565

2566
	/* use cached location of previously found key */
2567 2568 2569
	if (iter->pos > 0 && pos >= iter->pos) {
		key = iter->key;
	} else {
2570
		iter->pos = 1;
2571
		key = 0;
2572 2573
	}

2574 2575 2576
	pos -= iter->pos;

	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2577
		key = l->key + 1;
2578
		iter->pos++;
2579 2580 2581 2582 2583
		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2584 2585 2586
	}

	if (l)
2587
		iter->key = l->key;	/* remember it */
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2599
	struct trie *t;
2600 2601

	rcu_read_lock();
2602

2603
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2604 2605 2606
	if (!tb)
		return NULL;

2607
	iter->main_tb = tb;
2608 2609
	t = (struct trie *)tb->tb_data;
	iter->tnode = t->kv;
2610 2611 2612 2613 2614

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	iter->pos = 0;
2615
	iter->key = KEY_MAX;
2616 2617

	return SEQ_START_TOKEN;
2618 2619 2620 2621 2622
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2623
	struct key_vector *l = NULL;
2624
	t_key key = iter->key + 1;
2625 2626

	++*pos;
2627 2628 2629 2630 2631 2632

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
2633
		iter->key = l->key;
2634
		iter->pos++;
2635 2636
	} else {
		iter->pos = 0;
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2648
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2649
{
E
Eric Dumazet 已提交
2650
	unsigned int flags = 0;
2651

E
Eric Dumazet 已提交
2652 2653
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2654 2655
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2656
	if (mask == htonl(0xFFFFFFFF))
2657 2658 2659
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2660 2661
}

2662 2663 2664
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2665
 *	and needs to be same as fib_hash output to avoid breaking
2666 2667 2668
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2669
{
2670 2671
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2672
	struct fib_alias *fa;
2673
	struct key_vector *l = v;
2674
	__be32 prefix;
2675

2676 2677 2678 2679 2680 2681
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2682

2683 2684
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2685 2686 2687 2688
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2689

A
Alexander Duyck 已提交
2690 2691 2692
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2693

2694 2695 2696
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2718

A
Alexander Duyck 已提交
2719
		seq_pad(seq, '\n');
2720 2721 2722 2723 2724
	}

	return 0;
}

2725
static const struct seq_operations fib_route_seq_ops = {
2726 2727 2728
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2729
	.show   = fib_route_seq_show,
2730 2731
};

2732
int __net_init fib_proc_init(struct net *net)
2733
{
2734 2735
	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
			sizeof(struct fib_trie_iter)))
2736 2737
		goto out1;

2738 2739
	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
			fib_triestat_seq_show, NULL))
2740 2741
		goto out2;

2742 2743
	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
			sizeof(struct fib_route_iter)))
2744 2745
		goto out3;

2746
	return 0;
2747 2748

out3:
2749
	remove_proc_entry("fib_triestat", net->proc_net);
2750
out2:
2751
	remove_proc_entry("fib_trie", net->proc_net);
2752 2753
out1:
	return -ENOMEM;
2754 2755
}

2756
void __net_exit fib_proc_exit(struct net *net)
2757
{
2758 2759 2760
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2761 2762 2763
}

#endif /* CONFIG_PROC_FS */