fib_trie.c 57.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
#include "fib_lookup.h"

R
Robert Olsson 已提交
84
#define MAX_STAT_DEPTH 32
85

86 87
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
88 89 90

typedef unsigned int t_key;

91 92
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
93

94
#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
95

96
struct tnode {
97 98 99 100 101 102
	struct rcu_head rcu;

	t_key empty_children; /* KEYLENGTH bits needed */
	t_key full_children;  /* KEYLENGTH bits needed */
	struct tnode __rcu *parent;

103 104
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
105
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
106
	unsigned char slen;
A
Alexander Duyck 已提交
107
	union {
108
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
109
		struct hlist_head leaf;
110 111
		/* This array is valid if (pos | bits) > 0 (TNODE) */
		struct tnode __rcu *tnode[0];
A
Alexander Duyck 已提交
112
	};
113 114
};

115 116 117
#define TNODE_SIZE(n)	offsetof(struct tnode, tnode[n])
#define LEAF_SIZE	TNODE_SIZE(1)

118 119 120 121 122 123 124
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
125
	unsigned int resize_node_skipped;
126 127 128 129 130 131 132 133 134
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
135
	unsigned int prefixes;
R
Robert Olsson 已提交
136
	unsigned int nodesizes[MAX_STAT_DEPTH];
137
};
138 139

struct trie {
A
Alexander Duyck 已提交
140
	struct tnode __rcu *trie;
141
#ifdef CONFIG_IP_FIB_TRIE_STATS
142
	struct trie_use_stats __percpu *stats;
143 144 145
#endif
};

146
static void resize(struct trie *t, struct tnode *tn);
147 148 149 150 151 152 153 154
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
155

156
static struct kmem_cache *fn_alias_kmem __read_mostly;
157
static struct kmem_cache *trie_leaf_kmem __read_mostly;
158

159 160
/* caller must hold RTNL */
#define node_parent(n) rtnl_dereference((n)->parent)
E
Eric Dumazet 已提交
161

162 163
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
E
Eric Dumazet 已提交
164

165
/* wrapper for rcu_assign_pointer */
A
Alexander Duyck 已提交
166
static inline void node_set_parent(struct tnode *n, struct tnode *tp)
167
{
A
Alexander Duyck 已提交
168 169
	if (n)
		rcu_assign_pointer(n->parent, tp);
S
Stephen Hemminger 已提交
170 171
}

172 173 174 175
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
176
 */
177
static inline unsigned long tnode_child_length(const struct tnode *tn)
S
Stephen Hemminger 已提交
178
{
179
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
180
}
R
Robert Olsson 已提交
181

182 183 184
/* caller must hold RTNL */
static inline struct tnode *tnode_get_child(const struct tnode *tn,
					    unsigned long i)
185
{
186
	return rtnl_dereference(tn->tnode[i]);
187 188
}

189 190 191
/* caller must hold RCU read lock or RTNL */
static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
						unsigned long i)
192
{
193
	return rcu_dereference_rtnl(tn->tnode[i]);
194 195
}

196 197 198 199 200 201 202
static inline struct fib_table *trie_get_table(struct trie *t)
{
	unsigned long *tb_data = (unsigned long *)t;

	return container_of(tb_data, struct fib_table, tb_data[0]);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
261

262 263
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
264
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
265
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
266 267

static void __alias_free_mem(struct rcu_head *head)
268
{
R
Robert Olsson 已提交
269 270
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
271 272
}

R
Robert Olsson 已提交
273
static inline void alias_free_mem_rcu(struct fib_alias *fa)
274
{
R
Robert Olsson 已提交
275 276
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
277

278
#define TNODE_KMALLOC_MAX \
279
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct tnode *))
O
Olof Johansson 已提交
280

281
static void __node_free_rcu(struct rcu_head *head)
282
{
A
Alexander Duyck 已提交
283
	struct tnode *n = container_of(head, struct tnode, rcu);
284 285 286 287 288 289 290

	if (IS_LEAF(n))
		kmem_cache_free(trie_leaf_kmem, n);
	else if (n->bits <= TNODE_KMALLOC_MAX)
		kfree(n);
	else
		vfree(n);
291 292
}

293 294
#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)

295
static struct tnode *tnode_alloc(size_t size)
296
{
R
Robert Olsson 已提交
297
	if (size <= PAGE_SIZE)
298
		return kzalloc(size, GFP_KERNEL);
299
	else
300
		return vzalloc(size);
301
}
R
Robert Olsson 已提交
302

303 304 305 306 307 308 309 310 311 312
static inline void empty_child_inc(struct tnode *n)
{
	++n->empty_children ? : ++n->full_children;
}

static inline void empty_child_dec(struct tnode *n)
{
	n->empty_children-- ? : n->full_children--;
}

313
static struct tnode *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
314
{
A
Alexander Duyck 已提交
315
	struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
316
	if (l) {
317 318 319 320 321 322
		l->parent = NULL;
		/* set key and pos to reflect full key value
		 * any trailing zeros in the key should be ignored
		 * as the nodes are searched
		 */
		l->key = key;
323
		l->slen = fa->fa_slen;
324
		l->pos = 0;
325 326 327
		/* set bits to 0 indicating we are not a tnode */
		l->bits = 0;

328
		/* link leaf to fib alias */
A
Alexander Duyck 已提交
329
		INIT_HLIST_HEAD(&l->leaf);
330
		hlist_add_head(&fa->fa_list, &l->leaf);
R
Robert Olsson 已提交
331 332 333 334
	}
	return l;
}

335
static struct tnode *tnode_new(t_key key, int pos, int bits)
336
{
337
	size_t sz = TNODE_SIZE(1ul << bits);
338
	struct tnode *tn = tnode_alloc(sz);
339 340 341 342
	unsigned int shift = pos + bits;

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
343

O
Olof Johansson 已提交
344
	if (tn) {
345
		tn->parent = NULL;
346
		tn->slen = pos;
347 348
		tn->pos = pos;
		tn->bits = bits;
349
		tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
350 351 352 353
		if (bits == KEYLENGTH)
			tn->full_children = 1;
		else
			tn->empty_children = 1ul << bits;
354
	}
355

356
	pr_debug("AT %p s=%zu %zu\n", tn, TNODE_SIZE(0),
A
Alexander Duyck 已提交
357
		 sizeof(struct tnode *) << bits);
358 359 360
	return tn;
}

361
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
362 363
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
A
Alexander Duyck 已提交
364
static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
365
{
366
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
367 368
}

369 370 371 372
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
373
{
374
	struct tnode *chi = tnode_get_child(tn, i);
375
	int isfull, wasfull;
376

377
	BUG_ON(i >= tnode_child_length(tn));
S
Stephen Hemminger 已提交
378

379
	/* update emptyChildren, overflow into fullChildren */
380
	if (n == NULL && chi != NULL)
381 382 383
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
384

385
	/* update fullChildren */
386
	wasfull = tnode_full(tn, chi);
387
	isfull = tnode_full(tn, n);
388

389
	if (wasfull && !isfull)
390
		tn->full_children--;
391
	else if (!wasfull && isfull)
392
		tn->full_children++;
O
Olof Johansson 已提交
393

394 395 396
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

397
	rcu_assign_pointer(tn->tnode[i], n);
398 399
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
static void update_children(struct tnode *tn)
{
	unsigned long i;

	/* update all of the child parent pointers */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

static inline void put_child_root(struct tnode *tp, struct trie *t,
				  t_key key, struct tnode *n)
424 425 426 427 428 429 430
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
		rcu_assign_pointer(t->trie, n);
}

431
static inline void tnode_free_init(struct tnode *tn)
E
Eric Dumazet 已提交
432
{
433 434 435 436 437 438 439 440
	tn->rcu.next = NULL;
}

static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
{
	n->rcu.next = tn->rcu.next;
	tn->rcu.next = &n->rcu;
}
E
Eric Dumazet 已提交
441

442 443 444 445 446 447
static void tnode_free(struct tnode *tn)
{
	struct callback_head *head = &tn->rcu;

	while (head) {
		head = head->next;
448
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
449 450 451 452 453 454 455 456
		node_free(tn);

		tn = container_of(head, struct tnode, rcu);
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
457 458 459
	}
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
{
	struct tnode *tp = node_parent(oldtnode);
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
	put_child_root(tp, t, tn->key, tn);

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		/* resize child node */
		if (tnode_full(tn, inode))
			resize(t, inode);
	}
}

485
static int inflate(struct trie *t, struct tnode *oldtnode)
486
{
487 488
	struct tnode *tn;
	unsigned long i;
489
	t_key m;
490

S
Stephen Hemminger 已提交
491
	pr_debug("In inflate\n");
492

493
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
494
	if (!tn)
495
		return -ENOMEM;
496

497 498 499
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

500 501 502 503
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
504
	 */
505
	for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
506 507 508
		struct tnode *inode = tnode_get_child(oldtnode, --i);
		struct tnode *node0, *node1;
		unsigned long j, k;
509

510
		/* An empty child */
A
Alexander Duyck 已提交
511
		if (inode == NULL)
512 513 514
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
515
		if (!tnode_full(oldtnode, inode)) {
516
			put_child(tn, get_index(inode->key, tn), inode);
517 518 519
			continue;
		}

520 521 522
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

523 524
		/* An internal node with two children */
		if (inode->bits == 1) {
525 526
			put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
			put_child(tn, 2 * i, tnode_get_child(inode, 0));
O
Olof Johansson 已提交
527
			continue;
528 529
		}

O
Olof Johansson 已提交
530
		/* We will replace this node 'inode' with two new
531
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
532 533 534 535 536
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
537
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
538 539
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
540 541 542
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
543
		 */
544 545 546
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
547
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
548

549
		tnode_free_append(tn, node1);
550 551 552 553 554 555 556 557 558 559 560
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
		for (k = tnode_child_length(inode), j = k / 2; j;) {
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
		}
561

562 563 564
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
565

566 567 568 569
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
570

571 572
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
573

574
	return 0;
575
nomem:
576 577
	/* all pointers should be clean so we are done */
	tnode_free(tn);
578
	return -ENOMEM;
579 580
}

581
static int halve(struct trie *t, struct tnode *oldtnode)
582
{
583
	struct tnode *tn;
584
	unsigned long i;
585

S
Stephen Hemminger 已提交
586
	pr_debug("In halve\n");
587

588
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
589
	if (!tn)
590
		return -ENOMEM;
591

592 593 594
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

595 596 597 598
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
599
	 */
600
	for (i = tnode_child_length(oldtnode); i;) {
601 602 603
		struct tnode *node1 = tnode_get_child(oldtnode, --i);
		struct tnode *node0 = tnode_get_child(oldtnode, --i);
		struct tnode *inode;
604

605 606 607 608 609
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
610

611
		/* Two nonempty children */
612 613 614 615
		inode = tnode_new(node0->key, oldtnode->pos, 1);
		if (!inode) {
			tnode_free(tn);
			return -ENOMEM;
616
		}
617
		tnode_free_append(tn, inode);
618

619 620 621 622 623 624 625
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
626
	}
627

628 629
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
630 631

	return 0;
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static void collapse(struct trie *t, struct tnode *oldtnode)
{
	struct tnode *n, *tp;
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
	for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
		n = tnode_get_child(oldtnode, --i);

	/* compress one level */
	tp = node_parent(oldtnode);
	put_child_root(tp, t, oldtnode->key, n);
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
static unsigned char update_suffix(struct tnode *tn)
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
	for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
		struct tnode *n = tnode_get_child(tn, i);

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
 * tnode_child_length() and instead of multiplying by 2 (since the
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
 * The left-hand side may look a bit weird: tnode_child_length(tn)
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 *     tn->full_children;
 *
 * new_child_length = tnode_child_length(tn) * 2;
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >=
 *      inflate_threshold * tnode_child_length(tn) * 2
 *
 * shorten again:
 * 50 * (tn->full_children + tnode_child_length(tn) -
 *    tn->empty_children) >= inflate_threshold *
 *    tnode_child_length(tn)
 *
 */
744
static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
745 746 747 748 749
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
750
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
751
	used -= tn->empty_children;
752
	used += tn->full_children;
753

754 755 756
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
757 758
}

759
static bool should_halve(const struct tnode *tp, const struct tnode *tn)
760 761 762 763 764
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
765
	threshold *= tp ? halve_threshold : halve_threshold_root;
766 767
	used -= tn->empty_children;

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

static bool should_collapse(const struct tnode *tn)
{
	unsigned long used = tnode_child_length(tn);

	used -= tn->empty_children;

	/* account for bits == KEYLENGTH case */
	if ((tn->bits == KEYLENGTH) && tn->full_children)
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
785 786
}

787
#define MAX_WORK 10
788
static void resize(struct trie *t, struct tnode *tn)
789
{
790
	struct tnode *tp = node_parent(tn);
791
	struct tnode __rcu **cptr;
792
	int max_work = MAX_WORK;
793 794 795 796

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

797 798 799 800
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
801
	cptr = tp ? &tp->tnode[get_index(tn->key, tp)] : &t->trie;
802 803
	BUG_ON(tn != rtnl_dereference(*cptr));

804 805
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
806
	 */
807
	while (should_inflate(tp, tn) && max_work) {
808
		if (inflate(t, tn)) {
809 810 811 812 813
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}
814

815
		max_work--;
816
		tn = rtnl_dereference(*cptr);
817 818 819 820
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
821
		return;
822

823
	/* Halve as long as the number of empty children in this
824 825
	 * node is above threshold.
	 */
826
	while (should_halve(tp, tn) && max_work) {
827
		if (halve(t, tn)) {
828 829 830 831 832 833
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}

834
		max_work--;
835 836
		tn = rtnl_dereference(*cptr);
	}
837 838

	/* Only one child remains */
839 840
	if (should_collapse(tn)) {
		collapse(t, tn);
841 842 843 844 845 846 847 848 849 850 851 852 853
		return;
	}

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
		return;

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

		if (tp && (slen > tp->slen))
			tp->slen = slen;
854 855 856
	}
}

857
static void leaf_pull_suffix(struct tnode *tp, struct tnode *l)
858 859 860 861 862 863 864 865
{
	while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

866
static void leaf_push_suffix(struct tnode *tn, struct tnode *l)
867
{
868 869 870 871 872 873 874 875 876
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	while (tn && (tn->slen < l->slen)) {
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
877
/* rcu_read_lock needs to be hold by caller from readside */
878
static struct tnode *fib_find_node(struct trie *t, struct tnode **tn, u32 key)
879
{
880
	struct tnode *pn = NULL, *n = rcu_dereference_rtnl(t->trie);
A
Alexander Duyck 已提交
881 882 883 884 885 886 887 888 889

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
890
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
891
		 *     we have a mismatch in skip bits and failed
892 893
		 *   else
		 *     we know the value is cindex
894 895 896 897
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
898
		 */
899 900 901 902
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
903 904 905

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
906 907
			break;

908
		pn = n;
909
		n = tnode_get_child_rcu(n, index);
A
Alexander Duyck 已提交
910
	}
O
Olof Johansson 已提交
911

912 913
	*tn = pn;

A
Alexander Duyck 已提交
914
	return n;
915 916
}

917 918 919
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
920 921
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
					u8 tos, u32 prio)
922 923 924 925 926 927
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

928
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
929 930 931 932
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
933 934 935 936 937 938 939 940 941
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

942
static void trie_rebalance(struct trie *t, struct tnode *tn)
943
{
S
Stephen Hemminger 已提交
944
	struct tnode *tp;
945

946 947
	while (tn) {
		tp = node_parent(tn);
948
		resize(t, tn);
S
Stephen Hemminger 已提交
949
		tn = tp;
950 951 952
	}
}

R
Robert Olsson 已提交
953
/* only used from updater-side */
954 955
static int fib_insert_node(struct trie *t, struct tnode *tp,
			   struct fib_alias *new, t_key key)
956
{
957
	struct tnode *n, *l;
958

959
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
960
	if (!l)
961 962 963 964 965 966 967
		return -ENOMEM;

	/* retrieve child from parent node */
	if (tp)
		n = tnode_get_child(tp, get_index(key, tp));
	else
		n = rcu_dereference_rtnl(t->trie);
968

969 970 971 972 973 974 975 976
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
		struct tnode *tn;
977

978
		tn = tnode_new(key, __fls(key ^ n->key), 1);
979
		if (!tn) {
980
			node_free(l);
981
			return -ENOMEM;
O
Olof Johansson 已提交
982 983
		}

984 985 986
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
987

988 989 990
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
991

992
		/* parent now has a NULL spot where the leaf can go */
993
		tp = tn;
994
	}
O
Olof Johansson 已提交
995

996
	/* Case 3: n is NULL, and will just insert a new leaf */
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	NODE_INIT_PARENT(l, tp);
	put_child_root(tp, t, key, l);
	trie_rebalance(t, tp);

	return 0;
}

static int fib_insert_alias(struct trie *t, struct tnode *tp,
			    struct tnode *l, struct fib_alias *new,
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1013
	} else {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1026
	}
R
Robert Olsson 已提交
1027

1028 1029 1030 1031 1032 1033 1034
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1035 1036
}

1037
/* Caller must hold RTNL. */
1038
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1039
{
1040
	struct trie *t = (struct trie *)tb->tb_data;
1041
	struct fib_alias *fa, *new_fa;
1042
	struct tnode *l, *tp;
1043
	struct fib_info *fi;
A
Alexander Duyck 已提交
1044 1045
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1046
	u8 tos = cfg->fc_tos;
1047
	u32 key;
1048 1049
	int err;

1050
	if (plen > KEYLENGTH)
1051 1052
		return -EINVAL;

1053
	key = ntohl(cfg->fc_dst);
1054

1055
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1056

1057
	if ((plen < KEYLENGTH) && (key << plen))
1058 1059
		return -EINVAL;

1060 1061 1062
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1063
		goto err;
1064
	}
1065

1066
	l = fib_find_node(t, &tp, key);
A
Alexander Duyck 已提交
1067
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1068 1069 1070 1071 1072 1073

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1074 1075
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1076 1077
	 */

1078 1079 1080
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1081 1082

		err = -EEXIST;
1083
		if (cfg->fc_nlflags & NLM_F_EXCL)
1084 1085
			goto out;

1086 1087 1088 1089 1090 1091 1092
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1093
		hlist_for_each_entry_from(fa, fa_list) {
A
Alexander Duyck 已提交
1094
			if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1105
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1106 1107 1108
			struct fib_info *fi_drop;
			u8 state;

1109 1110 1111 1112
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1113
				goto out;
1114
			}
R
Robert Olsson 已提交
1115
			err = -ENOBUFS;
1116
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1117 1118
			if (new_fa == NULL)
				goto out;
1119 1120

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1121 1122
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1123
			new_fa->fa_type = cfg->fc_type;
1124
			state = fa->fa_state;
1125
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1126
			new_fa->fa_slen = fa->fa_slen;
1127

1128
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
R
Robert Olsson 已提交
1129
			alias_free_mem_rcu(fa);
1130 1131 1132

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1133
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1134 1135
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1136

O
Olof Johansson 已提交
1137
			goto succeeded;
1138 1139 1140 1141 1142
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1143 1144
		if (fa_match)
			goto out;
1145

1146
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1147
			fa = fa_first;
1148 1149
	}
	err = -ENOENT;
1150
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1151 1152 1153
		goto out;

	err = -ENOBUFS;
1154
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1155 1156 1157 1158 1159
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1160
	new_fa->fa_type = cfg->fc_type;
1161
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1162
	new_fa->fa_slen = slen;
1163

1164
	/* Insert new entry to the list. */
1165 1166 1167
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
		goto out_free_new_fa;
1168

1169 1170 1171
	if (!plen)
		tb->tb_num_default++;

1172
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1173
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1174
		  &cfg->fc_nlinfo, 0);
1175 1176
succeeded:
	return 0;
1177 1178 1179

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1180 1181
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1182
err:
1183 1184 1185
	return err;
}

1186 1187 1188 1189 1190 1191 1192
static inline t_key prefix_mismatch(t_key key, struct tnode *n)
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1193
/* should be called with rcu_read_lock */
1194
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1195
		     struct fib_result *res, int fib_flags)
1196
{
1197
	struct trie *t = (struct trie *)tb->tb_data;
1198 1199 1200
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1201 1202
	const t_key key = ntohl(flp->daddr);
	struct tnode *n, *pn;
A
Alexander Duyck 已提交
1203
	struct fib_alias *fa;
1204
	t_key cindex;
O
Olof Johansson 已提交
1205

R
Robert Olsson 已提交
1206
	n = rcu_dereference(t->trie);
1207
	if (!n)
1208
		return -EAGAIN;
1209 1210

#ifdef CONFIG_IP_FIB_TRIE_STATS
1211
	this_cpu_inc(stats->gets);
1212 1213
#endif

A
Alexander Duyck 已提交
1214
	pn = n;
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1226
		 *   if (index & (~0ul << bits))
1227
		 *     we have a mismatch in skip bits and failed
1228 1229
		 *   else
		 *     we know the value is cindex
1230
		 */
1231
		if (index & (~0ul << n->bits))
1232
			break;
1233

1234 1235
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1236
			goto found;
1237

1238 1239
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1240
		 */
1241
		if (n->slen > n->pos) {
1242 1243
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1244
		}
1245

1246
		n = tnode_get_child_rcu(n, index);
1247 1248 1249
		if (unlikely(!n))
			goto backtrace;
	}
1250

1251 1252 1253
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1254
		struct tnode __rcu **cptr = n->tnode;
1255

1256 1257 1258
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1259
		 */
1260
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1261
			goto backtrace;
O
Olof Johansson 已提交
1262

1263 1264 1265
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1266

1267 1268 1269
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1270 1271
		 */

1272
		while ((n = rcu_dereference(*cptr)) == NULL) {
1273 1274
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1275 1276
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1277
#endif
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1288
					return -EAGAIN;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1300
			cptr = &pn->tnode[cindex];
1301
		}
1302
	}
1303

1304
found:
1305
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1306 1307 1308
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1309

A
Alexander Duyck 已提交
1310 1311
		if (((key ^ n->key) >= (1ul << fa->fa_slen)) &&
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1312
				continue;
A
Alexander Duyck 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1322
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1323
			this_cpu_inc(stats->semantic_match_passed);
1324
#endif
A
Alexander Duyck 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1335
				continue;
A
Alexander Duyck 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1347
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1348
			this_cpu_inc(stats->semantic_match_passed);
1349
#endif
A
Alexander Duyck 已提交
1350
			return err;
1351
		}
1352
	}
1353
#ifdef CONFIG_IP_FIB_TRIE_STATS
1354
	this_cpu_inc(stats->semantic_match_miss);
1355 1356
#endif
	goto backtrace;
1357
}
1358
EXPORT_SYMBOL_GPL(fib_table_lookup);
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static void fib_remove_alias(struct trie *t, struct tnode *tp,
			     struct tnode *l, struct fib_alias *old)
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
		put_child_root(tp, t, l->key, NULL);
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1390
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1391 1392 1393
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1394
	struct tnode *l, *tp;
A
Alexander Duyck 已提交
1395 1396
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1397 1398
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1399

A
Alexander Duyck 已提交
1400
	if (plen > KEYLENGTH)
1401 1402
		return -EINVAL;

1403
	key = ntohl(cfg->fc_dst);
1404

1405
	if ((plen < KEYLENGTH) && (key << plen))
1406 1407
		return -EINVAL;

1408
	l = fib_find_node(t, &tp, key);
1409
	if (!l)
1410 1411
		return -ESRCH;

A
Alexander Duyck 已提交
1412
	fa = fib_find_alias(&l->leaf, slen, tos, 0);
1413 1414 1415
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1416
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1417 1418

	fa_to_delete = NULL;
1419
	hlist_for_each_entry_from(fa, fa_list) {
1420 1421
		struct fib_info *fi = fa->fa_info;

A
Alexander Duyck 已提交
1422
		if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1423 1424
			break;

1425 1426
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1427
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1428 1429
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1430 1431 1432
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1433 1434 1435 1436 1437
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1438 1439
	if (!fa_to_delete)
		return -ESRCH;
1440

1441
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1442
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1443

1444 1445 1446
	if (!plen)
		tb->tb_num_default--;

1447
	fib_remove_alias(t, tp, l, fa_to_delete);
1448

1449
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1450
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1451

1452 1453
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1454
	return 0;
1455 1456
}

1457 1458
/* Scan for the next leaf starting at the provided key value */
static struct tnode *leaf_walk_rcu(struct tnode **tn, t_key key)
1459
{
1460 1461
	struct tnode *pn, *n = *tn;
	unsigned long cindex;
1462

1463 1464 1465
	/* record parent node for backtracing */
	pn = n;
	cindex = n ? get_index(key, n) : 0;
1466

1467 1468 1469
	/* this loop is meant to try and find the key in the trie */
	while (n) {
		unsigned long idx = get_index(key, n);
1470

1471 1472 1473 1474 1475
		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
		if (idx >= (1ul << n->bits))
			break;
1476

1477 1478 1479
		/* record parent and next child index */
		pn = n;
		cindex = idx;
1480

1481 1482 1483
		/* descend into the next child */
		n = tnode_get_child_rcu(pn, cindex++);
	}
1484

1485 1486 1487 1488 1489
	/* this loop will search for the next leaf with a greater key */
	while (pn) {
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1490

1491 1492 1493
			pn = node_parent_rcu(pn);
			if (!pn)
				break;
1494

1495 1496 1497
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1498

1499 1500 1501 1502
		/* grab the next available node */
		n = tnode_get_child_rcu(pn, cindex++);
		if (!n)
			continue;
1503

1504 1505 1506
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1507

1508 1509 1510 1511
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1512

1513 1514 1515 1516 1517 1518
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
	*tn = (n->key == KEY_MAX) ? NULL : pn;
	return n;
1519 1520
}

1521
/* Caller must hold RTNL. */
1522
int fib_table_flush(struct fib_table *tb)
1523
{
1524 1525 1526 1527 1528 1529
	struct trie *t = (struct trie *)tb->tb_data;
	struct hlist_node *tmp;
	struct fib_alias *fa;
	struct tnode *n, *pn;
	unsigned long cindex;
	unsigned char slen;
1530
	int found = 0;
1531

1532 1533 1534
	n = rcu_dereference(t->trie);
	if (!n)
		goto flush_complete;
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
				t_key pkey = pn->key;

				n = pn;
				pn = node_parent(n);

				/* resize completed node */
				resize(t, n);

				/* if we got the root we are done */
				if (!pn)
					goto flush_complete;

				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
			n = tnode_get_child(pn, cindex);
		} while (!n);
	}

	/* track slen in case any prefixes survive */
	slen = 0;

	hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;

			continue;
1580 1581
		}

1582
		slen = fa->fa_slen;
1583 1584
	}

1585 1586 1587 1588 1589 1590 1591
	/* update leaf slen */
	n->slen = slen;

	if (hlist_empty(&n->leaf)) {
		put_child_root(pn, t, n->key, NULL);
		node_free(n);
	} else {
1592
		leaf_pull_suffix(pn, n);
1593
	}
1594

1595 1596 1597 1598
	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
flush_complete:
S
Stephen Hemminger 已提交
1599
	pr_debug("trie_flush found=%d\n", found);
1600 1601 1602
	return found;
}

1603
static void __trie_free_rcu(struct rcu_head *head)
1604
{
1605
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1606 1607 1608 1609 1610
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1611 1612 1613
	kfree(tb);
}

1614 1615 1616 1617 1618
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

A
Alexander Duyck 已提交
1619 1620
static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
			     struct sk_buff *skb, struct netlink_callback *cb)
1621
{
A
Alexander Duyck 已提交
1622
	__be32 xkey = htonl(l->key);
1623
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1624
	int i, s_i;
1625

A
Alexander Duyck 已提交
1626
	s_i = cb->args[4];
1627 1628
	i = 0;

R
Robert Olsson 已提交
1629
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1630
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1631 1632 1633 1634 1635
		if (i < s_i) {
			i++;
			continue;
		}

1636
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1637 1638 1639 1640
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1641
				  xkey,
1642
				  KEYLENGTH - fa->fa_slen,
1643
				  fa->fa_tos,
1644
				  fa->fa_info, NLM_F_MULTI) < 0) {
1645
			cb->args[4] = i;
1646 1647
			return -1;
		}
1648
		i++;
1649
	}
1650

1651
	cb->args[4] = i;
1652 1653 1654
	return skb->len;
}

1655
/* rcu_read_lock needs to be hold by caller from readside */
1656 1657
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1658
{
1659 1660
	struct trie *t = (struct trie *)tb->tb_data;
	struct tnode *l, *tp;
1661 1662 1663
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1664 1665
	int count = cb->args[2];
	t_key key = cb->args[3];
1666

1667 1668 1669
	tp = rcu_dereference_rtnl(t->trie);

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1670
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1671 1672
			cb->args[3] = key;
			cb->args[2] = count;
1673
			return -1;
1674
		}
1675

1676
		++count;
1677 1678
		key = l->key + 1;

1679 1680
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1681 1682 1683 1684

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1685
	}
1686 1687 1688 1689

	cb->args[3] = key;
	cb->args[2] = count;

1690 1691 1692
	return skb->len;
}

1693
void __init fib_trie_init(void)
1694
{
1695 1696
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1697 1698 1699
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1700
					   LEAF_SIZE,
1701
					   0, SLAB_PANIC, NULL);
1702
}
1703

1704

1705
struct fib_table *fib_trie_table(u32 id)
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1716
	tb->tb_default = -1;
1717
	tb->tb_num_default = 0;
1718 1719

	t = (struct trie *) tb->tb_data;
1720 1721 1722 1723 1724 1725 1726 1727
	RCU_INIT_POINTER(t->trie, NULL);
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1728 1729 1730 1731

	return tb;
}

1732 1733 1734
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1735
	struct seq_net_private p;
1736
	struct fib_table *tb;
1737
	struct tnode *tnode;
E
Eric Dumazet 已提交
1738 1739
	unsigned int index;
	unsigned int depth;
1740
};
1741

A
Alexander Duyck 已提交
1742
static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1743
{
1744
	unsigned long cindex = iter->index;
1745 1746
	struct tnode *tn = iter->tnode;
	struct tnode *p;
1747

1748 1749 1750 1751
	/* A single entry routing table */
	if (!tn)
		return NULL;

1752 1753 1754
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1755
	while (cindex < tnode_child_length(tn)) {
A
Alexander Duyck 已提交
1756
		struct tnode *n = tnode_get_child_rcu(tn, cindex);
1757

1758 1759 1760 1761 1762 1763
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1764
				iter->tnode = n;
1765 1766 1767 1768 1769
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1770

1771 1772
		++cindex;
	}
O
Olof Johansson 已提交
1773

1774
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1775
	p = node_parent_rcu(tn);
1776
	if (p) {
1777
		cindex = get_index(tn->key, p) + 1;
1778 1779 1780
		tn = p;
		--iter->depth;
		goto rescan;
1781
	}
1782 1783 1784

	/* got root? */
	return NULL;
1785 1786
}

A
Alexander Duyck 已提交
1787
static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1788
				       struct trie *t)
1789
{
A
Alexander Duyck 已提交
1790
	struct tnode *n;
1791

S
Stephen Hemminger 已提交
1792
	if (!t)
1793 1794 1795
		return NULL;

	n = rcu_dereference(t->trie);
1796
	if (!n)
1797
		return NULL;
1798

1799
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1800
		iter->tnode = n;
1801 1802 1803 1804 1805 1806
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1807
	}
1808 1809

	return n;
1810
}
O
Olof Johansson 已提交
1811

1812 1813
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
A
Alexander Duyck 已提交
1814
	struct tnode *n;
1815
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1816

1817
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1818

1819
	rcu_read_lock();
1820
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1821
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
1822
			struct fib_alias *fa;
1823

1824 1825 1826 1827
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1828

A
Alexander Duyck 已提交
1829
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
1830
				++s->prefixes;
1831 1832
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
1833 1834
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
1835
			s->nullpointers += n->empty_children;
1836 1837
		}
	}
R
Robert Olsson 已提交
1838
	rcu_read_unlock();
1839 1840
}

1841 1842 1843 1844
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1845
{
E
Eric Dumazet 已提交
1846
	unsigned int i, max, pointers, bytes, avdepth;
1847

1848 1849 1850 1851
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
1852

1853 1854
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
1855
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
1856

1857
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
1858
	bytes = LEAF_SIZE * stat->leaves;
1859 1860

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
1861
	bytes += sizeof(struct fib_alias) * stat->prefixes;
1862

1863
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1864
	bytes += TNODE_SIZE(0) * stat->tnodes;
1865

R
Robert Olsson 已提交
1866 1867
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
1868
		max--;
1869

1870
	pointers = 0;
1871
	for (i = 1; i < max; i++)
1872
		if (stat->nodesizes[i] != 0) {
1873
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
1874 1875 1876
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
1877
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
1878

A
Alexander Duyck 已提交
1879
	bytes += sizeof(struct tnode *) * pointers;
1880 1881
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
1882
}
R
Robert Olsson 已提交
1883

1884
#ifdef CONFIG_IP_FIB_TRIE_STATS
1885
static void trie_show_usage(struct seq_file *seq,
1886
			    const struct trie_use_stats __percpu *stats)
1887
{
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

1903
	seq_printf(seq, "\nCounters:\n---------\n");
1904 1905
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
1906
	seq_printf(seq, "semantic match passed = %u\n",
1907 1908 1909 1910
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
1911
}
1912 1913
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

1914
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
1915
{
1916 1917 1918 1919 1920 1921
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
1922
}
1923

1924

1925 1926
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
1927
	struct net *net = (struct net *)seq->private;
1928
	unsigned int h;
1929

1930
	seq_printf(seq,
1931 1932
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
1933
		   LEAF_SIZE, TNODE_SIZE(0));
1934

1935 1936 1937 1938
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

1939
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
1940 1941
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
1942

1943 1944 1945 1946 1947 1948 1949 1950
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
1951
			trie_show_usage(seq, t->stats);
1952 1953 1954
#endif
		}
	}
1955

1956
	return 0;
1957 1958
}

1959
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
1960
{
1961
	return single_open_net(inode, file, fib_triestat_seq_show);
1962 1963
}

1964
static const struct file_operations fib_triestat_fops = {
1965 1966 1967 1968
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
1969
	.release = single_release_net,
1970 1971
};

A
Alexander Duyck 已提交
1972
static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
1973
{
1974 1975
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
1976
	loff_t idx = 0;
1977
	unsigned int h;
1978

1979 1980 1981
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
1982

1983
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
A
Alexander Duyck 已提交
1984
			struct tnode *n;
1985 1986 1987 1988 1989 1990 1991 1992 1993

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
1994
	}
1995

1996 1997 1998
	return NULL;
}

1999
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2000
	__acquires(RCU)
2001
{
2002
	rcu_read_lock();
2003
	return fib_trie_get_idx(seq, *pos);
2004 2005
}

2006
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2007
{
2008
	struct fib_trie_iter *iter = seq->private;
2009
	struct net *net = seq_file_net(seq);
2010 2011 2012
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
A
Alexander Duyck 已提交
2013
	struct tnode *n;
2014

2015
	++*pos;
2016 2017 2018 2019
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2020

2021 2022
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2023
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2024 2025 2026 2027 2028
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2029

2030 2031 2032
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2033
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2034 2035 2036 2037 2038
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2039
	return NULL;
2040 2041 2042 2043

found:
	iter->tb = tb;
	return n;
2044
}
2045

2046
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2047
	__releases(RCU)
2048
{
2049 2050
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2051

2052 2053
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2054 2055
	while (n-- > 0)
		seq_puts(seq, "   ");
2056
}
2057

2058
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2059
{
S
Stephen Hemminger 已提交
2060
	switch (s) {
2061 2062 2063 2064 2065 2066
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2067
		snprintf(buf, len, "scope=%d", s);
2068 2069 2070
		return buf;
	}
}
2071

2072
static const char *const rtn_type_names[__RTN_MAX] = {
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2086

E
Eric Dumazet 已提交
2087
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2088 2089 2090
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2091
	snprintf(buf, len, "type %u", t);
2092
	return buf;
2093 2094
}

2095 2096
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2097
{
2098
	const struct fib_trie_iter *iter = seq->private;
A
Alexander Duyck 已提交
2099
	struct tnode *n = v;
2100

2101 2102
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2103

2104
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2105
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2106

2107 2108 2109 2110
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
			   n->full_children, n->empty_children);
2111
	} else {
A
Alexander Duyck 已提交
2112
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2113
		struct fib_alias *fa;
2114 2115

		seq_indent(seq, iter->depth);
2116
		seq_printf(seq, "  |-- %pI4\n", &val);
2117

A
Alexander Duyck 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2131
		}
2132
	}
2133

2134 2135 2136
	return 0;
}

2137
static const struct seq_operations fib_trie_seq_ops = {
2138 2139 2140 2141
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2142 2143
};

2144
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2145
{
2146 2147
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2148 2149
}

2150
static const struct file_operations fib_trie_fops = {
2151 2152 2153 2154
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2155
	.release = seq_release_net,
2156 2157
};

2158 2159
struct fib_route_iter {
	struct seq_net_private p;
2160 2161
	struct fib_table *main_tb;
	struct tnode *tnode;
2162 2163 2164 2165
	loff_t	pos;
	t_key	key;
};

A
Alexander Duyck 已提交
2166
static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2167
{
2168 2169 2170 2171
	struct fib_table *tb = iter->main_tb;
	struct tnode *l, **tp = &iter->tnode;
	struct trie *t;
	t_key key;
2172

2173 2174
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2175
		pos -= iter->pos;
2176 2177 2178 2179
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
		iter->tnode = rcu_dereference_rtnl(t->trie);
2180
		iter->pos = 0;
2181
		key = 0;
2182 2183
	}

2184 2185
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2186
		iter->pos++;
2187 2188 2189 2190 2191 2192 2193 2194 2195

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2196 2197 2198
	}

	if (l)
2199
		iter->key = key;	/* remember it */
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2211
	struct trie *t;
2212 2213

	rcu_read_lock();
2214

2215
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2216 2217 2218
	if (!tb)
		return NULL;

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
	iter->tnode = rcu_dereference_rtnl(t->trie);
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2230 2231 2232 2233 2234
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2235 2236
	struct tnode *l = NULL;
	t_key key = iter->key;
2237 2238

	++*pos;
2239 2240 2241 2242 2243 2244 2245

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2246
		iter->pos++;
2247 2248
	} else {
		iter->pos = 0;
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2260
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2261
{
E
Eric Dumazet 已提交
2262
	unsigned int flags = 0;
2263

E
Eric Dumazet 已提交
2264 2265
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2266 2267
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2268
	if (mask == htonl(0xFFFFFFFF))
2269 2270 2271
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2272 2273
}

2274 2275 2276
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2277
 *	and needs to be same as fib_hash output to avoid breaking
2278 2279 2280
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2281
{
A
Alexander Duyck 已提交
2282
	struct fib_alias *fa;
A
Alexander Duyck 已提交
2283
	struct tnode *l = v;
2284
	__be32 prefix;
2285

2286 2287 2288 2289 2290 2291
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2292

2293 2294
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2295 2296 2297 2298
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2299

A
Alexander Duyck 已提交
2300 2301 2302
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2303

A
Alexander Duyck 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2325

A
Alexander Duyck 已提交
2326
		seq_pad(seq, '\n');
2327 2328 2329 2330 2331
	}

	return 0;
}

2332
static const struct seq_operations fib_route_seq_ops = {
2333 2334 2335
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2336
	.show   = fib_route_seq_show,
2337 2338
};

2339
static int fib_route_seq_open(struct inode *inode, struct file *file)
2340
{
2341
	return seq_open_net(inode, file, &fib_route_seq_ops,
2342
			    sizeof(struct fib_route_iter));
2343 2344
}

2345
static const struct file_operations fib_route_fops = {
2346 2347 2348 2349
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2350
	.release = seq_release_net,
2351 2352
};

2353
int __net_init fib_proc_init(struct net *net)
2354
{
2355
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2356 2357
		goto out1;

2358 2359
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2360 2361
		goto out2;

2362
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2363 2364
		goto out3;

2365
	return 0;
2366 2367

out3:
2368
	remove_proc_entry("fib_triestat", net->proc_net);
2369
out2:
2370
	remove_proc_entry("fib_trie", net->proc_net);
2371 2372
out1:
	return -ENOMEM;
2373 2374
}

2375
void __net_exit fib_proc_exit(struct net *net)
2376
{
2377 2378 2379
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2380 2381 2382
}

#endif /* CONFIG_PROC_FS */