fib_trie.c 63.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
82
#include <net/switchdev.h>
83 84
#include "fib_lookup.h"

R
Robert Olsson 已提交
85
#define MAX_STAT_DEPTH 32
86

87 88
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
89 90 91

typedef unsigned int t_key;

92 93 94
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
95

96
struct key_vector {
97 98
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
99
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
100
	unsigned char slen;
A
Alexander Duyck 已提交
101
	union {
102
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
103
		struct hlist_head leaf;
104
		/* This array is valid if (pos | bits) > 0 (TNODE) */
105
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
106
	};
107 108
};

109
struct tnode {
110
	struct rcu_head rcu;
111 112
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
113
	struct key_vector __rcu *parent;
114
	struct key_vector kv[1];
115
#define tn_bits kv[0].bits
116 117 118
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
119 120
#define LEAF_SIZE	TNODE_SIZE(1)

121 122 123 124 125 126 127
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
128
	unsigned int resize_node_skipped;
129 130 131 132 133 134 135 136 137
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
138
	unsigned int prefixes;
R
Robert Olsson 已提交
139
	unsigned int nodesizes[MAX_STAT_DEPTH];
140
};
141 142

struct trie {
143
	struct key_vector kv[1];
144
#ifdef CONFIG_IP_FIB_TRIE_STATS
145
	struct trie_use_stats __percpu *stats;
146 147 148
#endif
};

149
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
150 151 152 153 154 155 156 157
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
158

159
static struct kmem_cache *fn_alias_kmem __read_mostly;
160
static struct kmem_cache *trie_leaf_kmem __read_mostly;
161

162 163 164 165 166
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

167
/* caller must hold RTNL */
168
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
169
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
170

171
/* caller must hold RCU read lock or RTNL */
172
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
173
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
174

175
/* wrapper for rcu_assign_pointer */
176
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
177
{
A
Alexander Duyck 已提交
178
	if (n)
179
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
180 181
}

182
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
183 184 185

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
186
 */
187
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
188
{
189
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
190
}
R
Robert Olsson 已提交
191

192 193
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

194 195 196 197
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

198 199 200
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

201 202 203
	return index >> kv->pos;
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
262

263 264
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
265
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
266
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
267 268

static void __alias_free_mem(struct rcu_head *head)
269
{
R
Robert Olsson 已提交
270 271
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
272 273
}

R
Robert Olsson 已提交
274
static inline void alias_free_mem_rcu(struct fib_alias *fa)
275
{
R
Robert Olsson 已提交
276 277
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
278

279
#define TNODE_KMALLOC_MAX \
280
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
281
#define TNODE_VMALLOC_MAX \
282
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
283

284
static void __node_free_rcu(struct rcu_head *head)
285
{
286
	struct tnode *n = container_of(head, struct tnode, rcu);
287

288
	if (!n->tn_bits)
289
		kmem_cache_free(trie_leaf_kmem, n);
290
	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
291 292 293
		kfree(n);
	else
		vfree(n);
294 295
}

296
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297

298
static struct tnode *tnode_alloc(int bits)
299
{
300 301 302 303 304 305 306 307 308
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
309
	if (size <= PAGE_SIZE)
310
		return kzalloc(size, GFP_KERNEL);
311
	else
312
		return vzalloc(size);
313
}
R
Robert Olsson 已提交
314

315
static inline void empty_child_inc(struct key_vector *n)
316
{
317
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 319
}

320
static inline void empty_child_dec(struct key_vector *n)
321
{
322
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 324
}

325
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
326
{
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
	struct key_vector *l = kv->kv;

	if (!kv)
		return NULL;

	/* initialize key vector */
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
343 344 345
	return l;
}

346
static struct key_vector *tnode_new(t_key key, int pos, int bits)
347
{
348
	struct tnode *tnode = tnode_alloc(bits);
349
	unsigned int shift = pos + bits;
350
	struct key_vector *tn = tnode->kv;
351 352 353

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
354

355
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
356
		 sizeof(struct key_vector *) << bits);
357 358 359 360 361

	if (!tnode)
		return NULL;

	if (bits == KEYLENGTH)
362
		tnode->full_children = 1;
363
	else
364
		tnode->empty_children = 1ul << bits;
365 366 367 368 369 370

	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

371 372 373
	return tn;
}

374
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
375 376
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
377
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
378
{
379
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
380 381
}

382 383 384
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
385 386
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
387
{
388
	struct key_vector *chi = get_child(tn, i);
389
	int isfull, wasfull;
390

391
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
392

393
	/* update emptyChildren, overflow into fullChildren */
394
	if (!n && chi)
395
		empty_child_inc(tn);
396
	if (n && !chi)
397
		empty_child_dec(tn);
398

399
	/* update fullChildren */
400
	wasfull = tnode_full(tn, chi);
401
	isfull = tnode_full(tn, n);
402

403
	if (wasfull && !isfull)
404
		tn_info(tn)->full_children--;
405
	else if (!wasfull && isfull)
406
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
407

408 409 410
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

411
	rcu_assign_pointer(tn->tnode[i], n);
412 413
}

414
static void update_children(struct key_vector *tn)
415 416 417 418
{
	unsigned long i;

	/* update all of the child parent pointers */
419
	for (i = child_length(tn); i;) {
420
		struct key_vector *inode = get_child(tn, --i);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

436 437
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
438
{
439 440
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
441
	else
442
		put_child(tp, get_index(key, tp), n);
443 444
}

445
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
446
{
447
	tn_info(tn)->rcu.next = NULL;
448 449
}

450 451
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
452
{
453 454
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
455
}
E
Eric Dumazet 已提交
456

457
static void tnode_free(struct key_vector *tn)
458
{
459
	struct callback_head *head = &tn_info(tn)->rcu;
460 461 462

	while (head) {
		head = head->next;
463
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
464 465
		node_free(tn);

466
		tn = container_of(head, struct tnode, rcu)->kv;
467 468 469 470 471
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
472 473 474
	}
}

475 476 477
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
478
{
479
	struct key_vector *tp = node_parent(oldtnode);
480 481 482 483
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
484
	put_child_root(tp, tn->key, tn);
485 486 487 488 489 490 491 492

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
493
	for (i = child_length(tn); i;) {
494
		struct key_vector *inode = get_child(tn, --i);
495 496 497

		/* resize child node */
		if (tnode_full(tn, inode))
498
			tn = resize(t, inode);
499
	}
500

501
	return tp;
502 503
}

504 505
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
506
{
507
	struct key_vector *tn;
508
	unsigned long i;
509
	t_key m;
510

S
Stephen Hemminger 已提交
511
	pr_debug("In inflate\n");
512

513
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
514
	if (!tn)
515
		goto notnode;
516

517 518 519
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

520 521 522 523
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
524
	 */
525
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
526
		struct key_vector *inode = get_child(oldtnode, --i);
527
		struct key_vector *node0, *node1;
528
		unsigned long j, k;
529

530
		/* An empty child */
531
		if (!inode)
532 533 534
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
535
		if (!tnode_full(oldtnode, inode)) {
536
			put_child(tn, get_index(inode->key, tn), inode);
537 538 539
			continue;
		}

540 541 542
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

543 544
		/* An internal node with two children */
		if (inode->bits == 1) {
545 546
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
547
			continue;
548 549
		}

O
Olof Johansson 已提交
550
		/* We will replace this node 'inode' with two new
551
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
552 553 554 555 556
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
557
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
558 559
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
560 561 562
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
563
		 */
564 565 566
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
567
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
568

569
		tnode_free_append(tn, node1);
570 571 572 573 574
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
575
		for (k = child_length(inode), j = k / 2; j;) {
576 577 578 579
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
580
		}
581

582 583 584
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
585

586 587 588 589
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
590

591
	/* setup the parent pointers into and out of this node */
592
	return replace(t, oldtnode, tn);
593
nomem:
594 595
	/* all pointers should be clean so we are done */
	tnode_free(tn);
596 597
notnode:
	return NULL;
598 599
}

600 601
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
602
{
603
	struct key_vector *tn;
604
	unsigned long i;
605

S
Stephen Hemminger 已提交
606
	pr_debug("In halve\n");
607

608
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
609
	if (!tn)
610
		goto notnode;
611

612 613 614
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

615 616 617 618
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
619
	 */
620
	for (i = child_length(oldtnode); i;) {
621 622
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
623
		struct key_vector *inode;
624

625 626 627 628 629
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
630

631
		/* Two nonempty children */
632
		inode = tnode_new(node0->key, oldtnode->pos, 1);
633 634
		if (!inode)
			goto nomem;
635
		tnode_free_append(tn, inode);
636

637 638 639 640 641 642 643
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
644
	}
645

646
	/* setup the parent pointers into and out of this node */
647 648 649 650 651 652
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
653 654
}

655 656
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
657
{
658
	struct key_vector *n, *tp;
659 660 661
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
662
	for (n = NULL, i = child_length(oldtnode); !n && i;)
663
		n = get_child(oldtnode, --i);
664 665 666

	/* compress one level */
	tp = node_parent(oldtnode);
667
	put_child_root(tp, oldtnode->key, n);
668 669 670 671
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
672 673

	return tp;
674 675
}

676
static unsigned char update_suffix(struct key_vector *tn)
677 678 679 680 681 682 683 684 685
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
686
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
687
		struct key_vector *n = get_child(tn, i);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

711 712 713 714 715 716 717 718
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
719
 * child_length() and instead of multiplying by 2 (since the
720 721 722 723
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
724
 * The left-hand side may look a bit weird: child_length(tn)
725 726 727 728 729 730 731 732 733
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
734
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
735 736
 *     tn->full_children;
 *
737
 * new_child_length = child_length(tn) * 2;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
754
 * 100 * (child_length(tn) - tn->empty_children +
755 756 757
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
758
 * 100 * (child_length(tn) - tn->empty_children +
759
 *    tn->full_children) >=
760
 *      inflate_threshold * child_length(tn) * 2
761 762
 *
 * shorten again:
763
 * 50 * (tn->full_children + child_length(tn) -
764
 *    tn->empty_children) >= inflate_threshold *
765
 *    child_length(tn)
766 767
 *
 */
768
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
769
{
770
	unsigned long used = child_length(tn);
771 772 773
	unsigned long threshold = used;

	/* Keep root node larger */
774
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
775 776
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
777

778 779 780
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
781 782
}

783
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
784
{
785
	unsigned long used = child_length(tn);
786 787 788
	unsigned long threshold = used;

	/* Keep root node larger */
789
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
790
	used -= tn_info(tn)->empty_children;
791

792 793 794 795 796
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

797
static inline bool should_collapse(struct key_vector *tn)
798
{
799
	unsigned long used = child_length(tn);
800

801
	used -= tn_info(tn)->empty_children;
802 803

	/* account for bits == KEYLENGTH case */
804
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
805 806 807 808
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
809 810
}

811
#define MAX_WORK 10
812
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
813
{
814 815 816
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
817
	struct key_vector *tp = node_parent(tn);
818
	unsigned long cindex = get_index(tn->key, tp);
819
	int max_work = MAX_WORK;
820 821 822 823

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

824 825 826 827
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
828
	BUG_ON(tn != get_child(tp, cindex));
829

830 831
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
832
	 */
833
	while (should_inflate(tp, tn) && max_work) {
834 835
		tp = inflate(t, tn);
		if (!tp) {
836
#ifdef CONFIG_IP_FIB_TRIE_STATS
837
			this_cpu_inc(stats->resize_node_skipped);
838 839 840
#endif
			break;
		}
841

842
		max_work--;
843
		tn = get_child(tp, cindex);
844 845
	}

846 847 848
	/* update parent in case inflate failed */
	tp = node_parent(tn);

849 850
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
851
		return tp;
852

853
	/* Halve as long as the number of empty children in this
854 855
	 * node is above threshold.
	 */
856
	while (should_halve(tp, tn) && max_work) {
857 858
		tp = halve(t, tn);
		if (!tp) {
859
#ifdef CONFIG_IP_FIB_TRIE_STATS
860
			this_cpu_inc(stats->resize_node_skipped);
861 862 863 864
#endif
			break;
		}

865
		max_work--;
866
		tn = get_child(tp, cindex);
867
	}
868 869

	/* Only one child remains */
870 871 872
	if (should_collapse(tn))
		return collapse(t, tn);

873
	/* update parent in case halve failed */
874
	tp = node_parent(tn);
875 876 877

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
878
		return tp;
879 880 881 882 883

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

884
		if (slen > tp->slen)
885
			tp->slen = slen;
886
	}
887

888
	return tp;
889 890
}

891
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
892
{
893
	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
894 895 896 897 898 899
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

900
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
901
{
902 903 904
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
905
	while (tn->slen < l->slen) {
906 907 908 909 910
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
911
/* rcu_read_lock needs to be hold by caller from readside */
912 913
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
914
{
915 916 917 918 919 920 921 922 923
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
924

925
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
926 927 928 929 930 931

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
932
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
933
		 *     we have a mismatch in skip bits and failed
934 935
		 *   else
		 *     we know the value is cindex
936 937 938 939
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
940
		 */
941 942 943 944
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
945

946 947
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
948

949
	*tp = pn;
950

A
Alexander Duyck 已提交
951
	return n;
952 953
}

954 955 956
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
957
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
958
					u8 tos, u32 prio, u32 tb_id)
959 960 961 962 963 964
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

965
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
966 967 968 969
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
970 971 972 973
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
974 975 976 977 978 979 980 981 982
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

983
static void trie_rebalance(struct trie *t, struct key_vector *tn)
984
{
985 986
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
987 988
}

989
static int fib_insert_node(struct trie *t, struct key_vector *tp,
990
			   struct fib_alias *new, t_key key)
991
{
992
	struct key_vector *n, *l;
993

994
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
995
	if (!l)
996
		goto noleaf;
997 998

	/* retrieve child from parent node */
999
	n = get_child(tp, get_index(key, tp));
1000

1001 1002 1003 1004 1005 1006 1007
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1008
		struct key_vector *tn;
1009

1010
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1011 1012
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1013

1014 1015 1016
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1017

1018
		/* start adding routes into the node */
1019
		put_child_root(tp, key, tn);
1020
		node_set_parent(n, tn);
1021

1022
		/* parent now has a NULL spot where the leaf can go */
1023
		tp = tn;
1024
	}
O
Olof Johansson 已提交
1025

1026
	/* Case 3: n is NULL, and will just insert a new leaf */
1027
	NODE_INIT_PARENT(l, tp);
1028
	put_child_root(tp, key, l);
1029 1030 1031
	trie_rebalance(t, tp);

	return 0;
1032 1033 1034 1035
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1036 1037
}

1038 1039
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1040 1041 1042 1043 1044 1045 1046
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1047
	} else {
1048 1049 1050 1051 1052
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1053 1054 1055
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1056 1057 1058 1059 1060 1061 1062
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1063
	}
R
Robert Olsson 已提交
1064

1065 1066 1067 1068 1069 1070 1071
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1072 1073
}

1074
/* Caller must hold RTNL. */
1075
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1076
{
1077
	struct trie *t = (struct trie *)tb->tb_data;
1078
	struct fib_alias *fa, *new_fa;
1079
	struct key_vector *l, *tp;
1080
	struct fib_info *fi;
A
Alexander Duyck 已提交
1081 1082
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1083
	u8 tos = cfg->fc_tos;
1084
	u32 key;
1085 1086
	int err;

1087
	if (plen > KEYLENGTH)
1088 1089
		return -EINVAL;

1090
	key = ntohl(cfg->fc_dst);
1091

1092
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1093

1094
	if ((plen < KEYLENGTH) && (key << plen))
1095 1096
		return -EINVAL;

1097 1098 1099
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1100
		goto err;
1101
	}
1102

1103
	l = fib_find_node(t, &tp, key);
1104 1105
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1106 1107 1108 1109 1110 1111

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1112 1113
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1114 1115
	 */

1116 1117 1118
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1119 1120

		err = -EEXIST;
1121
		if (cfg->fc_nlflags & NLM_F_EXCL)
1122 1123
			goto out;

1124 1125 1126 1127 1128 1129 1130
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1131
		hlist_for_each_entry_from(fa, fa_list) {
1132 1133 1134
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1145
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1146 1147 1148
			struct fib_info *fi_drop;
			u8 state;

1149 1150 1151 1152
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1153
				goto out;
1154
			}
R
Robert Olsson 已提交
1155
			err = -ENOBUFS;
1156
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1157
			if (!new_fa)
R
Robert Olsson 已提交
1158
				goto out;
1159 1160

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1161 1162
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1163
			new_fa->fa_type = cfg->fc_type;
1164
			state = fa->fa_state;
1165
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1166
			new_fa->fa_slen = fa->fa_slen;
1167

1168 1169 1170
			err = netdev_switch_fib_ipv4_add(key, plen, fi,
							 new_fa->fa_tos,
							 cfg->fc_type,
1171
							 cfg->fc_nlflags,
1172 1173 1174 1175 1176 1177 1178
							 tb->tb_id);
			if (err) {
				netdev_switch_fib_ipv4_abort(fi);
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1179
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1180

R
Robert Olsson 已提交
1181
			alias_free_mem_rcu(fa);
1182 1183 1184

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1185
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1186 1187
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1188

O
Olof Johansson 已提交
1189
			goto succeeded;
1190 1191 1192 1193 1194
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1195 1196
		if (fa_match)
			goto out;
1197

1198
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1199
			fa = fa_first;
1200 1201
	}
	err = -ENOENT;
1202
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1203 1204 1205
		goto out;

	err = -ENOBUFS;
1206
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1207
	if (!new_fa)
1208 1209 1210 1211
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1212
	new_fa->fa_type = cfg->fc_type;
1213
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1214
	new_fa->fa_slen = slen;
1215
	new_fa->tb_id = tb->tb_id;
1216

1217 1218
	/* (Optionally) offload fib entry to switch hardware. */
	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1219 1220 1221
					 cfg->fc_type,
					 cfg->fc_nlflags,
					 tb->tb_id);
1222 1223 1224 1225 1226
	if (err) {
		netdev_switch_fib_ipv4_abort(fi);
		goto out_free_new_fa;
	}

1227
	/* Insert new entry to the list. */
1228 1229
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1230
		goto out_sw_fib_del;
1231

1232 1233 1234
	if (!plen)
		tb->tb_num_default++;

1235
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1236
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1237
		  &cfg->fc_nlinfo, 0);
1238 1239
succeeded:
	return 0;
1240

1241 1242
out_sw_fib_del:
	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1243 1244
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1245 1246
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1247
err:
1248 1249 1250
	return err;
}

1251
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1252 1253 1254 1255 1256 1257
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1258
/* should be called with rcu_read_lock */
1259
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1260
		     struct fib_result *res, int fib_flags)
1261
{
1262
	struct trie *t = (struct trie *) tb->tb_data;
1263 1264 1265
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1266
	const t_key key = ntohl(flp->daddr);
1267
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1268
	struct fib_alias *fa;
1269
	unsigned long index;
1270
	t_key cindex;
O
Olof Johansson 已提交
1271

1272 1273 1274 1275
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1276
	if (!n)
1277
		return -EAGAIN;
1278 1279

#ifdef CONFIG_IP_FIB_TRIE_STATS
1280
	this_cpu_inc(stats->gets);
1281 1282
#endif

1283 1284
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1285
		index = get_cindex(key, n);
1286 1287 1288 1289 1290 1291

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1292
		 *   if (index >= (1ul << bits))
1293
		 *     we have a mismatch in skip bits and failed
1294 1295
		 *   else
		 *     we know the value is cindex
1296 1297 1298 1299
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1300
		 */
1301
		if (index >= (1ul << n->bits))
1302
			break;
1303

1304 1305
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1306
			goto found;
1307

1308 1309
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1310
		 */
1311
		if (n->slen > n->pos) {
1312 1313
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1314
		}
1315

1316
		n = get_child_rcu(n, index);
1317 1318 1319
		if (unlikely(!n))
			goto backtrace;
	}
1320

1321 1322 1323
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1324
		struct key_vector __rcu **cptr = n->tnode;
1325

1326 1327 1328
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1329
		 */
1330
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1331
			goto backtrace;
O
Olof Johansson 已提交
1332

1333 1334 1335
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1336

1337 1338 1339
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1340 1341
		 */

1342
		while ((n = rcu_dereference(*cptr)) == NULL) {
1343 1344
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1345 1346
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1347
#endif
1348 1349 1350 1351 1352 1353 1354 1355
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1356 1357 1358 1359 1360
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1361
					return -EAGAIN;
1362 1363 1364 1365
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1366
				pn = node_parent_rcu(pn);
1367 1368 1369 1370 1371 1372 1373
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1374
			cptr = &pn->tnode[cindex];
1375
		}
1376
	}
1377

1378
found:
1379 1380 1381
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1382
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1383 1384 1385
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1386

1387
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1388
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1389
			continue;
A
Alexander Duyck 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1399
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1400
			this_cpu_inc(stats->semantic_match_passed);
1401
#endif
A
Alexander Duyck 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1412
				continue;
A
Alexander Duyck 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1424
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1425
			this_cpu_inc(stats->semantic_match_passed);
1426
#endif
A
Alexander Duyck 已提交
1427
			return err;
1428
		}
1429
	}
1430
#ifdef CONFIG_IP_FIB_TRIE_STATS
1431
	this_cpu_inc(stats->semantic_match_miss);
1432 1433
#endif
	goto backtrace;
1434
}
1435
EXPORT_SYMBOL_GPL(fib_table_lookup);
1436

1437 1438
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1451
		put_child_root(tp, l->key, NULL);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1467
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1468 1469 1470
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1471
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1472 1473
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1474 1475
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1476

A
Alexander Duyck 已提交
1477
	if (plen > KEYLENGTH)
1478 1479
		return -EINVAL;

1480
	key = ntohl(cfg->fc_dst);
1481

1482
	if ((plen < KEYLENGTH) && (key << plen))
1483 1484
		return -EINVAL;

1485
	l = fib_find_node(t, &tp, key);
1486
	if (!l)
1487 1488
		return -ESRCH;

1489
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1490 1491 1492
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1493
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1494 1495

	fa_to_delete = NULL;
1496
	hlist_for_each_entry_from(fa, fa_list) {
1497 1498
		struct fib_info *fi = fa->fa_info;

1499 1500 1501
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1502 1503
			break;

1504 1505
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1506
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1507 1508
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1509 1510 1511
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1512 1513 1514 1515 1516
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1517 1518
	if (!fa_to_delete)
		return -ESRCH;
1519

1520 1521 1522
	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
				   cfg->fc_type, tb->tb_id);

1523
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1524
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1525

1526 1527 1528
	if (!plen)
		tb->tb_num_default--;

1529
	fib_remove_alias(t, tp, l, fa_to_delete);
1530

1531
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1532
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1533

1534 1535
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1536
	return 0;
1537 1538
}

1539
/* Scan for the next leaf starting at the provided key value */
1540
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1541
{
1542
	struct key_vector *pn, *n = *tn;
1543
	unsigned long cindex;
1544

1545
	/* this loop is meant to try and find the key in the trie */
1546
	do {
1547 1548
		/* record parent and next child index */
		pn = n;
1549
		cindex = key ? get_index(key, pn) : 0;
1550 1551 1552

		if (cindex >> pn->bits)
			break;
1553

1554
		/* descend into the next child */
1555
		n = get_child_rcu(pn, cindex++);
1556 1557 1558 1559 1560 1561 1562
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1563

1564
	/* this loop will search for the next leaf with a greater key */
1565
	while (!IS_TRIE(pn)) {
1566 1567 1568
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1569

1570 1571 1572 1573
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1574

1575
		/* grab the next available node */
1576
		n = get_child_rcu(pn, cindex++);
1577 1578
		if (!n)
			continue;
1579

1580 1581 1582
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1583

1584 1585 1586 1587
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1588

1589 1590 1591 1592
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1593
	*tn = pn;
1594
	return n;
1595 1596
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
					     NULL, l->key))
				goto out;
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1711 1712 1713 1714
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
1715 1716 1717
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
1718 1719
	struct fib_alias *fa;

1720 1721
	/* walk trie in reverse order */
	for (;;) {
1722
		unsigned char slen = 0;
1723
		struct key_vector *n;
1724

1725 1726
		if (!(cindex--)) {
			t_key pkey = pn->key;
1727

1728 1729 1730
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1731

1732 1733
			/* resize completed node */
			pn = resize(t, pn);
1734
			cindex = get_index(pkey, pn);
1735

1736 1737
			continue;
		}
1738

1739 1740 1741 1742
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1743

1744 1745 1746 1747
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1748

1749
			continue;
1750
		}
1751

1752 1753 1754
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;

1767
			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1768
				continue;
1769

1770 1771 1772 1773 1774
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
		}
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		} else {
			leaf_pull_suffix(pn, n);
		}
1785
	}
1786 1787
}

1788
/* Caller must hold RTNL. */
1789
int fib_table_flush(struct fib_table *tb)
1790
{
1791
	struct trie *t = (struct trie *)tb->tb_data;
1792 1793
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1794 1795
	struct hlist_node *tmp;
	struct fib_alias *fa;
1796
	int found = 0;
1797

1798 1799 1800 1801
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1802

1803 1804
		if (!(cindex--)) {
			t_key pkey = pn->key;
1805

1806 1807 1808
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1809

1810 1811 1812
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1813

1814 1815
			continue;
		}
1816

1817 1818 1819 1820
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1821

1822 1823 1824 1825
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1826

1827 1828
			continue;
		}
1829

1830 1831
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1832

1833 1834 1835 1836
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
				slen = fa->fa_slen;
				continue;
			}
1837

1838 1839 1840 1841
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
1842 1843 1844 1845
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1846 1847
		}

1848 1849
		/* update leaf slen */
		n->slen = slen;
1850

1851 1852 1853 1854 1855 1856
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		} else {
			leaf_pull_suffix(pn, n);
		}
1857
	}
1858

S
Stephen Hemminger 已提交
1859
	pr_debug("trie_flush found=%d\n", found);
1860 1861 1862
	return found;
}

1863
static void __trie_free_rcu(struct rcu_head *head)
1864
{
1865
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1866 1867 1868
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1869 1870
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1871
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1872 1873 1874
	kfree(tb);
}

1875 1876 1877 1878 1879
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1880
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1881
			     struct sk_buff *skb, struct netlink_callback *cb)
1882
{
A
Alexander Duyck 已提交
1883
	__be32 xkey = htonl(l->key);
1884
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1885
	int i, s_i;
1886

A
Alexander Duyck 已提交
1887
	s_i = cb->args[4];
1888 1889
	i = 0;

R
Robert Olsson 已提交
1890
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1891
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1892 1893 1894 1895 1896
		if (i < s_i) {
			i++;
			continue;
		}

1897 1898 1899 1900 1901
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

1902
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1903 1904 1905 1906
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1907
				  xkey,
1908
				  KEYLENGTH - fa->fa_slen,
1909
				  fa->fa_tos,
1910
				  fa->fa_info, NLM_F_MULTI) < 0) {
1911
			cb->args[4] = i;
1912 1913
			return -1;
		}
1914
		i++;
1915
	}
1916

1917
	cb->args[4] = i;
1918 1919 1920
	return skb->len;
}

1921
/* rcu_read_lock needs to be hold by caller from readside */
1922 1923
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1924
{
1925
	struct trie *t = (struct trie *)tb->tb_data;
1926
	struct key_vector *l, *tp = t->kv;
1927 1928 1929
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1930 1931
	int count = cb->args[2];
	t_key key = cb->args[3];
1932

1933
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1934
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1935 1936
			cb->args[3] = key;
			cb->args[2] = count;
1937
			return -1;
1938
		}
1939

1940
		++count;
1941 1942
		key = l->key + 1;

1943 1944
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1945 1946 1947 1948

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1949
	}
1950 1951 1952 1953

	cb->args[3] = key;
	cb->args[2] = count;

1954 1955 1956
	return skb->len;
}

1957
void __init fib_trie_init(void)
1958
{
1959 1960
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1961 1962 1963
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1964
					   LEAF_SIZE,
1965
					   0, SLAB_PANIC, NULL);
1966
}
1967

1968
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1969 1970 1971
{
	struct fib_table *tb;
	struct trie *t;
1972 1973 1974 1975
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
1976

1977
	tb = kzalloc(sz, GFP_KERNEL);
1978
	if (!tb)
1979 1980 1981
		return NULL;

	tb->tb_id = id;
1982
	tb->tb_default = -1;
1983
	tb->tb_num_default = 0;
1984 1985 1986 1987
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
1988 1989

	t = (struct trie *) tb->tb_data;
1990 1991
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
1992 1993 1994 1995 1996 1997 1998
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1999 2000 2001 2002

	return tb;
}

2003 2004 2005
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2006
	struct seq_net_private p;
2007
	struct fib_table *tb;
2008
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2009 2010
	unsigned int index;
	unsigned int depth;
2011
};
2012

2013
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2014
{
2015
	unsigned long cindex = iter->index;
2016 2017
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2018

2019 2020
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2021

2022 2023 2024 2025 2026 2027 2028
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2029
			if (IS_LEAF(n)) {
2030 2031
				iter->tnode = pn;
				iter->index = cindex;
2032 2033
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2034
				iter->tnode = n;
2035 2036 2037
				iter->index = 0;
				++iter->depth;
			}
2038

2039 2040
			return n;
		}
2041

2042 2043 2044 2045
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2046
		--iter->depth;
2047
	}
2048

2049 2050 2051 2052
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2053
	return NULL;
2054 2055
}

2056 2057
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2058
{
2059
	struct key_vector *n, *pn = t->kv;
2060

S
Stephen Hemminger 已提交
2061
	if (!t)
2062 2063
		return NULL;

2064
	n = rcu_dereference(pn->tnode[0]);
2065
	if (!n)
2066
		return NULL;
2067

2068
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2069
		iter->tnode = n;
2070 2071 2072
		iter->index = 0;
		iter->depth = 1;
	} else {
2073
		iter->tnode = pn;
2074 2075
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2076
	}
2077 2078

	return n;
2079
}
O
Olof Johansson 已提交
2080

2081 2082
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2083
	struct key_vector *n;
2084
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2085

2086
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2087

2088
	rcu_read_lock();
2089
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2090
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2091
			struct fib_alias *fa;
2092

2093 2094 2095 2096
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2097

A
Alexander Duyck 已提交
2098
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2099
				++s->prefixes;
2100 2101
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2102 2103
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2104
			s->nullpointers += tn_info(n)->empty_children;
2105 2106
		}
	}
R
Robert Olsson 已提交
2107
	rcu_read_unlock();
2108 2109
}

2110 2111 2112 2113
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2114
{
E
Eric Dumazet 已提交
2115
	unsigned int i, max, pointers, bytes, avdepth;
2116

2117 2118 2119 2120
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2121

2122 2123
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2124
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2125

2126
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2127
	bytes = LEAF_SIZE * stat->leaves;
2128 2129

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2130
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2131

2132
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2133
	bytes += TNODE_SIZE(0) * stat->tnodes;
2134

R
Robert Olsson 已提交
2135 2136
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2137
		max--;
2138

2139
	pointers = 0;
2140
	for (i = 1; i < max; i++)
2141
		if (stat->nodesizes[i] != 0) {
2142
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2143 2144 2145
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2146
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2147

2148
	bytes += sizeof(struct key_vector *) * pointers;
2149 2150
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2151
}
R
Robert Olsson 已提交
2152

2153
#ifdef CONFIG_IP_FIB_TRIE_STATS
2154
static void trie_show_usage(struct seq_file *seq,
2155
			    const struct trie_use_stats __percpu *stats)
2156
{
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2172
	seq_printf(seq, "\nCounters:\n---------\n");
2173 2174
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2175
	seq_printf(seq, "semantic match passed = %u\n",
2176 2177 2178 2179
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2180
}
2181 2182
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2183
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2184
{
2185 2186 2187 2188 2189 2190
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2191
}
2192

2193

2194 2195
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2196
	struct net *net = (struct net *)seq->private;
2197
	unsigned int h;
2198

2199
	seq_printf(seq,
2200 2201
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2202
		   LEAF_SIZE, TNODE_SIZE(0));
2203

2204 2205 2206 2207
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2208
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2209 2210
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2211

2212 2213 2214 2215 2216 2217 2218 2219
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2220
			trie_show_usage(seq, t->stats);
2221 2222 2223
#endif
		}
	}
2224

2225
	return 0;
2226 2227
}

2228
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2229
{
2230
	return single_open_net(inode, file, fib_triestat_seq_show);
2231 2232
}

2233
static const struct file_operations fib_triestat_fops = {
2234 2235 2236 2237
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2238
	.release = single_release_net,
2239 2240
};

2241
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2242
{
2243 2244
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2245
	loff_t idx = 0;
2246
	unsigned int h;
2247

2248 2249 2250
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2251

2252
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2253
			struct key_vector *n;
2254 2255 2256 2257 2258 2259 2260 2261 2262

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2263
	}
2264

2265 2266 2267
	return NULL;
}

2268
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2269
	__acquires(RCU)
2270
{
2271
	rcu_read_lock();
2272
	return fib_trie_get_idx(seq, *pos);
2273 2274
}

2275
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2276
{
2277
	struct fib_trie_iter *iter = seq->private;
2278
	struct net *net = seq_file_net(seq);
2279 2280 2281
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2282
	struct key_vector *n;
2283

2284
	++*pos;
2285 2286 2287 2288
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2289

2290 2291
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2292
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2293 2294 2295 2296 2297
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2298

2299 2300 2301
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2302
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2303 2304 2305 2306 2307
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2308
	return NULL;
2309 2310 2311 2312

found:
	iter->tb = tb;
	return n;
2313
}
2314

2315
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2316
	__releases(RCU)
2317
{
2318 2319
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2320

2321 2322
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2323 2324
	while (n-- > 0)
		seq_puts(seq, "   ");
2325
}
2326

2327
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2328
{
S
Stephen Hemminger 已提交
2329
	switch (s) {
2330 2331 2332 2333 2334 2335
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2336
		snprintf(buf, len, "scope=%d", s);
2337 2338 2339
		return buf;
	}
}
2340

2341
static const char *const rtn_type_names[__RTN_MAX] = {
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2355

E
Eric Dumazet 已提交
2356
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2357 2358 2359
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2360
	snprintf(buf, len, "type %u", t);
2361
	return buf;
2362 2363
}

2364 2365
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2366
{
2367
	const struct fib_trie_iter *iter = seq->private;
2368
	struct key_vector *n = v;
2369

2370
	if (IS_TRIE(node_parent_rcu(n)))
2371
		fib_table_print(seq, iter->tb);
2372

2373
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2374
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2375

2376 2377 2378
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2379 2380
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2381
	} else {
A
Alexander Duyck 已提交
2382
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2383
		struct fib_alias *fa;
2384 2385

		seq_indent(seq, iter->depth);
2386
		seq_printf(seq, "  |-- %pI4\n", &val);
2387

A
Alexander Duyck 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2401
		}
2402
	}
2403

2404 2405 2406
	return 0;
}

2407
static const struct seq_operations fib_trie_seq_ops = {
2408 2409 2410 2411
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2412 2413
};

2414
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2415
{
2416 2417
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2418 2419
}

2420
static const struct file_operations fib_trie_fops = {
2421 2422 2423 2424
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2425
	.release = seq_release_net,
2426 2427
};

2428 2429
struct fib_route_iter {
	struct seq_net_private p;
2430
	struct fib_table *main_tb;
2431
	struct key_vector *tnode;
2432 2433 2434 2435
	loff_t	pos;
	t_key	key;
};

2436 2437
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2438
{
2439
	struct fib_table *tb = iter->main_tb;
2440
	struct key_vector *l, **tp = &iter->tnode;
2441 2442
	struct trie *t;
	t_key key;
2443

2444 2445
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2446
		pos -= iter->pos;
2447 2448 2449
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
2450
		iter->tnode = t->kv;
2451
		iter->pos = 0;
2452
		key = 0;
2453 2454
	}

2455 2456
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2457
		iter->pos++;
2458 2459 2460 2461 2462 2463 2464 2465 2466

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2467 2468 2469
	}

	if (l)
2470
		iter->key = key;	/* remember it */
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2482
	struct trie *t;
2483 2484

	rcu_read_lock();
2485

2486
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2487 2488 2489
	if (!tb)
		return NULL;

2490 2491 2492 2493 2494 2495
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
2496
	iter->tnode = t->kv;
2497 2498 2499 2500
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2501 2502 2503 2504 2505
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2506
	struct key_vector *l = NULL;
2507
	t_key key = iter->key;
2508 2509

	++*pos;
2510 2511 2512 2513 2514 2515 2516

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2517
		iter->pos++;
2518 2519
	} else {
		iter->pos = 0;
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2531
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2532
{
E
Eric Dumazet 已提交
2533
	unsigned int flags = 0;
2534

E
Eric Dumazet 已提交
2535 2536
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2537 2538
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2539
	if (mask == htonl(0xFFFFFFFF))
2540 2541 2542
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2543 2544
}

2545 2546 2547
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2548
 *	and needs to be same as fib_hash output to avoid breaking
2549 2550 2551
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2552
{
2553 2554
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2555
	struct fib_alias *fa;
2556
	struct key_vector *l = v;
2557
	__be32 prefix;
2558

2559 2560 2561 2562 2563 2564
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2565

2566 2567
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2568 2569 2570 2571
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2572

A
Alexander Duyck 已提交
2573 2574 2575
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2576

2577 2578 2579
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2601

A
Alexander Duyck 已提交
2602
		seq_pad(seq, '\n');
2603 2604 2605 2606 2607
	}

	return 0;
}

2608
static const struct seq_operations fib_route_seq_ops = {
2609 2610 2611
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2612
	.show   = fib_route_seq_show,
2613 2614
};

2615
static int fib_route_seq_open(struct inode *inode, struct file *file)
2616
{
2617
	return seq_open_net(inode, file, &fib_route_seq_ops,
2618
			    sizeof(struct fib_route_iter));
2619 2620
}

2621
static const struct file_operations fib_route_fops = {
2622 2623 2624 2625
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2626
	.release = seq_release_net,
2627 2628
};

2629
int __net_init fib_proc_init(struct net *net)
2630
{
2631
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2632 2633
		goto out1;

2634 2635
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2636 2637
		goto out2;

2638
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2639 2640
		goto out3;

2641
	return 0;
2642 2643

out3:
2644
	remove_proc_entry("fib_triestat", net->proc_net);
2645
out2:
2646
	remove_proc_entry("fib_trie", net->proc_net);
2647 2648
out1:
	return -ENOMEM;
2649 2650
}

2651
void __net_exit fib_proc_exit(struct net *net)
2652
{
2653 2654 2655
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2656 2657 2658
}

#endif /* CONFIG_PROC_FS */