fib_trie.c 63.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <linux/vmalloc.h>
76
#include <net/net_namespace.h>
77 78 79 80 81 82
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
83
#include <net/switchdev.h>
84 85
#include "fib_lookup.h"

R
Robert Olsson 已提交
86
#define MAX_STAT_DEPTH 32
87

88 89
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
90 91 92

typedef unsigned int t_key;

93 94 95
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
96

97
struct key_vector {
98 99
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
100
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
101
	unsigned char slen;
A
Alexander Duyck 已提交
102
	union {
103
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
104
		struct hlist_head leaf;
105
		/* This array is valid if (pos | bits) > 0 (TNODE) */
106
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
107
	};
108 109
};

110
struct tnode {
111
	struct rcu_head rcu;
112 113
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
114
	struct key_vector __rcu *parent;
115
	struct key_vector kv[1];
116
#define tn_bits kv[0].bits
117 118 119
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
120 121
#define LEAF_SIZE	TNODE_SIZE(1)

122 123 124 125 126 127 128
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
129
	unsigned int resize_node_skipped;
130 131 132 133 134 135 136 137 138
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
139
	unsigned int prefixes;
R
Robert Olsson 已提交
140
	unsigned int nodesizes[MAX_STAT_DEPTH];
141
};
142 143

struct trie {
144
	struct key_vector kv[1];
145
#ifdef CONFIG_IP_FIB_TRIE_STATS
146
	struct trie_use_stats __percpu *stats;
147 148 149
#endif
};

150
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
151 152 153 154 155 156 157 158
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
159

160
static struct kmem_cache *fn_alias_kmem __read_mostly;
161
static struct kmem_cache *trie_leaf_kmem __read_mostly;
162

163 164 165 166 167
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

168
/* caller must hold RTNL */
169
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
170
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
171

172
/* caller must hold RCU read lock or RTNL */
173
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
174
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
175

176
/* wrapper for rcu_assign_pointer */
177
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
178
{
A
Alexander Duyck 已提交
179
	if (n)
180
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
181 182
}

183
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
184 185 186

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
187
 */
188
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
189
{
190
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
191
}
R
Robert Olsson 已提交
192

193 194
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

195 196 197 198
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

199 200 201
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

202 203 204
	return index >> kv->pos;
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
263

264 265
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
266
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
267
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
268 269

static void __alias_free_mem(struct rcu_head *head)
270
{
R
Robert Olsson 已提交
271 272
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
273 274
}

R
Robert Olsson 已提交
275
static inline void alias_free_mem_rcu(struct fib_alias *fa)
276
{
R
Robert Olsson 已提交
277 278
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
279

280
#define TNODE_KMALLOC_MAX \
281
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
282
#define TNODE_VMALLOC_MAX \
283
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
284

285
static void __node_free_rcu(struct rcu_head *head)
286
{
287
	struct tnode *n = container_of(head, struct tnode, rcu);
288

289
	if (!n->tn_bits)
290
		kmem_cache_free(trie_leaf_kmem, n);
291
	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
292 293 294
		kfree(n);
	else
		vfree(n);
295 296
}

297
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
298

299
static struct tnode *tnode_alloc(int bits)
300
{
301 302 303 304 305 306 307 308 309
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
310
	if (size <= PAGE_SIZE)
311
		return kzalloc(size, GFP_KERNEL);
312
	else
313
		return vzalloc(size);
314
}
R
Robert Olsson 已提交
315

316
static inline void empty_child_inc(struct key_vector *n)
317
{
318
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
319 320
}

321
static inline void empty_child_dec(struct key_vector *n)
322
{
323
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
324 325
}

326
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
327
{
328 329
	struct key_vector *l;
	struct tnode *kv;
330

331
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
332 333 334 335
	if (!kv)
		return NULL;

	/* initialize key vector */
336
	l = kv->kv;
337 338 339 340 341 342 343 344 345
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
346 347 348
	return l;
}

349
static struct key_vector *tnode_new(t_key key, int pos, int bits)
350
{
351
	unsigned int shift = pos + bits;
352 353
	struct key_vector *tn;
	struct tnode *tnode;
354 355 356

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
357

358
	tnode = tnode_alloc(bits);
359 360 361
	if (!tnode)
		return NULL;

362 363 364
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

365
	if (bits == KEYLENGTH)
366
		tnode->full_children = 1;
367
	else
368
		tnode->empty_children = 1ul << bits;
369

370
	tn = tnode->kv;
371 372 373 374 375
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

376 377 378
	return tn;
}

379
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
380 381
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
382
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
383
{
384
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
385 386
}

387 388 389
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
390 391
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
392
{
393
	struct key_vector *chi = get_child(tn, i);
394
	int isfull, wasfull;
395

396
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
397

398
	/* update emptyChildren, overflow into fullChildren */
399
	if (!n && chi)
400
		empty_child_inc(tn);
401
	if (n && !chi)
402
		empty_child_dec(tn);
403

404
	/* update fullChildren */
405
	wasfull = tnode_full(tn, chi);
406
	isfull = tnode_full(tn, n);
407

408
	if (wasfull && !isfull)
409
		tn_info(tn)->full_children--;
410
	else if (!wasfull && isfull)
411
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
412

413 414 415
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

416
	rcu_assign_pointer(tn->tnode[i], n);
417 418
}

419
static void update_children(struct key_vector *tn)
420 421 422 423
{
	unsigned long i;

	/* update all of the child parent pointers */
424
	for (i = child_length(tn); i;) {
425
		struct key_vector *inode = get_child(tn, --i);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

441 442
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
443
{
444 445
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
446
	else
447
		put_child(tp, get_index(key, tp), n);
448 449
}

450
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
451
{
452
	tn_info(tn)->rcu.next = NULL;
453 454
}

455 456
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
457
{
458 459
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
460
}
E
Eric Dumazet 已提交
461

462
static void tnode_free(struct key_vector *tn)
463
{
464
	struct callback_head *head = &tn_info(tn)->rcu;
465 466 467

	while (head) {
		head = head->next;
468
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
469 470
		node_free(tn);

471
		tn = container_of(head, struct tnode, rcu)->kv;
472 473 474 475 476
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
477 478 479
	}
}

480 481 482
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
483
{
484
	struct key_vector *tp = node_parent(oldtnode);
485 486 487 488
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
489
	put_child_root(tp, tn->key, tn);
490 491 492 493 494 495 496 497

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
498
	for (i = child_length(tn); i;) {
499
		struct key_vector *inode = get_child(tn, --i);
500 501 502

		/* resize child node */
		if (tnode_full(tn, inode))
503
			tn = resize(t, inode);
504
	}
505

506
	return tp;
507 508
}

509 510
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
511
{
512
	struct key_vector *tn;
513
	unsigned long i;
514
	t_key m;
515

S
Stephen Hemminger 已提交
516
	pr_debug("In inflate\n");
517

518
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
519
	if (!tn)
520
		goto notnode;
521

522 523 524
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

525 526 527 528
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
529
	 */
530
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
531
		struct key_vector *inode = get_child(oldtnode, --i);
532
		struct key_vector *node0, *node1;
533
		unsigned long j, k;
534

535
		/* An empty child */
536
		if (!inode)
537 538 539
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
540
		if (!tnode_full(oldtnode, inode)) {
541
			put_child(tn, get_index(inode->key, tn), inode);
542 543 544
			continue;
		}

545 546 547
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

548 549
		/* An internal node with two children */
		if (inode->bits == 1) {
550 551
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
552
			continue;
553 554
		}

O
Olof Johansson 已提交
555
		/* We will replace this node 'inode' with two new
556
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
557 558 559 560 561
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
562
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
563 564
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
565 566 567
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
568
		 */
569 570 571
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
572
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
573

574
		tnode_free_append(tn, node1);
575 576 577 578 579
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
580
		for (k = child_length(inode), j = k / 2; j;) {
581 582 583 584
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
585
		}
586

587 588 589
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
590

591 592 593 594
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
595

596
	/* setup the parent pointers into and out of this node */
597
	return replace(t, oldtnode, tn);
598
nomem:
599 600
	/* all pointers should be clean so we are done */
	tnode_free(tn);
601 602
notnode:
	return NULL;
603 604
}

605 606
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
607
{
608
	struct key_vector *tn;
609
	unsigned long i;
610

S
Stephen Hemminger 已提交
611
	pr_debug("In halve\n");
612

613
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
614
	if (!tn)
615
		goto notnode;
616

617 618 619
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

620 621 622 623
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
624
	 */
625
	for (i = child_length(oldtnode); i;) {
626 627
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
628
		struct key_vector *inode;
629

630 631 632 633 634
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
635

636
		/* Two nonempty children */
637
		inode = tnode_new(node0->key, oldtnode->pos, 1);
638 639
		if (!inode)
			goto nomem;
640
		tnode_free_append(tn, inode);
641

642 643 644 645 646 647 648
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
649
	}
650

651
	/* setup the parent pointers into and out of this node */
652 653 654 655 656 657
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
658 659
}

660 661
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
662
{
663
	struct key_vector *n, *tp;
664 665 666
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
667
	for (n = NULL, i = child_length(oldtnode); !n && i;)
668
		n = get_child(oldtnode, --i);
669 670 671

	/* compress one level */
	tp = node_parent(oldtnode);
672
	put_child_root(tp, oldtnode->key, n);
673 674 675 676
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
677 678

	return tp;
679 680
}

681
static unsigned char update_suffix(struct key_vector *tn)
682 683 684 685 686 687 688 689 690
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
691
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
692
		struct key_vector *n = get_child(tn, i);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

716 717 718 719 720 721 722 723
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
724
 * child_length() and instead of multiplying by 2 (since the
725 726 727 728
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
729
 * The left-hand side may look a bit weird: child_length(tn)
730 731 732 733 734 735 736 737 738
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
739
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
740 741
 *     tn->full_children;
 *
742
 * new_child_length = child_length(tn) * 2;
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
759
 * 100 * (child_length(tn) - tn->empty_children +
760 761 762
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
763
 * 100 * (child_length(tn) - tn->empty_children +
764
 *    tn->full_children) >=
765
 *      inflate_threshold * child_length(tn) * 2
766 767
 *
 * shorten again:
768
 * 50 * (tn->full_children + child_length(tn) -
769
 *    tn->empty_children) >= inflate_threshold *
770
 *    child_length(tn)
771 772
 *
 */
773
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
774
{
775
	unsigned long used = child_length(tn);
776 777 778
	unsigned long threshold = used;

	/* Keep root node larger */
779
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
780 781
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
782

783 784 785
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
786 787
}

788
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
789
{
790
	unsigned long used = child_length(tn);
791 792 793
	unsigned long threshold = used;

	/* Keep root node larger */
794
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
795
	used -= tn_info(tn)->empty_children;
796

797 798 799 800 801
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

802
static inline bool should_collapse(struct key_vector *tn)
803
{
804
	unsigned long used = child_length(tn);
805

806
	used -= tn_info(tn)->empty_children;
807 808

	/* account for bits == KEYLENGTH case */
809
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
810 811 812 813
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
814 815
}

816
#define MAX_WORK 10
817
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
818
{
819 820 821
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
822
	struct key_vector *tp = node_parent(tn);
823
	unsigned long cindex = get_index(tn->key, tp);
824
	int max_work = MAX_WORK;
825 826 827 828

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

829 830 831 832
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
833
	BUG_ON(tn != get_child(tp, cindex));
834

835 836
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
837
	 */
838
	while (should_inflate(tp, tn) && max_work) {
839 840
		tp = inflate(t, tn);
		if (!tp) {
841
#ifdef CONFIG_IP_FIB_TRIE_STATS
842
			this_cpu_inc(stats->resize_node_skipped);
843 844 845
#endif
			break;
		}
846

847
		max_work--;
848
		tn = get_child(tp, cindex);
849 850
	}

851 852 853
	/* update parent in case inflate failed */
	tp = node_parent(tn);

854 855
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
856
		return tp;
857

858
	/* Halve as long as the number of empty children in this
859 860
	 * node is above threshold.
	 */
861
	while (should_halve(tp, tn) && max_work) {
862 863
		tp = halve(t, tn);
		if (!tp) {
864
#ifdef CONFIG_IP_FIB_TRIE_STATS
865
			this_cpu_inc(stats->resize_node_skipped);
866 867 868 869
#endif
			break;
		}

870
		max_work--;
871
		tn = get_child(tp, cindex);
872
	}
873 874

	/* Only one child remains */
875 876 877
	if (should_collapse(tn))
		return collapse(t, tn);

878
	/* update parent in case halve failed */
879
	tp = node_parent(tn);
880 881 882

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
883
		return tp;
884 885 886 887 888

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

889
		if (slen > tp->slen)
890
			tp->slen = slen;
891
	}
892

893
	return tp;
894 895
}

896
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
897
{
898
	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
899 900 901 902 903 904
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

905
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
906
{
907 908 909
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
910
	while (tn->slen < l->slen) {
911 912 913 914 915
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
916
/* rcu_read_lock needs to be hold by caller from readside */
917 918
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
919
{
920 921 922 923 924 925 926 927 928
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
929

930
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
931 932 933 934 935 936

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
937
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
938
		 *     we have a mismatch in skip bits and failed
939 940
		 *   else
		 *     we know the value is cindex
941 942 943 944
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
945
		 */
946 947 948 949
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
950

951 952
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
953

954
	*tp = pn;
955

A
Alexander Duyck 已提交
956
	return n;
957 958
}

959 960 961
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
962
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
963
					u8 tos, u32 prio, u32 tb_id)
964 965 966 967 968 969
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

970
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
971 972 973 974
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
975 976 977 978
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
979 980 981 982 983 984 985 986 987
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

988
static void trie_rebalance(struct trie *t, struct key_vector *tn)
989
{
990 991
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
992 993
}

994
static int fib_insert_node(struct trie *t, struct key_vector *tp,
995
			   struct fib_alias *new, t_key key)
996
{
997
	struct key_vector *n, *l;
998

999
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
1000
	if (!l)
1001
		goto noleaf;
1002 1003

	/* retrieve child from parent node */
1004
	n = get_child(tp, get_index(key, tp));
1005

1006 1007 1008 1009 1010 1011 1012
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1013
		struct key_vector *tn;
1014

1015
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1016 1017
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1018

1019 1020 1021
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1022

1023
		/* start adding routes into the node */
1024
		put_child_root(tp, key, tn);
1025
		node_set_parent(n, tn);
1026

1027
		/* parent now has a NULL spot where the leaf can go */
1028
		tp = tn;
1029
	}
O
Olof Johansson 已提交
1030

1031
	/* Case 3: n is NULL, and will just insert a new leaf */
1032
	NODE_INIT_PARENT(l, tp);
1033
	put_child_root(tp, key, l);
1034 1035 1036
	trie_rebalance(t, tp);

	return 0;
1037 1038 1039 1040
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1041 1042
}

1043 1044
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1045 1046 1047 1048 1049 1050 1051
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1052
	} else {
1053 1054 1055 1056 1057
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1058 1059 1060
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1061 1062 1063 1064 1065 1066 1067
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1068
	}
R
Robert Olsson 已提交
1069

1070 1071 1072 1073 1074 1075 1076
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1077 1078
}

1079
/* Caller must hold RTNL. */
1080
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1081
{
1082
	struct trie *t = (struct trie *)tb->tb_data;
1083
	struct fib_alias *fa, *new_fa;
1084
	struct key_vector *l, *tp;
1085
	unsigned int nlflags = 0;
1086
	struct fib_info *fi;
A
Alexander Duyck 已提交
1087 1088
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1089
	u8 tos = cfg->fc_tos;
1090
	u32 key;
1091 1092
	int err;

1093
	if (plen > KEYLENGTH)
1094 1095
		return -EINVAL;

1096
	key = ntohl(cfg->fc_dst);
1097

1098
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1099

1100
	if ((plen < KEYLENGTH) && (key << plen))
1101 1102
		return -EINVAL;

1103 1104 1105
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1106
		goto err;
1107
	}
1108

1109
	l = fib_find_node(t, &tp, key);
1110 1111
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1112 1113 1114 1115 1116 1117

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1118 1119
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1120 1121
	 */

1122 1123 1124
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1125 1126

		err = -EEXIST;
1127
		if (cfg->fc_nlflags & NLM_F_EXCL)
1128 1129
			goto out;

1130 1131 1132 1133 1134 1135 1136
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1137
		hlist_for_each_entry_from(fa, fa_list) {
1138 1139 1140
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1151
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1152 1153 1154
			struct fib_info *fi_drop;
			u8 state;

1155 1156 1157 1158
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1159
				goto out;
1160
			}
R
Robert Olsson 已提交
1161
			err = -ENOBUFS;
1162
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1163
			if (!new_fa)
R
Robert Olsson 已提交
1164
				goto out;
1165 1166

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1167 1168
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1169
			new_fa->fa_type = cfg->fc_type;
1170
			state = fa->fa_state;
1171
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1172
			new_fa->fa_slen = fa->fa_slen;
1173
			new_fa->tb_id = tb->tb_id;
1174

1175 1176 1177 1178 1179
			err = switchdev_fib_ipv4_add(key, plen, fi,
						     new_fa->fa_tos,
						     cfg->fc_type,
						     cfg->fc_nlflags,
						     tb->tb_id);
1180
			if (err) {
1181
				switchdev_fib_ipv4_abort(fi);
1182 1183 1184 1185
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1186
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1187

R
Robert Olsson 已提交
1188
			alias_free_mem_rcu(fa);
1189 1190 1191

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1192
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1193 1194
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1195

O
Olof Johansson 已提交
1196
			goto succeeded;
1197 1198 1199 1200 1201
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1202 1203
		if (fa_match)
			goto out;
1204

1205 1206 1207
		if (cfg->fc_nlflags & NLM_F_APPEND)
			nlflags = NLM_F_APPEND;
		else
1208
			fa = fa_first;
1209 1210
	}
	err = -ENOENT;
1211
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1212 1213 1214
		goto out;

	err = -ENOBUFS;
1215
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1216
	if (!new_fa)
1217 1218 1219 1220
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1221
	new_fa->fa_type = cfg->fc_type;
1222
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1223
	new_fa->fa_slen = slen;
1224
	new_fa->tb_id = tb->tb_id;
1225

1226
	/* (Optionally) offload fib entry to switch hardware. */
1227 1228
	err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
				     cfg->fc_nlflags, tb->tb_id);
1229
	if (err) {
1230
		switchdev_fib_ipv4_abort(fi);
1231 1232 1233
		goto out_free_new_fa;
	}

1234
	/* Insert new entry to the list. */
1235 1236
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1237
		goto out_sw_fib_del;
1238

1239 1240 1241
	if (!plen)
		tb->tb_num_default++;

1242
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1243
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1244
		  &cfg->fc_nlinfo, nlflags);
1245 1246
succeeded:
	return 0;
1247

1248
out_sw_fib_del:
1249
	switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1250 1251
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1252 1253
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1254
err:
1255 1256 1257
	return err;
}

1258
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1259 1260 1261 1262 1263 1264
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1265
/* should be called with rcu_read_lock */
1266
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1267
		     struct fib_result *res, int fib_flags)
1268
{
1269
	struct trie *t = (struct trie *) tb->tb_data;
1270 1271 1272
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1273
	const t_key key = ntohl(flp->daddr);
1274
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1275
	struct fib_alias *fa;
1276
	unsigned long index;
1277
	t_key cindex;
O
Olof Johansson 已提交
1278

1279 1280 1281 1282
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1283
	if (!n)
1284
		return -EAGAIN;
1285 1286

#ifdef CONFIG_IP_FIB_TRIE_STATS
1287
	this_cpu_inc(stats->gets);
1288 1289
#endif

1290 1291
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1292
		index = get_cindex(key, n);
1293 1294 1295 1296 1297 1298

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1299
		 *   if (index >= (1ul << bits))
1300
		 *     we have a mismatch in skip bits and failed
1301 1302
		 *   else
		 *     we know the value is cindex
1303 1304 1305 1306
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1307
		 */
1308
		if (index >= (1ul << n->bits))
1309
			break;
1310

1311 1312
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1313
			goto found;
1314

1315 1316
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1317
		 */
1318
		if (n->slen > n->pos) {
1319 1320
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1321
		}
1322

1323
		n = get_child_rcu(n, index);
1324 1325 1326
		if (unlikely(!n))
			goto backtrace;
	}
1327

1328 1329 1330
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1331
		struct key_vector __rcu **cptr = n->tnode;
1332

1333 1334 1335
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1336
		 */
1337
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1338
			goto backtrace;
O
Olof Johansson 已提交
1339

1340 1341 1342
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1343

1344 1345 1346
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1347 1348
		 */

1349
		while ((n = rcu_dereference(*cptr)) == NULL) {
1350 1351
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1352 1353
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1354
#endif
1355 1356 1357 1358 1359 1360 1361 1362
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1363 1364 1365 1366 1367
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1368
					return -EAGAIN;
1369 1370 1371 1372
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1373
				pn = node_parent_rcu(pn);
1374 1375 1376 1377 1378 1379 1380
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1381
			cptr = &pn->tnode[cindex];
1382
		}
1383
	}
1384

1385
found:
1386 1387 1388
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1389
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1390 1391 1392
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1393

1394
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1395
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1396
			continue;
A
Alexander Duyck 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1406
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1407
			this_cpu_inc(stats->semantic_match_passed);
1408
#endif
A
Alexander Duyck 已提交
1409 1410 1411 1412 1413 1414
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1415
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1416 1417 1418

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1419 1420 1421 1422 1423
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
A
Alexander Duyck 已提交
1424
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1425
				continue;
A
Alexander Duyck 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1437
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1438
			this_cpu_inc(stats->semantic_match_passed);
1439
#endif
A
Alexander Duyck 已提交
1440
			return err;
1441
		}
1442
	}
1443
#ifdef CONFIG_IP_FIB_TRIE_STATS
1444
	this_cpu_inc(stats->semantic_match_miss);
1445 1446
#endif
	goto backtrace;
1447
}
1448
EXPORT_SYMBOL_GPL(fib_table_lookup);
1449

1450 1451
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1464
		put_child_root(tp, l->key, NULL);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1480
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1481 1482 1483
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1484
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1485 1486
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1487 1488
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1489

A
Alexander Duyck 已提交
1490
	if (plen > KEYLENGTH)
1491 1492
		return -EINVAL;

1493
	key = ntohl(cfg->fc_dst);
1494

1495
	if ((plen < KEYLENGTH) && (key << plen))
1496 1497
		return -EINVAL;

1498
	l = fib_find_node(t, &tp, key);
1499
	if (!l)
1500 1501
		return -ESRCH;

1502
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1503 1504 1505
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1506
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1507 1508

	fa_to_delete = NULL;
1509
	hlist_for_each_entry_from(fa, fa_list) {
1510 1511
		struct fib_info *fi = fa->fa_info;

1512 1513 1514
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1515 1516
			break;

1517 1518
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1519
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1520 1521
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1522 1523 1524
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1525 1526 1527 1528 1529
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1530 1531
	if (!fa_to_delete)
		return -ESRCH;
1532

1533 1534
	switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
			       cfg->fc_type, tb->tb_id);
1535

1536
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1537
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1538

1539 1540 1541
	if (!plen)
		tb->tb_num_default--;

1542
	fib_remove_alias(t, tp, l, fa_to_delete);
1543

1544
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1545
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1546

1547 1548
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1549
	return 0;
1550 1551
}

1552
/* Scan for the next leaf starting at the provided key value */
1553
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1554
{
1555
	struct key_vector *pn, *n = *tn;
1556
	unsigned long cindex;
1557

1558
	/* this loop is meant to try and find the key in the trie */
1559
	do {
1560 1561
		/* record parent and next child index */
		pn = n;
1562
		cindex = key ? get_index(key, pn) : 0;
1563 1564 1565

		if (cindex >> pn->bits)
			break;
1566

1567
		/* descend into the next child */
1568
		n = get_child_rcu(pn, cindex++);
1569 1570 1571 1572 1573 1574 1575
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1576

1577
	/* this loop will search for the next leaf with a greater key */
1578
	while (!IS_TRIE(pn)) {
1579 1580 1581
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1582

1583 1584 1585 1586
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1587

1588
		/* grab the next available node */
1589
		n = get_child_rcu(pn, cindex++);
1590 1591
		if (!n)
			continue;
1592

1593 1594 1595
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1596

1597 1598 1599 1600
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1601

1602 1603 1604 1605
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1606
	*tn = pn;
1607
	return n;
1608 1609
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
					     NULL, l->key))
				goto out;
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1724 1725 1726 1727
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
1728 1729 1730
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
1731 1732
	struct fib_alias *fa;

1733 1734
	/* walk trie in reverse order */
	for (;;) {
1735
		unsigned char slen = 0;
1736
		struct key_vector *n;
1737

1738 1739
		if (!(cindex--)) {
			t_key pkey = pn->key;
1740

1741 1742 1743
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1744

1745 1746
			/* resize completed node */
			pn = resize(t, pn);
1747
			cindex = get_index(pkey, pn);
1748

1749 1750
			continue;
		}
1751

1752 1753 1754 1755
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1756

1757 1758 1759 1760
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1761

1762
			continue;
1763
		}
1764

1765 1766 1767
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;

1780
			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1781
				continue;
1782

1783 1784 1785
			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
					       fi, fa->fa_tos, fa->fa_type,
					       tb->tb_id);
1786
		}
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		} else {
			leaf_pull_suffix(pn, n);
		}
1797
	}
1798 1799
}

1800
/* Caller must hold RTNL. */
1801
int fib_table_flush(struct fib_table *tb)
1802
{
1803
	struct trie *t = (struct trie *)tb->tb_data;
1804 1805
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1806 1807
	struct hlist_node *tmp;
	struct fib_alias *fa;
1808
	int found = 0;
1809

1810 1811 1812 1813
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1814

1815 1816
		if (!(cindex--)) {
			t_key pkey = pn->key;
1817

1818 1819 1820
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1821

1822 1823 1824
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1825

1826 1827
			continue;
		}
1828

1829 1830 1831 1832
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1833

1834 1835 1836 1837
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1838

1839 1840
			continue;
		}
1841

1842 1843
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1844

1845 1846 1847 1848
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
				slen = fa->fa_slen;
				continue;
			}
1849

1850 1851 1852
			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
					       fi, fa->fa_tos, fa->fa_type,
					       tb->tb_id);
1853 1854 1855 1856
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1857 1858
		}

1859 1860
		/* update leaf slen */
		n->slen = slen;
1861

1862 1863 1864 1865 1866 1867
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		} else {
			leaf_pull_suffix(pn, n);
		}
1868
	}
1869

S
Stephen Hemminger 已提交
1870
	pr_debug("trie_flush found=%d\n", found);
1871 1872 1873
	return found;
}

1874
static void __trie_free_rcu(struct rcu_head *head)
1875
{
1876
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1877 1878 1879
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1880 1881
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1882
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1883 1884 1885
	kfree(tb);
}

1886 1887 1888 1889 1890
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1891
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1892
			     struct sk_buff *skb, struct netlink_callback *cb)
1893
{
A
Alexander Duyck 已提交
1894
	__be32 xkey = htonl(l->key);
1895
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1896
	int i, s_i;
1897

A
Alexander Duyck 已提交
1898
	s_i = cb->args[4];
1899 1900
	i = 0;

R
Robert Olsson 已提交
1901
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1902
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1903 1904 1905 1906 1907
		if (i < s_i) {
			i++;
			continue;
		}

1908 1909 1910 1911 1912
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

1913
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1914 1915 1916 1917
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1918
				  xkey,
1919
				  KEYLENGTH - fa->fa_slen,
1920
				  fa->fa_tos,
1921
				  fa->fa_info, NLM_F_MULTI) < 0) {
1922
			cb->args[4] = i;
1923 1924
			return -1;
		}
1925
		i++;
1926
	}
1927

1928
	cb->args[4] = i;
1929 1930 1931
	return skb->len;
}

1932
/* rcu_read_lock needs to be hold by caller from readside */
1933 1934
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1935
{
1936
	struct trie *t = (struct trie *)tb->tb_data;
1937
	struct key_vector *l, *tp = t->kv;
1938 1939 1940
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1941 1942
	int count = cb->args[2];
	t_key key = cb->args[3];
1943

1944
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1945
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1946 1947
			cb->args[3] = key;
			cb->args[2] = count;
1948
			return -1;
1949
		}
1950

1951
		++count;
1952 1953
		key = l->key + 1;

1954 1955
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1956 1957 1958 1959

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1960
	}
1961 1962 1963 1964

	cb->args[3] = key;
	cb->args[2] = count;

1965 1966 1967
	return skb->len;
}

1968
void __init fib_trie_init(void)
1969
{
1970 1971
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1972 1973 1974
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1975
					   LEAF_SIZE,
1976
					   0, SLAB_PANIC, NULL);
1977
}
1978

1979
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1980 1981 1982
{
	struct fib_table *tb;
	struct trie *t;
1983 1984 1985 1986
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
1987

1988
	tb = kzalloc(sz, GFP_KERNEL);
1989
	if (!tb)
1990 1991 1992
		return NULL;

	tb->tb_id = id;
1993
	tb->tb_default = -1;
1994
	tb->tb_num_default = 0;
1995 1996 1997 1998
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
1999 2000

	t = (struct trie *) tb->tb_data;
2001 2002
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2003 2004 2005 2006 2007 2008 2009
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2010 2011 2012 2013

	return tb;
}

2014 2015 2016
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2017
	struct seq_net_private p;
2018
	struct fib_table *tb;
2019
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2020 2021
	unsigned int index;
	unsigned int depth;
2022
};
2023

2024
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2025
{
2026
	unsigned long cindex = iter->index;
2027 2028
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2029

2030 2031
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2032

2033 2034 2035 2036 2037 2038 2039
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2040
			if (IS_LEAF(n)) {
2041 2042
				iter->tnode = pn;
				iter->index = cindex;
2043 2044
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2045
				iter->tnode = n;
2046 2047 2048
				iter->index = 0;
				++iter->depth;
			}
2049

2050 2051
			return n;
		}
2052

2053 2054 2055 2056
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2057
		--iter->depth;
2058
	}
2059

2060 2061 2062 2063
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2064
	return NULL;
2065 2066
}

2067 2068
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2069
{
2070
	struct key_vector *n, *pn;
2071

S
Stephen Hemminger 已提交
2072
	if (!t)
2073 2074
		return NULL;

2075
	pn = t->kv;
2076
	n = rcu_dereference(pn->tnode[0]);
2077
	if (!n)
2078
		return NULL;
2079

2080
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2081
		iter->tnode = n;
2082 2083 2084
		iter->index = 0;
		iter->depth = 1;
	} else {
2085
		iter->tnode = pn;
2086 2087
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2088
	}
2089 2090

	return n;
2091
}
O
Olof Johansson 已提交
2092

2093 2094
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2095
	struct key_vector *n;
2096
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2097

2098
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2099

2100
	rcu_read_lock();
2101
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2102
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2103
			struct fib_alias *fa;
2104

2105 2106 2107 2108
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2109

A
Alexander Duyck 已提交
2110
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2111
				++s->prefixes;
2112 2113
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2114 2115
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2116
			s->nullpointers += tn_info(n)->empty_children;
2117 2118
		}
	}
R
Robert Olsson 已提交
2119
	rcu_read_unlock();
2120 2121
}

2122 2123 2124 2125
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2126
{
E
Eric Dumazet 已提交
2127
	unsigned int i, max, pointers, bytes, avdepth;
2128

2129 2130 2131 2132
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2133

2134 2135
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2136
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2137

2138
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2139
	bytes = LEAF_SIZE * stat->leaves;
2140 2141

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2142
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2143

2144
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2145
	bytes += TNODE_SIZE(0) * stat->tnodes;
2146

R
Robert Olsson 已提交
2147 2148
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2149
		max--;
2150

2151
	pointers = 0;
2152
	for (i = 1; i < max; i++)
2153
		if (stat->nodesizes[i] != 0) {
2154
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2155 2156 2157
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2158
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2159

2160
	bytes += sizeof(struct key_vector *) * pointers;
2161 2162
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2163
}
R
Robert Olsson 已提交
2164

2165
#ifdef CONFIG_IP_FIB_TRIE_STATS
2166
static void trie_show_usage(struct seq_file *seq,
2167
			    const struct trie_use_stats __percpu *stats)
2168
{
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2184
	seq_printf(seq, "\nCounters:\n---------\n");
2185 2186
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2187
	seq_printf(seq, "semantic match passed = %u\n",
2188 2189 2190 2191
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2192
}
2193 2194
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2195
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2196
{
2197 2198 2199 2200 2201 2202
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2203
}
2204

2205

2206 2207
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2208
	struct net *net = (struct net *)seq->private;
2209
	unsigned int h;
2210

2211
	seq_printf(seq,
2212 2213
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2214
		   LEAF_SIZE, TNODE_SIZE(0));
2215

2216 2217 2218 2219
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2220
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2221 2222
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2223

2224 2225 2226 2227 2228 2229 2230 2231
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2232
			trie_show_usage(seq, t->stats);
2233 2234 2235
#endif
		}
	}
2236

2237
	return 0;
2238 2239
}

2240
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2241
{
2242
	return single_open_net(inode, file, fib_triestat_seq_show);
2243 2244
}

2245
static const struct file_operations fib_triestat_fops = {
2246 2247 2248 2249
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2250
	.release = single_release_net,
2251 2252
};

2253
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2254
{
2255 2256
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2257
	loff_t idx = 0;
2258
	unsigned int h;
2259

2260 2261 2262
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2263

2264
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2265
			struct key_vector *n;
2266 2267 2268 2269 2270 2271 2272 2273 2274

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2275
	}
2276

2277 2278 2279
	return NULL;
}

2280
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2281
	__acquires(RCU)
2282
{
2283
	rcu_read_lock();
2284
	return fib_trie_get_idx(seq, *pos);
2285 2286
}

2287
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2288
{
2289
	struct fib_trie_iter *iter = seq->private;
2290
	struct net *net = seq_file_net(seq);
2291 2292 2293
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2294
	struct key_vector *n;
2295

2296
	++*pos;
2297 2298 2299 2300
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2301

2302 2303
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2304
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2305 2306 2307 2308 2309
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2310

2311 2312 2313
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2314
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2315 2316 2317 2318 2319
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2320
	return NULL;
2321 2322 2323 2324

found:
	iter->tb = tb;
	return n;
2325
}
2326

2327
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2328
	__releases(RCU)
2329
{
2330 2331
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2332

2333 2334
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2335 2336
	while (n-- > 0)
		seq_puts(seq, "   ");
2337
}
2338

2339
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2340
{
S
Stephen Hemminger 已提交
2341
	switch (s) {
2342 2343 2344 2345 2346 2347
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2348
		snprintf(buf, len, "scope=%d", s);
2349 2350 2351
		return buf;
	}
}
2352

2353
static const char *const rtn_type_names[__RTN_MAX] = {
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2367

E
Eric Dumazet 已提交
2368
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2369 2370 2371
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2372
	snprintf(buf, len, "type %u", t);
2373
	return buf;
2374 2375
}

2376 2377
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2378
{
2379
	const struct fib_trie_iter *iter = seq->private;
2380
	struct key_vector *n = v;
2381

2382
	if (IS_TRIE(node_parent_rcu(n)))
2383
		fib_table_print(seq, iter->tb);
2384

2385
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2386
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2387

2388 2389 2390
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2391 2392
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2393
	} else {
A
Alexander Duyck 已提交
2394
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2395
		struct fib_alias *fa;
2396 2397

		seq_indent(seq, iter->depth);
2398
		seq_printf(seq, "  |-- %pI4\n", &val);
2399

A
Alexander Duyck 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2413
		}
2414
	}
2415

2416 2417 2418
	return 0;
}

2419
static const struct seq_operations fib_trie_seq_ops = {
2420 2421 2422 2423
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2424 2425
};

2426
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2427
{
2428 2429
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2430 2431
}

2432
static const struct file_operations fib_trie_fops = {
2433 2434 2435 2436
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2437
	.release = seq_release_net,
2438 2439
};

2440 2441
struct fib_route_iter {
	struct seq_net_private p;
2442
	struct fib_table *main_tb;
2443
	struct key_vector *tnode;
2444 2445 2446 2447
	loff_t	pos;
	t_key	key;
};

2448 2449
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2450
{
2451
	struct fib_table *tb = iter->main_tb;
2452
	struct key_vector *l, **tp = &iter->tnode;
2453 2454
	struct trie *t;
	t_key key;
2455

2456 2457
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2458
		pos -= iter->pos;
2459 2460 2461
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
2462
		iter->tnode = t->kv;
2463
		iter->pos = 0;
2464
		key = 0;
2465 2466
	}

2467 2468
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2469
		iter->pos++;
2470 2471 2472 2473 2474 2475 2476 2477 2478

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2479 2480 2481
	}

	if (l)
2482
		iter->key = key;	/* remember it */
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2494
	struct trie *t;
2495 2496

	rcu_read_lock();
2497

2498
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2499 2500 2501
	if (!tb)
		return NULL;

2502 2503 2504 2505 2506 2507
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
2508
	iter->tnode = t->kv;
2509 2510 2511 2512
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2513 2514 2515 2516 2517
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2518
	struct key_vector *l = NULL;
2519
	t_key key = iter->key;
2520 2521

	++*pos;
2522 2523 2524 2525 2526 2527 2528

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2529
		iter->pos++;
2530 2531
	} else {
		iter->pos = 0;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2543
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2544
{
E
Eric Dumazet 已提交
2545
	unsigned int flags = 0;
2546

E
Eric Dumazet 已提交
2547 2548
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2549 2550
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2551
	if (mask == htonl(0xFFFFFFFF))
2552 2553 2554
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2555 2556
}

2557 2558 2559
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2560
 *	and needs to be same as fib_hash output to avoid breaking
2561 2562 2563
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2564
{
2565 2566
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2567
	struct fib_alias *fa;
2568
	struct key_vector *l = v;
2569
	__be32 prefix;
2570

2571 2572 2573 2574 2575 2576
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2577

2578 2579
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2580 2581 2582 2583
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2584

A
Alexander Duyck 已提交
2585 2586 2587
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2588

2589 2590 2591
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2613

A
Alexander Duyck 已提交
2614
		seq_pad(seq, '\n');
2615 2616 2617 2618 2619
	}

	return 0;
}

2620
static const struct seq_operations fib_route_seq_ops = {
2621 2622 2623
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2624
	.show   = fib_route_seq_show,
2625 2626
};

2627
static int fib_route_seq_open(struct inode *inode, struct file *file)
2628
{
2629
	return seq_open_net(inode, file, &fib_route_seq_ops,
2630
			    sizeof(struct fib_route_iter));
2631 2632
}

2633
static const struct file_operations fib_route_fops = {
2634 2635 2636 2637
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2638
	.release = seq_release_net,
2639 2640
};

2641
int __net_init fib_proc_init(struct net *net)
2642
{
2643
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2644 2645
		goto out1;

2646 2647
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2648 2649
		goto out2;

2650
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2651 2652
		goto out3;

2653
	return 0;
2654 2655

out3:
2656
	remove_proc_entry("fib_triestat", net->proc_net);
2657
out2:
2658
	remove_proc_entry("fib_trie", net->proc_net);
2659 2660
out1:
	return -ENOMEM;
2661 2662
}

2663
void __net_exit fib_proc_exit(struct net *net)
2664
{
2665 2666 2667
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2668 2669 2670
}

#endif /* CONFIG_PROC_FS */