fib_trie.c 64.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <linux/vmalloc.h>
76
#include <linux/notifier.h>
77
#include <net/net_namespace.h>
78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
D
David Ahern 已提交
84
#include <trace/events/fib.h>
85 86
#include "fib_lookup.h"

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static BLOCKING_NOTIFIER_HEAD(fib_chain);

int register_fib_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&fib_chain, nb);
}
EXPORT_SYMBOL(register_fib_notifier);

int unregister_fib_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&fib_chain, nb);
}
EXPORT_SYMBOL(unregister_fib_notifier);

int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
		       struct fib_notifier_info *info)
{
	info->net = net;
	return blocking_notifier_call_chain(&fib_chain, event_type, info);
}

static int call_fib_entry_notifiers(struct net *net,
				    enum fib_event_type event_type, u32 dst,
				    int dst_len, struct fib_info *fi,
				    u8 tos, u8 type, u32 tb_id, u32 nlflags)
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
		.fi = fi,
		.tos = tos,
		.type = type,
		.tb_id = tb_id,
		.nlflags = nlflags,
	};
	return call_fib_notifiers(net, event_type, &info.info);
}

R
Robert Olsson 已提交
125
#define MAX_STAT_DEPTH 32
126

127 128
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
129 130 131

typedef unsigned int t_key;

132 133 134
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
135

136
struct key_vector {
137 138
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
139
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
140
	unsigned char slen;
A
Alexander Duyck 已提交
141
	union {
142
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
143
		struct hlist_head leaf;
144
		/* This array is valid if (pos | bits) > 0 (TNODE) */
145
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
146
	};
147 148
};

149
struct tnode {
150
	struct rcu_head rcu;
151 152
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
153
	struct key_vector __rcu *parent;
154
	struct key_vector kv[1];
155
#define tn_bits kv[0].bits
156 157 158
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
159 160
#define LEAF_SIZE	TNODE_SIZE(1)

161 162 163 164 165 166 167
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
168
	unsigned int resize_node_skipped;
169 170 171 172 173 174 175 176 177
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
178
	unsigned int prefixes;
R
Robert Olsson 已提交
179
	unsigned int nodesizes[MAX_STAT_DEPTH];
180
};
181 182

struct trie {
183
	struct key_vector kv[1];
184
#ifdef CONFIG_IP_FIB_TRIE_STATS
185
	struct trie_use_stats __percpu *stats;
186 187 188
#endif
};

189
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
190 191 192 193 194 195 196 197
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
198

199
static struct kmem_cache *fn_alias_kmem __read_mostly;
200
static struct kmem_cache *trie_leaf_kmem __read_mostly;
201

202 203 204 205 206
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

207
/* caller must hold RTNL */
208
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
209
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
210

211
/* caller must hold RCU read lock or RTNL */
212
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
213
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
214

215
/* wrapper for rcu_assign_pointer */
216
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
217
{
A
Alexander Duyck 已提交
218
	if (n)
219
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
220 221
}

222
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
223 224 225

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
226
 */
227
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
228
{
229
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
230
}
R
Robert Olsson 已提交
231

232 233
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

234 235 236 237
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

238 239 240
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

241 242 243
	return index >> kv->pos;
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
290
 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
291 292 293 294 295 296 297 298
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
299
 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
300 301
 * at this point.
 */
302

303 304
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
305
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
306
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
307 308

static void __alias_free_mem(struct rcu_head *head)
309
{
R
Robert Olsson 已提交
310 311
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
312 313
}

R
Robert Olsson 已提交
314
static inline void alias_free_mem_rcu(struct fib_alias *fa)
315
{
R
Robert Olsson 已提交
316 317
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
318

319
#define TNODE_KMALLOC_MAX \
320
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
321
#define TNODE_VMALLOC_MAX \
322
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
323

324
static void __node_free_rcu(struct rcu_head *head)
325
{
326
	struct tnode *n = container_of(head, struct tnode, rcu);
327

328
	if (!n->tn_bits)
329 330
		kmem_cache_free(trie_leaf_kmem, n);
	else
331
		kvfree(n);
332 333
}

334
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
335

336
static struct tnode *tnode_alloc(int bits)
337
{
338 339 340 341 342 343 344 345 346
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
347
	if (size <= PAGE_SIZE)
348
		return kzalloc(size, GFP_KERNEL);
349
	else
350
		return vzalloc(size);
351
}
R
Robert Olsson 已提交
352

353
static inline void empty_child_inc(struct key_vector *n)
354
{
355
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
356 357
}

358
static inline void empty_child_dec(struct key_vector *n)
359
{
360
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
361 362
}

363
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
364
{
365 366
	struct key_vector *l;
	struct tnode *kv;
367

368
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
369 370 371 372
	if (!kv)
		return NULL;

	/* initialize key vector */
373
	l = kv->kv;
374 375 376 377 378 379 380 381 382
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
383 384 385
	return l;
}

386
static struct key_vector *tnode_new(t_key key, int pos, int bits)
387
{
388
	unsigned int shift = pos + bits;
389 390
	struct key_vector *tn;
	struct tnode *tnode;
391 392 393

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
394

395
	tnode = tnode_alloc(bits);
396 397 398
	if (!tnode)
		return NULL;

399 400 401
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

402
	if (bits == KEYLENGTH)
403
		tnode->full_children = 1;
404
	else
405
		tnode->empty_children = 1ul << bits;
406

407
	tn = tnode->kv;
408 409 410 411 412
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

413 414 415
	return tn;
}

416
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
417 418
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
419
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
420
{
421
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
422 423
}

424 425 426
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
427 428
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
429
{
430
	struct key_vector *chi = get_child(tn, i);
431
	int isfull, wasfull;
432

433
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
434

435
	/* update emptyChildren, overflow into fullChildren */
436
	if (!n && chi)
437
		empty_child_inc(tn);
438
	if (n && !chi)
439
		empty_child_dec(tn);
440

441
	/* update fullChildren */
442
	wasfull = tnode_full(tn, chi);
443
	isfull = tnode_full(tn, n);
444

445
	if (wasfull && !isfull)
446
		tn_info(tn)->full_children--;
447
	else if (!wasfull && isfull)
448
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
449

450 451 452
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

453
	rcu_assign_pointer(tn->tnode[i], n);
454 455
}

456
static void update_children(struct key_vector *tn)
457 458 459 460
{
	unsigned long i;

	/* update all of the child parent pointers */
461
	for (i = child_length(tn); i;) {
462
		struct key_vector *inode = get_child(tn, --i);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

478 479
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
480
{
481 482
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
483
	else
484
		put_child(tp, get_index(key, tp), n);
485 486
}

487
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
488
{
489
	tn_info(tn)->rcu.next = NULL;
490 491
}

492 493
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
494
{
495 496
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
497
}
E
Eric Dumazet 已提交
498

499
static void tnode_free(struct key_vector *tn)
500
{
501
	struct callback_head *head = &tn_info(tn)->rcu;
502 503 504

	while (head) {
		head = head->next;
505
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
506 507
		node_free(tn);

508
		tn = container_of(head, struct tnode, rcu)->kv;
509 510 511 512 513
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
514 515 516
	}
}

517 518 519
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
520
{
521
	struct key_vector *tp = node_parent(oldtnode);
522 523 524 525
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
526
	put_child_root(tp, tn->key, tn);
527 528 529 530 531 532 533 534

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
535
	for (i = child_length(tn); i;) {
536
		struct key_vector *inode = get_child(tn, --i);
537 538 539

		/* resize child node */
		if (tnode_full(tn, inode))
540
			tn = resize(t, inode);
541
	}
542

543
	return tp;
544 545
}

546 547
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
548
{
549
	struct key_vector *tn;
550
	unsigned long i;
551
	t_key m;
552

S
Stephen Hemminger 已提交
553
	pr_debug("In inflate\n");
554

555
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
556
	if (!tn)
557
		goto notnode;
558

559 560 561
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

562 563 564 565
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
566
	 */
567
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
568
		struct key_vector *inode = get_child(oldtnode, --i);
569
		struct key_vector *node0, *node1;
570
		unsigned long j, k;
571

572
		/* An empty child */
573
		if (!inode)
574 575 576
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
577
		if (!tnode_full(oldtnode, inode)) {
578
			put_child(tn, get_index(inode->key, tn), inode);
579 580 581
			continue;
		}

582 583 584
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

585 586
		/* An internal node with two children */
		if (inode->bits == 1) {
587 588
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
589
			continue;
590 591
		}

O
Olof Johansson 已提交
592
		/* We will replace this node 'inode' with two new
593
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
594 595 596 597 598
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
599
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
600 601
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
602 603 604
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
605
		 */
606 607 608
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
609
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
610

611
		tnode_free_append(tn, node1);
612 613 614 615 616
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
617
		for (k = child_length(inode), j = k / 2; j;) {
618 619 620 621
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
622
		}
623

624 625 626
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
627

628 629 630 631
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
632

633
	/* setup the parent pointers into and out of this node */
634
	return replace(t, oldtnode, tn);
635
nomem:
636 637
	/* all pointers should be clean so we are done */
	tnode_free(tn);
638 639
notnode:
	return NULL;
640 641
}

642 643
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
644
{
645
	struct key_vector *tn;
646
	unsigned long i;
647

S
Stephen Hemminger 已提交
648
	pr_debug("In halve\n");
649

650
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
651
	if (!tn)
652
		goto notnode;
653

654 655 656
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

657 658 659 660
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
661
	 */
662
	for (i = child_length(oldtnode); i;) {
663 664
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
665
		struct key_vector *inode;
666

667 668 669 670 671
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
672

673
		/* Two nonempty children */
674
		inode = tnode_new(node0->key, oldtnode->pos, 1);
675 676
		if (!inode)
			goto nomem;
677
		tnode_free_append(tn, inode);
678

679 680 681 682 683 684 685
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
686
	}
687

688
	/* setup the parent pointers into and out of this node */
689 690 691 692 693 694
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
695 696
}

697 698
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
699
{
700
	struct key_vector *n, *tp;
701 702 703
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
704
	for (n = NULL, i = child_length(oldtnode); !n && i;)
705
		n = get_child(oldtnode, --i);
706 707 708

	/* compress one level */
	tp = node_parent(oldtnode);
709
	put_child_root(tp, oldtnode->key, n);
710 711 712 713
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
714 715

	return tp;
716 717
}

718
static unsigned char update_suffix(struct key_vector *tn)
719 720 721 722 723 724 725 726 727
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
728
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
729
		struct key_vector *n = get_child(tn, i);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

753 754 755 756 757 758 759 760
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
761
 * child_length() and instead of multiplying by 2 (since the
762 763 764 765
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
766
 * The left-hand side may look a bit weird: child_length(tn)
767 768 769 770 771 772 773 774 775
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
776
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
777 778
 *     tn->full_children;
 *
779
 * new_child_length = child_length(tn) * 2;
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
796
 * 100 * (child_length(tn) - tn->empty_children +
797 798 799
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
800
 * 100 * (child_length(tn) - tn->empty_children +
801
 *    tn->full_children) >=
802
 *      inflate_threshold * child_length(tn) * 2
803 804
 *
 * shorten again:
805
 * 50 * (tn->full_children + child_length(tn) -
806
 *    tn->empty_children) >= inflate_threshold *
807
 *    child_length(tn)
808 809
 *
 */
810
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
811
{
812
	unsigned long used = child_length(tn);
813 814 815
	unsigned long threshold = used;

	/* Keep root node larger */
816
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
817 818
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
819

820 821 822
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
823 824
}

825
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
826
{
827
	unsigned long used = child_length(tn);
828 829 830
	unsigned long threshold = used;

	/* Keep root node larger */
831
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
832
	used -= tn_info(tn)->empty_children;
833

834 835 836 837 838
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

839
static inline bool should_collapse(struct key_vector *tn)
840
{
841
	unsigned long used = child_length(tn);
842

843
	used -= tn_info(tn)->empty_children;
844 845

	/* account for bits == KEYLENGTH case */
846
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
847 848 849 850
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
851 852
}

853
#define MAX_WORK 10
854
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
855
{
856 857 858
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
859
	struct key_vector *tp = node_parent(tn);
860
	unsigned long cindex = get_index(tn->key, tp);
861
	int max_work = MAX_WORK;
862 863 864 865

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

866 867 868 869
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
870
	BUG_ON(tn != get_child(tp, cindex));
871

872 873
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
874
	 */
875
	while (should_inflate(tp, tn) && max_work) {
876 877
		tp = inflate(t, tn);
		if (!tp) {
878
#ifdef CONFIG_IP_FIB_TRIE_STATS
879
			this_cpu_inc(stats->resize_node_skipped);
880 881 882
#endif
			break;
		}
883

884
		max_work--;
885
		tn = get_child(tp, cindex);
886 887
	}

888 889 890
	/* update parent in case inflate failed */
	tp = node_parent(tn);

891 892
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
893
		return tp;
894

895
	/* Halve as long as the number of empty children in this
896 897
	 * node is above threshold.
	 */
898
	while (should_halve(tp, tn) && max_work) {
899 900
		tp = halve(t, tn);
		if (!tp) {
901
#ifdef CONFIG_IP_FIB_TRIE_STATS
902
			this_cpu_inc(stats->resize_node_skipped);
903 904 905 906
#endif
			break;
		}

907
		max_work--;
908
		tn = get_child(tp, cindex);
909
	}
910 911

	/* Only one child remains */
912 913 914
	if (should_collapse(tn))
		return collapse(t, tn);

915
	/* update parent in case halve failed */
916
	tp = node_parent(tn);
917 918 919

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
920
		return tp;
921 922 923 924 925

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

926
		if (slen > tp->slen)
927
			tp->slen = slen;
928
	}
929

930
	return tp;
931 932
}

933
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
934
{
935
	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
936 937 938 939 940 941
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

942
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
943
{
944 945 946
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
947
	while (tn->slen < l->slen) {
948 949 950 951 952
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
953
/* rcu_read_lock needs to be hold by caller from readside */
954 955
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
956
{
957 958 959 960 961 962 963 964 965
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
966

967
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
968 969 970 971 972 973

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
974
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
975
		 *     we have a mismatch in skip bits and failed
976 977
		 *   else
		 *     we know the value is cindex
978 979 980 981
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
982
		 */
983 984 985 986
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
987

988 989
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
990

991
	*tp = pn;
992

A
Alexander Duyck 已提交
993
	return n;
994 995
}

996 997 998
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
999
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1000
					u8 tos, u32 prio, u32 tb_id)
1001 1002 1003 1004 1005 1006
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

1007
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
1008 1009 1010 1011
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
1012 1013 1014 1015
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
1016 1017 1018 1019 1020 1021 1022 1023 1024
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

1025
static void trie_rebalance(struct trie *t, struct key_vector *tn)
1026
{
1027 1028
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
1029 1030
}

1031
static int fib_insert_node(struct trie *t, struct key_vector *tp,
1032
			   struct fib_alias *new, t_key key)
1033
{
1034
	struct key_vector *n, *l;
1035

1036
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
1037
	if (!l)
1038
		goto noleaf;
1039 1040

	/* retrieve child from parent node */
1041
	n = get_child(tp, get_index(key, tp));
1042

1043 1044 1045 1046 1047 1048 1049
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1050
		struct key_vector *tn;
1051

1052
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1053 1054
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1055

1056 1057 1058
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1059

1060
		/* start adding routes into the node */
1061
		put_child_root(tp, key, tn);
1062
		node_set_parent(n, tn);
1063

1064
		/* parent now has a NULL spot where the leaf can go */
1065
		tp = tn;
1066
	}
O
Olof Johansson 已提交
1067

1068
	/* Case 3: n is NULL, and will just insert a new leaf */
1069
	NODE_INIT_PARENT(l, tp);
1070
	put_child_root(tp, key, l);
1071 1072 1073
	trie_rebalance(t, tp);

	return 0;
1074 1075 1076 1077
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1078 1079
}

1080 1081
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1082 1083 1084 1085 1086 1087 1088
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1089
	} else {
1090 1091 1092 1093 1094
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1095 1096 1097
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1098 1099 1100 1101 1102 1103 1104
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1105
	}
R
Robert Olsson 已提交
1106

1107 1108 1109 1110 1111 1112 1113
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1114 1115
}

1116
/* Caller must hold RTNL. */
1117 1118
int fib_table_insert(struct net *net, struct fib_table *tb,
		     struct fib_config *cfg)
1119
{
1120
	struct trie *t = (struct trie *)tb->tb_data;
1121
	struct fib_alias *fa, *new_fa;
1122
	struct key_vector *l, *tp;
1123
	u16 nlflags = NLM_F_EXCL;
1124
	struct fib_info *fi;
A
Alexander Duyck 已提交
1125 1126
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1127
	u8 tos = cfg->fc_tos;
1128
	u32 key;
1129 1130
	int err;

1131
	if (plen > KEYLENGTH)
1132 1133
		return -EINVAL;

1134
	key = ntohl(cfg->fc_dst);
1135

1136
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1137

1138
	if ((plen < KEYLENGTH) && (key << plen))
1139 1140
		return -EINVAL;

1141 1142 1143
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1144
		goto err;
1145
	}
1146

1147
	l = fib_find_node(t, &tp, key);
1148 1149
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1150 1151 1152 1153 1154 1155

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1156 1157
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1158 1159
	 */

1160 1161 1162
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1163 1164

		err = -EEXIST;
1165
		if (cfg->fc_nlflags & NLM_F_EXCL)
1166 1167
			goto out;

1168 1169
		nlflags &= ~NLM_F_EXCL;

1170 1171 1172 1173 1174 1175 1176
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1177
		hlist_for_each_entry_from(fa, fa_list) {
1178 1179 1180
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1191
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1192 1193 1194
			struct fib_info *fi_drop;
			u8 state;

1195
			nlflags |= NLM_F_REPLACE;
1196 1197 1198 1199
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1200
				goto out;
1201
			}
R
Robert Olsson 已提交
1202
			err = -ENOBUFS;
1203
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1204
			if (!new_fa)
R
Robert Olsson 已提交
1205
				goto out;
1206 1207

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1208 1209
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1210
			new_fa->fa_type = cfg->fc_type;
1211
			state = fa->fa_state;
1212
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1213
			new_fa->fa_slen = fa->fa_slen;
1214
			new_fa->tb_id = tb->tb_id;
1215
			new_fa->fa_default = -1;
1216

1217
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1218

R
Robert Olsson 已提交
1219
			alias_free_mem_rcu(fa);
1220 1221 1222

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1223
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1224 1225 1226 1227 1228

			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
						 key, plen, fi,
						 new_fa->fa_tos, cfg->fc_type,
						 tb->tb_id, cfg->fc_nlflags);
1229
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1230
				tb->tb_id, &cfg->fc_nlinfo, nlflags);
1231

O
Olof Johansson 已提交
1232
			goto succeeded;
1233 1234 1235 1236 1237
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1238 1239
		if (fa_match)
			goto out;
1240

1241
		if (cfg->fc_nlflags & NLM_F_APPEND)
1242
			nlflags |= NLM_F_APPEND;
1243
		else
1244
			fa = fa_first;
1245 1246
	}
	err = -ENOENT;
1247
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1248 1249
		goto out;

1250
	nlflags |= NLM_F_CREATE;
1251
	err = -ENOBUFS;
1252
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1253
	if (!new_fa)
1254 1255 1256 1257
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1258
	new_fa->fa_type = cfg->fc_type;
1259
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1260
	new_fa->fa_slen = slen;
1261
	new_fa->tb_id = tb->tb_id;
1262
	new_fa->fa_default = -1;
1263

1264
	/* Insert new entry to the list. */
1265 1266
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1267
		goto out_free_new_fa;
1268

1269 1270 1271
	if (!plen)
		tb->tb_num_default++;

1272
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1273 1274
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
				 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
1275
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1276
		  &cfg->fc_nlinfo, nlflags);
1277 1278
succeeded:
	return 0;
1279 1280 1281

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1282 1283
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1284
err:
1285 1286 1287
	return err;
}

1288
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1289 1290 1291 1292 1293 1294
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1295
/* should be called with rcu_read_lock */
1296
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1297
		     struct fib_result *res, int fib_flags)
1298
{
1299
	struct trie *t = (struct trie *) tb->tb_data;
1300 1301 1302
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1303
	const t_key key = ntohl(flp->daddr);
1304
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1305
	struct fib_alias *fa;
1306
	unsigned long index;
1307
	t_key cindex;
O
Olof Johansson 已提交
1308

D
David Ahern 已提交
1309 1310
	trace_fib_table_lookup(tb->tb_id, flp);

1311 1312 1313 1314
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1315
	if (!n)
1316
		return -EAGAIN;
1317 1318

#ifdef CONFIG_IP_FIB_TRIE_STATS
1319
	this_cpu_inc(stats->gets);
1320 1321
#endif

1322 1323
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1324
		index = get_cindex(key, n);
1325 1326 1327 1328 1329 1330

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1331
		 *   if (index >= (1ul << bits))
1332
		 *     we have a mismatch in skip bits and failed
1333 1334
		 *   else
		 *     we know the value is cindex
1335 1336 1337 1338
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1339
		 */
1340
		if (index >= (1ul << n->bits))
1341
			break;
1342

1343 1344
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1345
			goto found;
1346

1347 1348
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1349
		 */
1350
		if (n->slen > n->pos) {
1351 1352
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1353
		}
1354

1355
		n = get_child_rcu(n, index);
1356 1357 1358
		if (unlikely(!n))
			goto backtrace;
	}
1359

1360 1361 1362
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1363
		struct key_vector __rcu **cptr = n->tnode;
1364

1365 1366 1367
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1368
		 */
1369
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1370
			goto backtrace;
O
Olof Johansson 已提交
1371

1372 1373 1374
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1375

1376 1377 1378
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1379 1380
		 */

1381
		while ((n = rcu_dereference(*cptr)) == NULL) {
1382 1383
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1384 1385
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1386
#endif
1387 1388 1389 1390 1391 1392 1393 1394
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1395 1396 1397 1398 1399
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1400
					return -EAGAIN;
1401 1402 1403 1404
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1405
				pn = node_parent_rcu(pn);
1406 1407 1408 1409 1410 1411 1412
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1413
			cptr = &pn->tnode[cindex];
1414
		}
1415
	}
1416

1417
found:
1418 1419 1420
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1421
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1422 1423 1424
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1425

1426 1427 1428 1429
		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
			if (index >= (1ul << fa->fa_slen))
				continue;
		}
A
Alexander Duyck 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1439
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1440
			this_cpu_inc(stats->semantic_match_passed);
1441
#endif
A
Alexander Duyck 已提交
1442 1443 1444 1445 1446 1447
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1448
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1449 1450 1451

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1452 1453 1454 1455 1456
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
1457
			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1458 1459 1460 1461
				if (flp->flowi4_oif &&
				    flp->flowi4_oif != nh->nh_oif)
					continue;
			}
A
Alexander Duyck 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1473
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1474
			this_cpu_inc(stats->semantic_match_passed);
1475
#endif
D
David Ahern 已提交
1476 1477
			trace_fib_table_lookup_nh(nh);

A
Alexander Duyck 已提交
1478
			return err;
1479
		}
1480
	}
1481
#ifdef CONFIG_IP_FIB_TRIE_STATS
1482
	this_cpu_inc(stats->semantic_match_miss);
1483 1484
#endif
	goto backtrace;
1485
}
1486
EXPORT_SYMBOL_GPL(fib_table_lookup);
1487

1488 1489
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1502
		put_child_root(tp, l->key, NULL);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1518 1519
int fib_table_delete(struct net *net, struct fib_table *tb,
		     struct fib_config *cfg)
1520 1521 1522
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1523
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1524 1525
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1526 1527
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1528

A
Alexander Duyck 已提交
1529
	if (plen > KEYLENGTH)
1530 1531
		return -EINVAL;

1532
	key = ntohl(cfg->fc_dst);
1533

1534
	if ((plen < KEYLENGTH) && (key << plen))
1535 1536
		return -EINVAL;

1537
	l = fib_find_node(t, &tp, key);
1538
	if (!l)
1539 1540
		return -ESRCH;

1541
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1542 1543 1544
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1545
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1546 1547

	fa_to_delete = NULL;
1548
	hlist_for_each_entry_from(fa, fa_list) {
1549 1550
		struct fib_info *fi = fa->fa_info;

1551 1552 1553
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1554 1555
			break;

1556 1557
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1558
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1559 1560
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1561 1562 1563
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1564 1565 1566 1567 1568
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1569 1570
	if (!fa_to_delete)
		return -ESRCH;
1571

1572 1573 1574
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
				 fa_to_delete->fa_info, tos, cfg->fc_type,
				 tb->tb_id, 0);
1575
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1576
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1577

1578 1579 1580
	if (!plen)
		tb->tb_num_default--;

1581
	fib_remove_alias(t, tp, l, fa_to_delete);
1582

1583
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1584
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1585

1586 1587
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1588
	return 0;
1589 1590
}

1591
/* Scan for the next leaf starting at the provided key value */
1592
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1593
{
1594
	struct key_vector *pn, *n = *tn;
1595
	unsigned long cindex;
1596

1597
	/* this loop is meant to try and find the key in the trie */
1598
	do {
1599 1600
		/* record parent and next child index */
		pn = n;
1601
		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1602 1603 1604

		if (cindex >> pn->bits)
			break;
1605

1606
		/* descend into the next child */
1607
		n = get_child_rcu(pn, cindex++);
1608 1609 1610 1611 1612 1613 1614
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1615

1616
	/* this loop will search for the next leaf with a greater key */
1617
	while (!IS_TRIE(pn)) {
1618 1619 1620
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1621

1622 1623 1624 1625
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1626

1627
		/* grab the next available node */
1628
		n = get_child_rcu(pn, cindex++);
1629 1630
		if (!n)
			continue;
1631

1632 1633 1634
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1635

1636 1637 1638 1639
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1640

1641 1642 1643 1644
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1645
	*tn = pn;
1646
	return n;
1647 1648
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
					     NULL, l->key))
				goto out;
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;

			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;
		}

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
	}
}

1828
/* Caller must hold RTNL. */
1829
int fib_table_flush(struct net *net, struct fib_table *tb)
1830
{
1831
	struct trie *t = (struct trie *)tb->tb_data;
1832 1833
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1834 1835
	struct hlist_node *tmp;
	struct fib_alias *fa;
1836
	int found = 0;
1837

1838 1839 1840 1841
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1842

1843 1844
		if (!(cindex--)) {
			t_key pkey = pn->key;
1845

1846 1847 1848
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1849

1850 1851 1852
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1853

1854 1855
			continue;
		}
1856

1857 1858 1859 1860
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1861

1862 1863 1864 1865
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1866

1867 1868
			continue;
		}
1869

1870 1871
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1872

1873 1874 1875 1876
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
				slen = fa->fa_slen;
				continue;
			}
1877

1878 1879 1880 1881 1882
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
						 n->key,
						 KEYLENGTH - fa->fa_slen,
						 fi, fa->fa_tos, fa->fa_type,
						 tb->tb_id, 0);
1883 1884 1885 1886
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1887 1888
		}

1889 1890
		/* update leaf slen */
		n->slen = slen;
1891

1892 1893 1894 1895
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1896
	}
1897

S
Stephen Hemminger 已提交
1898
	pr_debug("trie_flush found=%d\n", found);
1899 1900 1901
	return found;
}

1902
static void __trie_free_rcu(struct rcu_head *head)
1903
{
1904
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1905 1906 1907
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1908 1909
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1910
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1911 1912 1913
	kfree(tb);
}

1914 1915 1916 1917 1918
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1919
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1920
			     struct sk_buff *skb, struct netlink_callback *cb)
1921
{
A
Alexander Duyck 已提交
1922
	__be32 xkey = htonl(l->key);
1923
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1924
	int i, s_i;
1925

A
Alexander Duyck 已提交
1926
	s_i = cb->args[4];
1927 1928
	i = 0;

R
Robert Olsson 已提交
1929
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1930
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1931 1932 1933 1934 1935
		if (i < s_i) {
			i++;
			continue;
		}

1936 1937 1938 1939 1940
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

1941
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1942 1943 1944 1945
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1946
				  xkey,
1947
				  KEYLENGTH - fa->fa_slen,
1948
				  fa->fa_tos,
1949
				  fa->fa_info, NLM_F_MULTI) < 0) {
1950
			cb->args[4] = i;
1951 1952
			return -1;
		}
1953
		i++;
1954
	}
1955

1956
	cb->args[4] = i;
1957 1958 1959
	return skb->len;
}

1960
/* rcu_read_lock needs to be hold by caller from readside */
1961 1962
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1963
{
1964
	struct trie *t = (struct trie *)tb->tb_data;
1965
	struct key_vector *l, *tp = t->kv;
1966 1967 1968
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1969 1970
	int count = cb->args[2];
	t_key key = cb->args[3];
1971

1972
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1973
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1974 1975
			cb->args[3] = key;
			cb->args[2] = count;
1976
			return -1;
1977
		}
1978

1979
		++count;
1980 1981
		key = l->key + 1;

1982 1983
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1984 1985 1986 1987

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1988
	}
1989 1990 1991 1992

	cb->args[3] = key;
	cb->args[2] = count;

1993 1994 1995
	return skb->len;
}

1996
void __init fib_trie_init(void)
1997
{
1998 1999
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
2000 2001 2002
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2003
					   LEAF_SIZE,
2004
					   0, SLAB_PANIC, NULL);
2005
}
2006

2007
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2008 2009 2010
{
	struct fib_table *tb;
	struct trie *t;
2011 2012 2013 2014
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
2015

2016
	tb = kzalloc(sz, GFP_KERNEL);
2017
	if (!tb)
2018 2019 2020
		return NULL;

	tb->tb_id = id;
2021
	tb->tb_num_default = 0;
2022 2023 2024 2025
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
2026 2027

	t = (struct trie *) tb->tb_data;
2028 2029
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2030 2031 2032 2033 2034 2035 2036
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2037 2038 2039 2040

	return tb;
}

2041 2042 2043
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2044
	struct seq_net_private p;
2045
	struct fib_table *tb;
2046
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2047 2048
	unsigned int index;
	unsigned int depth;
2049
};
2050

2051
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2052
{
2053
	unsigned long cindex = iter->index;
2054 2055
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2056

2057 2058
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2059

2060 2061 2062 2063 2064 2065 2066
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2067
			if (IS_LEAF(n)) {
2068 2069
				iter->tnode = pn;
				iter->index = cindex;
2070 2071
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2072
				iter->tnode = n;
2073 2074 2075
				iter->index = 0;
				++iter->depth;
			}
2076

2077 2078
			return n;
		}
2079

2080 2081 2082 2083
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2084
		--iter->depth;
2085
	}
2086

2087 2088 2089 2090
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2091
	return NULL;
2092 2093
}

2094 2095
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2096
{
2097
	struct key_vector *n, *pn;
2098

S
Stephen Hemminger 已提交
2099
	if (!t)
2100 2101
		return NULL;

2102
	pn = t->kv;
2103
	n = rcu_dereference(pn->tnode[0]);
2104
	if (!n)
2105
		return NULL;
2106

2107
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2108
		iter->tnode = n;
2109 2110 2111
		iter->index = 0;
		iter->depth = 1;
	} else {
2112
		iter->tnode = pn;
2113 2114
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2115
	}
2116 2117

	return n;
2118
}
O
Olof Johansson 已提交
2119

2120 2121
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2122
	struct key_vector *n;
2123
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2124

2125
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2126

2127
	rcu_read_lock();
2128
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2129
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2130
			struct fib_alias *fa;
2131

2132 2133 2134 2135
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2136

A
Alexander Duyck 已提交
2137
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2138
				++s->prefixes;
2139 2140
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2141 2142
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2143
			s->nullpointers += tn_info(n)->empty_children;
2144 2145
		}
	}
R
Robert Olsson 已提交
2146
	rcu_read_unlock();
2147 2148
}

2149 2150 2151 2152
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2153
{
E
Eric Dumazet 已提交
2154
	unsigned int i, max, pointers, bytes, avdepth;
2155

2156 2157 2158 2159
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2160

2161 2162
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2163
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2164

2165
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2166
	bytes = LEAF_SIZE * stat->leaves;
2167 2168

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2169
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2170

2171
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2172
	bytes += TNODE_SIZE(0) * stat->tnodes;
2173

R
Robert Olsson 已提交
2174 2175
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2176
		max--;
2177

2178
	pointers = 0;
2179
	for (i = 1; i < max; i++)
2180
		if (stat->nodesizes[i] != 0) {
2181
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2182 2183 2184
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2185
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2186

2187
	bytes += sizeof(struct key_vector *) * pointers;
2188 2189
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2190
}
R
Robert Olsson 已提交
2191

2192
#ifdef CONFIG_IP_FIB_TRIE_STATS
2193
static void trie_show_usage(struct seq_file *seq,
2194
			    const struct trie_use_stats __percpu *stats)
2195
{
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2211
	seq_printf(seq, "\nCounters:\n---------\n");
2212 2213
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2214
	seq_printf(seq, "semantic match passed = %u\n",
2215 2216 2217 2218
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2219
}
2220 2221
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2222
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2223
{
2224 2225 2226 2227 2228 2229
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2230
}
2231

2232

2233 2234
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2235
	struct net *net = (struct net *)seq->private;
2236
	unsigned int h;
2237

2238
	seq_printf(seq,
2239 2240
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2241
		   LEAF_SIZE, TNODE_SIZE(0));
2242

2243 2244 2245 2246
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2247
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2248 2249
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2250

2251 2252 2253 2254 2255 2256 2257 2258
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2259
			trie_show_usage(seq, t->stats);
2260 2261 2262
#endif
		}
	}
2263

2264
	return 0;
2265 2266
}

2267
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2268
{
2269
	return single_open_net(inode, file, fib_triestat_seq_show);
2270 2271
}

2272
static const struct file_operations fib_triestat_fops = {
2273 2274 2275 2276
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2277
	.release = single_release_net,
2278 2279
};

2280
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2281
{
2282 2283
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2284
	loff_t idx = 0;
2285
	unsigned int h;
2286

2287 2288 2289
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2290

2291
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2292
			struct key_vector *n;
2293 2294 2295 2296 2297 2298 2299 2300 2301

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2302
	}
2303

2304 2305 2306
	return NULL;
}

2307
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2308
	__acquires(RCU)
2309
{
2310
	rcu_read_lock();
2311
	return fib_trie_get_idx(seq, *pos);
2312 2313
}

2314
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2315
{
2316
	struct fib_trie_iter *iter = seq->private;
2317
	struct net *net = seq_file_net(seq);
2318 2319 2320
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2321
	struct key_vector *n;
2322

2323
	++*pos;
2324 2325 2326 2327
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2328

2329 2330
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2331
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2332 2333 2334 2335 2336
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2337

2338 2339 2340
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2341
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2342 2343 2344 2345 2346
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2347
	return NULL;
2348 2349 2350 2351

found:
	iter->tb = tb;
	return n;
2352
}
2353

2354
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2355
	__releases(RCU)
2356
{
2357 2358
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2359

2360 2361
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2362 2363
	while (n-- > 0)
		seq_puts(seq, "   ");
2364
}
2365

2366
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2367
{
S
Stephen Hemminger 已提交
2368
	switch (s) {
2369 2370 2371 2372 2373 2374
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2375
		snprintf(buf, len, "scope=%d", s);
2376 2377 2378
		return buf;
	}
}
2379

2380
static const char *const rtn_type_names[__RTN_MAX] = {
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2394

E
Eric Dumazet 已提交
2395
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2396 2397 2398
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2399
	snprintf(buf, len, "type %u", t);
2400
	return buf;
2401 2402
}

2403 2404
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2405
{
2406
	const struct fib_trie_iter *iter = seq->private;
2407
	struct key_vector *n = v;
2408

2409
	if (IS_TRIE(node_parent_rcu(n)))
2410
		fib_table_print(seq, iter->tb);
2411

2412
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2413
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2414

2415 2416 2417
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2418 2419
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2420
	} else {
A
Alexander Duyck 已提交
2421
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2422
		struct fib_alias *fa;
2423 2424

		seq_indent(seq, iter->depth);
2425
		seq_printf(seq, "  |-- %pI4\n", &val);
2426

A
Alexander Duyck 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2440
		}
2441
	}
2442

2443 2444 2445
	return 0;
}

2446
static const struct seq_operations fib_trie_seq_ops = {
2447 2448 2449 2450
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2451 2452
};

2453
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2454
{
2455 2456
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2457 2458
}

2459
static const struct file_operations fib_trie_fops = {
2460 2461 2462 2463
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2464
	.release = seq_release_net,
2465 2466
};

2467 2468
struct fib_route_iter {
	struct seq_net_private p;
2469
	struct fib_table *main_tb;
2470
	struct key_vector *tnode;
2471 2472 2473 2474
	loff_t	pos;
	t_key	key;
};

2475 2476
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2477
{
2478
	struct key_vector *l, **tp = &iter->tnode;
2479
	t_key key;
2480

2481
	/* use cached location of previously found key */
2482 2483 2484
	if (iter->pos > 0 && pos >= iter->pos) {
		key = iter->key;
	} else {
2485
		iter->pos = 1;
2486
		key = 0;
2487 2488
	}

2489 2490 2491
	pos -= iter->pos;

	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2492
		key = l->key + 1;
2493
		iter->pos++;
2494 2495 2496 2497 2498
		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2499 2500 2501
	}

	if (l)
2502
		iter->key = l->key;	/* remember it */
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2514
	struct trie *t;
2515 2516

	rcu_read_lock();
2517

2518
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2519 2520 2521
	if (!tb)
		return NULL;

2522
	iter->main_tb = tb;
2523 2524
	t = (struct trie *)tb->tb_data;
	iter->tnode = t->kv;
2525 2526 2527 2528 2529

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	iter->pos = 0;
2530
	iter->key = KEY_MAX;
2531 2532

	return SEQ_START_TOKEN;
2533 2534 2535 2536 2537
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2538
	struct key_vector *l = NULL;
2539
	t_key key = iter->key + 1;
2540 2541

	++*pos;
2542 2543 2544 2545 2546 2547

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
2548
		iter->key = l->key;
2549
		iter->pos++;
2550 2551
	} else {
		iter->pos = 0;
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2563
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2564
{
E
Eric Dumazet 已提交
2565
	unsigned int flags = 0;
2566

E
Eric Dumazet 已提交
2567 2568
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2569 2570
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2571
	if (mask == htonl(0xFFFFFFFF))
2572 2573 2574
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2575 2576
}

2577 2578 2579
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2580
 *	and needs to be same as fib_hash output to avoid breaking
2581 2582 2583
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2584
{
2585 2586
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2587
	struct fib_alias *fa;
2588
	struct key_vector *l = v;
2589
	__be32 prefix;
2590

2591 2592 2593 2594 2595 2596
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2597

2598 2599
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2600 2601 2602 2603
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2604

A
Alexander Duyck 已提交
2605 2606 2607
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2608

2609 2610 2611
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2633

A
Alexander Duyck 已提交
2634
		seq_pad(seq, '\n');
2635 2636 2637 2638 2639
	}

	return 0;
}

2640
static const struct seq_operations fib_route_seq_ops = {
2641 2642 2643
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2644
	.show   = fib_route_seq_show,
2645 2646
};

2647
static int fib_route_seq_open(struct inode *inode, struct file *file)
2648
{
2649
	return seq_open_net(inode, file, &fib_route_seq_ops,
2650
			    sizeof(struct fib_route_iter));
2651 2652
}

2653
static const struct file_operations fib_route_fops = {
2654 2655 2656 2657
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2658
	.release = seq_release_net,
2659 2660
};

2661
int __net_init fib_proc_init(struct net *net)
2662
{
2663
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2664 2665
		goto out1;

2666 2667
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2668 2669
		goto out2;

2670
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2671 2672
		goto out3;

2673
	return 0;
2674 2675

out3:
2676
	remove_proc_entry("fib_triestat", net->proc_net);
2677
out2:
2678
	remove_proc_entry("fib_trie", net->proc_net);
2679 2680
out1:
	return -ENOMEM;
2681 2682
}

2683
void __net_exit fib_proc_exit(struct net *net)
2684
{
2685 2686 2687
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2688 2689 2690
}

#endif /* CONFIG_PROC_FS */