fib_trie.c 68.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52

53
#include <linux/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <linux/vmalloc.h>
76
#include <linux/notifier.h>
77
#include <net/net_namespace.h>
78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
D
David Ahern 已提交
84
#include <trace/events/fib.h>
85 86
#include "fib_lookup.h"

87 88 89 90 91 92 93 94 95 96 97 98 99
static unsigned int fib_seq_sum(void)
{
	unsigned int fib_seq = 0;
	struct net *net;

	rtnl_lock();
	for_each_net(net)
		fib_seq += net->ipv4.fib_seq;
	rtnl_unlock();

	return fib_seq;
}

100
static ATOMIC_NOTIFIER_HEAD(fib_chain);
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
static int call_fib_notifier(struct notifier_block *nb, struct net *net,
			     enum fib_event_type event_type,
			     struct fib_notifier_info *info)
{
	info->net = net;
	return nb->notifier_call(nb, event_type, info);
}

static void fib_rules_notify(struct net *net, struct notifier_block *nb,
			     enum fib_event_type event_type)
{
#ifdef CONFIG_IP_MULTIPLE_TABLES
	struct fib_notifier_info info;

	if (net->ipv4.fib_has_custom_rules)
		call_fib_notifier(nb, net, event_type, &info);
#endif
}

static void fib_notify(struct net *net, struct notifier_block *nb,
		       enum fib_event_type event_type);

static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
				   enum fib_event_type event_type, u32 dst,
				   int dst_len, struct fib_info *fi,
127
				   u8 tos, u8 type, u32 tb_id)
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
		.fi = fi,
		.tos = tos,
		.type = type,
		.tb_id = tb_id,
	};
	return call_fib_notifier(nb, net, event_type, &info.info);
}

static bool fib_dump_is_consistent(struct notifier_block *nb,
				   void (*cb)(struct notifier_block *nb),
				   unsigned int fib_seq)
{
	atomic_notifier_chain_register(&fib_chain, nb);
	if (fib_seq == fib_seq_sum())
		return true;
	atomic_notifier_chain_unregister(&fib_chain, nb);
	if (cb)
		cb(nb);
	return false;
}

#define FIB_DUMP_MAX_RETRIES 5
int register_fib_notifier(struct notifier_block *nb,
			  void (*cb)(struct notifier_block *nb))
156
{
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	int retries = 0;

	do {
		unsigned int fib_seq = fib_seq_sum();
		struct net *net;

		/* Mutex semantics guarantee that every change done to
		 * FIB tries before we read the change sequence counter
		 * is now visible to us.
		 */
		rcu_read_lock();
		for_each_net_rcu(net) {
			fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
			fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
		}
		rcu_read_unlock();

		if (fib_dump_is_consistent(nb, cb, fib_seq))
			return 0;
	} while (++retries < FIB_DUMP_MAX_RETRIES);

	return -EBUSY;
179 180 181 182 183
}
EXPORT_SYMBOL(register_fib_notifier);

int unregister_fib_notifier(struct notifier_block *nb)
{
184
	return atomic_notifier_chain_unregister(&fib_chain, nb);
185 186 187 188 189 190
}
EXPORT_SYMBOL(unregister_fib_notifier);

int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
		       struct fib_notifier_info *info)
{
191
	net->ipv4.fib_seq++;
192
	info->net = net;
193
	return atomic_notifier_call_chain(&fib_chain, event_type, info);
194 195 196 197 198
}

static int call_fib_entry_notifiers(struct net *net,
				    enum fib_event_type event_type, u32 dst,
				    int dst_len, struct fib_info *fi,
199
				    u8 tos, u8 type, u32 tb_id)
200 201 202 203 204 205 206 207 208 209 210 211
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
		.fi = fi,
		.tos = tos,
		.type = type,
		.tb_id = tb_id,
	};
	return call_fib_notifiers(net, event_type, &info.info);
}

R
Robert Olsson 已提交
212
#define MAX_STAT_DEPTH 32
213

214 215
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
216 217 218

typedef unsigned int t_key;

219 220 221
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
222

223
struct key_vector {
224 225
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
226
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
227
	unsigned char slen;
A
Alexander Duyck 已提交
228
	union {
229
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
230
		struct hlist_head leaf;
231
		/* This array is valid if (pos | bits) > 0 (TNODE) */
232
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
233
	};
234 235
};

236
struct tnode {
237
	struct rcu_head rcu;
238 239
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
240
	struct key_vector __rcu *parent;
241
	struct key_vector kv[1];
242
#define tn_bits kv[0].bits
243 244 245
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
246 247
#define LEAF_SIZE	TNODE_SIZE(1)

248 249 250 251 252 253 254
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
255
	unsigned int resize_node_skipped;
256 257 258 259 260 261 262 263 264
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
265
	unsigned int prefixes;
R
Robert Olsson 已提交
266
	unsigned int nodesizes[MAX_STAT_DEPTH];
267
};
268 269

struct trie {
270
	struct key_vector kv[1];
271
#ifdef CONFIG_IP_FIB_TRIE_STATS
272
	struct trie_use_stats __percpu *stats;
273 274 275
#endif
};

276
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
277 278 279 280 281 282 283 284
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
285

286
static struct kmem_cache *fn_alias_kmem __read_mostly;
287
static struct kmem_cache *trie_leaf_kmem __read_mostly;
288

289 290 291 292 293
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

294
/* caller must hold RTNL */
295
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
296
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
297

298
/* caller must hold RCU read lock or RTNL */
299
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
300
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
301

302
/* wrapper for rcu_assign_pointer */
303
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
304
{
A
Alexander Duyck 已提交
305
	if (n)
306
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
307 308
}

309
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
310 311 312

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
313
 */
314
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
315
{
316
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
317
}
R
Robert Olsson 已提交
318

319 320
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

321 322 323 324
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

325 326 327
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

328 329 330
	return index >> kv->pos;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
377
 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
378 379 380 381 382 383 384 385
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
386
 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
387 388
 * at this point.
 */
389

390 391
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
392
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
393
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
394 395

static void __alias_free_mem(struct rcu_head *head)
396
{
R
Robert Olsson 已提交
397 398
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
399 400
}

R
Robert Olsson 已提交
401
static inline void alias_free_mem_rcu(struct fib_alias *fa)
402
{
R
Robert Olsson 已提交
403 404
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
405

406
#define TNODE_KMALLOC_MAX \
407
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
408
#define TNODE_VMALLOC_MAX \
409
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
410

411
static void __node_free_rcu(struct rcu_head *head)
412
{
413
	struct tnode *n = container_of(head, struct tnode, rcu);
414

415
	if (!n->tn_bits)
416 417
		kmem_cache_free(trie_leaf_kmem, n);
	else
418
		kvfree(n);
419 420
}

421
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
422

423
static struct tnode *tnode_alloc(int bits)
424
{
425 426 427 428 429 430 431 432 433
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
434
	if (size <= PAGE_SIZE)
435
		return kzalloc(size, GFP_KERNEL);
436
	else
437
		return vzalloc(size);
438
}
R
Robert Olsson 已提交
439

440
static inline void empty_child_inc(struct key_vector *n)
441
{
442
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
443 444
}

445
static inline void empty_child_dec(struct key_vector *n)
446
{
447
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
448 449
}

450
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
451
{
452 453
	struct key_vector *l;
	struct tnode *kv;
454

455
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
456 457 458 459
	if (!kv)
		return NULL;

	/* initialize key vector */
460
	l = kv->kv;
461 462 463 464 465 466 467 468 469
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
470 471 472
	return l;
}

473
static struct key_vector *tnode_new(t_key key, int pos, int bits)
474
{
475
	unsigned int shift = pos + bits;
476 477
	struct key_vector *tn;
	struct tnode *tnode;
478 479 480

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
481

482
	tnode = tnode_alloc(bits);
483 484 485
	if (!tnode)
		return NULL;

486 487 488
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

489
	if (bits == KEYLENGTH)
490
		tnode->full_children = 1;
491
	else
492
		tnode->empty_children = 1ul << bits;
493

494
	tn = tnode->kv;
495 496 497 498 499
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

500 501 502
	return tn;
}

503
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
504 505
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
506
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
507
{
508
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
509 510
}

511 512 513
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
514 515
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
516
{
517
	struct key_vector *chi = get_child(tn, i);
518
	int isfull, wasfull;
519

520
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
521

522
	/* update emptyChildren, overflow into fullChildren */
523
	if (!n && chi)
524
		empty_child_inc(tn);
525
	if (n && !chi)
526
		empty_child_dec(tn);
527

528
	/* update fullChildren */
529
	wasfull = tnode_full(tn, chi);
530
	isfull = tnode_full(tn, n);
531

532
	if (wasfull && !isfull)
533
		tn_info(tn)->full_children--;
534
	else if (!wasfull && isfull)
535
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
536

537 538 539
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

540
	rcu_assign_pointer(tn->tnode[i], n);
541 542
}

543
static void update_children(struct key_vector *tn)
544 545 546 547
{
	unsigned long i;

	/* update all of the child parent pointers */
548
	for (i = child_length(tn); i;) {
549
		struct key_vector *inode = get_child(tn, --i);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

565 566
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
567
{
568 569
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
570
	else
571
		put_child(tp, get_index(key, tp), n);
572 573
}

574
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
575
{
576
	tn_info(tn)->rcu.next = NULL;
577 578
}

579 580
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
581
{
582 583
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
584
}
E
Eric Dumazet 已提交
585

586
static void tnode_free(struct key_vector *tn)
587
{
588
	struct callback_head *head = &tn_info(tn)->rcu;
589 590 591

	while (head) {
		head = head->next;
592
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
593 594
		node_free(tn);

595
		tn = container_of(head, struct tnode, rcu)->kv;
596 597 598 599 600
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
601 602 603
	}
}

604 605 606
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
607
{
608
	struct key_vector *tp = node_parent(oldtnode);
609 610 611 612
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
613
	put_child_root(tp, tn->key, tn);
614 615 616 617 618 619 620 621

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
622
	for (i = child_length(tn); i;) {
623
		struct key_vector *inode = get_child(tn, --i);
624 625 626

		/* resize child node */
		if (tnode_full(tn, inode))
627
			tn = resize(t, inode);
628
	}
629

630
	return tp;
631 632
}

633 634
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
635
{
636
	struct key_vector *tn;
637
	unsigned long i;
638
	t_key m;
639

S
Stephen Hemminger 已提交
640
	pr_debug("In inflate\n");
641

642
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
643
	if (!tn)
644
		goto notnode;
645

646 647 648
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

649 650 651 652
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
653
	 */
654
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
655
		struct key_vector *inode = get_child(oldtnode, --i);
656
		struct key_vector *node0, *node1;
657
		unsigned long j, k;
658

659
		/* An empty child */
660
		if (!inode)
661 662 663
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
664
		if (!tnode_full(oldtnode, inode)) {
665
			put_child(tn, get_index(inode->key, tn), inode);
666 667 668
			continue;
		}

669 670 671
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

672 673
		/* An internal node with two children */
		if (inode->bits == 1) {
674 675
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
676
			continue;
677 678
		}

O
Olof Johansson 已提交
679
		/* We will replace this node 'inode' with two new
680
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
681 682 683 684 685
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
686
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
687 688
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
689 690 691
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
692
		 */
693 694 695
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
696
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
697

698
		tnode_free_append(tn, node1);
699 700 701 702 703
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
704
		for (k = child_length(inode), j = k / 2; j;) {
705 706 707 708
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
709
		}
710

711 712 713
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
714

715 716 717 718
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
719

720
	/* setup the parent pointers into and out of this node */
721
	return replace(t, oldtnode, tn);
722
nomem:
723 724
	/* all pointers should be clean so we are done */
	tnode_free(tn);
725 726
notnode:
	return NULL;
727 728
}

729 730
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
731
{
732
	struct key_vector *tn;
733
	unsigned long i;
734

S
Stephen Hemminger 已提交
735
	pr_debug("In halve\n");
736

737
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
738
	if (!tn)
739
		goto notnode;
740

741 742 743
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

744 745 746 747
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
748
	 */
749
	for (i = child_length(oldtnode); i;) {
750 751
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
752
		struct key_vector *inode;
753

754 755 756 757 758
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
759

760
		/* Two nonempty children */
761
		inode = tnode_new(node0->key, oldtnode->pos, 1);
762 763
		if (!inode)
			goto nomem;
764
		tnode_free_append(tn, inode);
765

766 767 768 769 770 771 772
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
773
	}
774

775
	/* setup the parent pointers into and out of this node */
776 777 778 779 780 781
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
782 783
}

784 785
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
786
{
787
	struct key_vector *n, *tp;
788 789 790
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
791
	for (n = NULL, i = child_length(oldtnode); !n && i;)
792
		n = get_child(oldtnode, --i);
793 794 795

	/* compress one level */
	tp = node_parent(oldtnode);
796
	put_child_root(tp, oldtnode->key, n);
797 798 799 800
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
801 802

	return tp;
803 804
}

805
static unsigned char update_suffix(struct key_vector *tn)
806 807 808
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;
809 810 811 812 813 814 815
	unsigned char slen_max;

	/* only vector 0 can have a suffix length greater than or equal to
	 * tn->pos + tn->bits, the second highest node will have a suffix
	 * length at most of tn->pos + tn->bits - 1
	 */
	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
816 817 818 819 820 821

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
822
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
823
		struct key_vector *n = get_child(tn, i);
824 825 826 827 828 829 830 831 832

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

833 834
		/* stop searching if we have hit the maximum possible value */
		if (slen >= slen_max)
835 836 837 838 839 840 841 842
			break;
	}

	tn->slen = slen;

	return slen;
}

843 844 845 846 847 848 849 850
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
851
 * child_length() and instead of multiplying by 2 (since the
852 853 854 855
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
856
 * The left-hand side may look a bit weird: child_length(tn)
857 858 859 860 861 862 863 864 865
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
866
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
867 868
 *     tn->full_children;
 *
869
 * new_child_length = child_length(tn) * 2;
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
886
 * 100 * (child_length(tn) - tn->empty_children +
887 888 889
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
890
 * 100 * (child_length(tn) - tn->empty_children +
891
 *    tn->full_children) >=
892
 *      inflate_threshold * child_length(tn) * 2
893 894
 *
 * shorten again:
895
 * 50 * (tn->full_children + child_length(tn) -
896
 *    tn->empty_children) >= inflate_threshold *
897
 *    child_length(tn)
898 899
 *
 */
900
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
901
{
902
	unsigned long used = child_length(tn);
903 904 905
	unsigned long threshold = used;

	/* Keep root node larger */
906
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
907 908
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
909

910 911 912
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
913 914
}

915
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
916
{
917
	unsigned long used = child_length(tn);
918 919 920
	unsigned long threshold = used;

	/* Keep root node larger */
921
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
922
	used -= tn_info(tn)->empty_children;
923

924 925 926 927 928
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

929
static inline bool should_collapse(struct key_vector *tn)
930
{
931
	unsigned long used = child_length(tn);
932

933
	used -= tn_info(tn)->empty_children;
934 935

	/* account for bits == KEYLENGTH case */
936
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
937 938 939 940
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
941 942
}

943
#define MAX_WORK 10
944
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
945
{
946 947 948
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
949
	struct key_vector *tp = node_parent(tn);
950
	unsigned long cindex = get_index(tn->key, tp);
951
	int max_work = MAX_WORK;
952 953 954 955

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

956 957 958 959
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
960
	BUG_ON(tn != get_child(tp, cindex));
961

962 963
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
964
	 */
965
	while (should_inflate(tp, tn) && max_work) {
966 967
		tp = inflate(t, tn);
		if (!tp) {
968
#ifdef CONFIG_IP_FIB_TRIE_STATS
969
			this_cpu_inc(stats->resize_node_skipped);
970 971 972
#endif
			break;
		}
973

974
		max_work--;
975
		tn = get_child(tp, cindex);
976 977
	}

978 979 980
	/* update parent in case inflate failed */
	tp = node_parent(tn);

981 982
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
983
		return tp;
984

985
	/* Halve as long as the number of empty children in this
986 987
	 * node is above threshold.
	 */
988
	while (should_halve(tp, tn) && max_work) {
989 990
		tp = halve(t, tn);
		if (!tp) {
991
#ifdef CONFIG_IP_FIB_TRIE_STATS
992
			this_cpu_inc(stats->resize_node_skipped);
993 994 995 996
#endif
			break;
		}

997
		max_work--;
998
		tn = get_child(tp, cindex);
999
	}
1000 1001

	/* Only one child remains */
1002 1003 1004
	if (should_collapse(tn))
		return collapse(t, tn);

1005
	/* update parent in case halve failed */
1006
	return node_parent(tn);
1007 1008
}

1009
static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
1010
{
1011 1012 1013 1014 1015
	unsigned char node_slen = tn->slen;

	while ((node_slen > tn->pos) && (node_slen > slen)) {
		slen = update_suffix(tn);
		if (node_slen == slen)
1016
			break;
1017 1018 1019

		tn = node_parent(tn);
		node_slen = tn->slen;
1020 1021 1022
	}
}

1023
static void node_push_suffix(struct key_vector *tn, unsigned char slen)
1024
{
1025 1026
	while (tn->slen < slen) {
		tn->slen = slen;
1027 1028 1029 1030
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
1031
/* rcu_read_lock needs to be hold by caller from readside */
1032 1033
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
1034
{
1035 1036 1037 1038 1039 1040 1041 1042 1043
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
1044

1045
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
1046 1047 1048 1049 1050 1051

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1052
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
1053
		 *     we have a mismatch in skip bits and failed
1054 1055
		 *   else
		 *     we know the value is cindex
1056 1057 1058 1059
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
1060
		 */
1061 1062 1063 1064
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
1065

1066 1067
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
1068

1069
	*tp = pn;
1070

A
Alexander Duyck 已提交
1071
	return n;
1072 1073
}

1074 1075 1076
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
1077
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1078
					u8 tos, u32 prio, u32 tb_id)
1079 1080 1081 1082 1083 1084
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

1085
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
1086 1087 1088 1089
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
1090 1091 1092 1093
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
1094 1095 1096 1097 1098 1099 1100 1101 1102
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

1103
static void trie_rebalance(struct trie *t, struct key_vector *tn)
1104
{
1105 1106
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
1107 1108
}

1109
static int fib_insert_node(struct trie *t, struct key_vector *tp,
1110
			   struct fib_alias *new, t_key key)
1111
{
1112
	struct key_vector *n, *l;
1113

1114
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
1115
	if (!l)
1116
		goto noleaf;
1117 1118

	/* retrieve child from parent node */
1119
	n = get_child(tp, get_index(key, tp));
1120

1121 1122 1123 1124 1125 1126 1127
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1128
		struct key_vector *tn;
1129

1130
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1131 1132
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1133

1134 1135 1136
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1137

1138
		/* start adding routes into the node */
1139
		put_child_root(tp, key, tn);
1140
		node_set_parent(n, tn);
1141

1142
		/* parent now has a NULL spot where the leaf can go */
1143
		tp = tn;
1144
	}
O
Olof Johansson 已提交
1145

1146
	/* Case 3: n is NULL, and will just insert a new leaf */
1147
	node_push_suffix(tp, new->fa_slen);
1148
	NODE_INIT_PARENT(l, tp);
1149
	put_child_root(tp, key, l);
1150 1151 1152
	trie_rebalance(t, tp);

	return 0;
1153 1154 1155 1156
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1157 1158
}

1159 1160
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1161 1162 1163 1164 1165 1166 1167
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1168
	} else {
1169 1170 1171 1172 1173
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1174 1175 1176
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1177 1178 1179 1180 1181 1182 1183
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1184
	}
R
Robert Olsson 已提交
1185

1186 1187 1188
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
1189
		node_push_suffix(tp, new->fa_slen);
1190 1191 1192
	}

	return 0;
1193 1194
}

1195
/* Caller must hold RTNL. */
1196 1197
int fib_table_insert(struct net *net, struct fib_table *tb,
		     struct fib_config *cfg)
1198
{
1199
	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1200
	struct trie *t = (struct trie *)tb->tb_data;
1201
	struct fib_alias *fa, *new_fa;
1202
	struct key_vector *l, *tp;
1203
	u16 nlflags = NLM_F_EXCL;
1204
	struct fib_info *fi;
A
Alexander Duyck 已提交
1205 1206
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1207
	u8 tos = cfg->fc_tos;
1208
	u32 key;
1209 1210
	int err;

1211
	if (plen > KEYLENGTH)
1212 1213
		return -EINVAL;

1214
	key = ntohl(cfg->fc_dst);
1215

1216
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1217

1218
	if ((plen < KEYLENGTH) && (key << plen))
1219 1220
		return -EINVAL;

1221 1222 1223
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1224
		goto err;
1225
	}
1226

1227
	l = fib_find_node(t, &tp, key);
1228 1229
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1230 1231 1232 1233 1234 1235

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1236 1237
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1238 1239
	 */

1240 1241 1242
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1243 1244

		err = -EEXIST;
1245
		if (cfg->fc_nlflags & NLM_F_EXCL)
1246 1247
			goto out;

1248 1249
		nlflags &= ~NLM_F_EXCL;

1250 1251 1252 1253 1254 1255 1256
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1257
		hlist_for_each_entry_from(fa, fa_list) {
1258 1259 1260
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1271
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1272 1273 1274
			struct fib_info *fi_drop;
			u8 state;

1275
			nlflags |= NLM_F_REPLACE;
1276 1277 1278 1279
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1280
				goto out;
1281
			}
R
Robert Olsson 已提交
1282
			err = -ENOBUFS;
1283
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1284
			if (!new_fa)
R
Robert Olsson 已提交
1285
				goto out;
1286 1287

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1288 1289
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1290
			new_fa->fa_type = cfg->fc_type;
1291
			state = fa->fa_state;
1292
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1293
			new_fa->fa_slen = fa->fa_slen;
1294
			new_fa->tb_id = tb->tb_id;
1295
			new_fa->fa_default = -1;
1296

1297
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1298 1299
						 key, plen, fi,
						 new_fa->fa_tos, cfg->fc_type,
1300
						 tb->tb_id);
1301 1302 1303
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				  tb->tb_id, &cfg->fc_nlinfo, nlflags);

1304
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1305

R
Robert Olsson 已提交
1306
			alias_free_mem_rcu(fa);
1307 1308 1309

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1310
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1311

O
Olof Johansson 已提交
1312
			goto succeeded;
1313 1314 1315 1316 1317
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1318 1319
		if (fa_match)
			goto out;
1320

1321 1322
		if (cfg->fc_nlflags & NLM_F_APPEND) {
			event = FIB_EVENT_ENTRY_APPEND;
1323
			nlflags |= NLM_F_APPEND;
1324
		} else {
1325
			fa = fa_first;
1326
		}
1327 1328
	}
	err = -ENOENT;
1329
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1330 1331
		goto out;

1332
	nlflags |= NLM_F_CREATE;
1333
	err = -ENOBUFS;
1334
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1335
	if (!new_fa)
1336 1337 1338 1339
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1340
	new_fa->fa_type = cfg->fc_type;
1341
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1342
	new_fa->fa_slen = slen;
1343
	new_fa->tb_id = tb->tb_id;
1344
	new_fa->fa_default = -1;
1345

1346
	/* Insert new entry to the list. */
1347 1348
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1349
		goto out_free_new_fa;
1350

1351 1352 1353
	if (!plen)
		tb->tb_num_default++;

1354
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1355 1356
	call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
				 tb->tb_id);
1357
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1358
		  &cfg->fc_nlinfo, nlflags);
1359 1360
succeeded:
	return 0;
1361 1362 1363

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1364 1365
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1366
err:
1367 1368 1369
	return err;
}

1370
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1371 1372 1373 1374 1375 1376
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1377
/* should be called with rcu_read_lock */
1378
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1379
		     struct fib_result *res, int fib_flags)
1380
{
1381
	struct trie *t = (struct trie *) tb->tb_data;
1382 1383 1384
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1385
	const t_key key = ntohl(flp->daddr);
1386
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1387
	struct fib_alias *fa;
1388
	unsigned long index;
1389
	t_key cindex;
O
Olof Johansson 已提交
1390

D
David Ahern 已提交
1391 1392
	trace_fib_table_lookup(tb->tb_id, flp);

1393 1394 1395 1396
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1397
	if (!n)
1398
		return -EAGAIN;
1399 1400

#ifdef CONFIG_IP_FIB_TRIE_STATS
1401
	this_cpu_inc(stats->gets);
1402 1403
#endif

1404 1405
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1406
		index = get_cindex(key, n);
1407 1408 1409 1410 1411 1412

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1413
		 *   if (index >= (1ul << bits))
1414
		 *     we have a mismatch in skip bits and failed
1415 1416
		 *   else
		 *     we know the value is cindex
1417 1418 1419 1420
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1421
		 */
1422
		if (index >= (1ul << n->bits))
1423
			break;
1424

1425 1426
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1427
			goto found;
1428

1429 1430
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1431
		 */
1432
		if (n->slen > n->pos) {
1433 1434
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1435
		}
1436

1437
		n = get_child_rcu(n, index);
1438 1439 1440
		if (unlikely(!n))
			goto backtrace;
	}
1441

1442 1443 1444
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1445
		struct key_vector __rcu **cptr = n->tnode;
1446

1447 1448 1449
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1450
		 */
1451
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1452
			goto backtrace;
O
Olof Johansson 已提交
1453

1454 1455 1456
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1457

1458 1459 1460
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1461 1462
		 */

1463
		while ((n = rcu_dereference(*cptr)) == NULL) {
1464 1465
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1466 1467
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1468
#endif
1469 1470 1471 1472 1473 1474 1475 1476
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1477 1478 1479 1480 1481
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1482
					return -EAGAIN;
1483 1484 1485 1486
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1487
				pn = node_parent_rcu(pn);
1488 1489 1490 1491 1492 1493 1494
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1495
			cptr = &pn->tnode[cindex];
1496
		}
1497
	}
1498

1499
found:
1500 1501 1502
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1503
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1504 1505 1506
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1507

1508 1509 1510 1511
		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
			if (index >= (1ul << fa->fa_slen))
				continue;
		}
A
Alexander Duyck 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1521
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1522
			this_cpu_inc(stats->semantic_match_passed);
1523
#endif
A
Alexander Duyck 已提交
1524 1525 1526 1527 1528 1529
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1530
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1531 1532 1533

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1534 1535 1536 1537 1538
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
1539
			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1540 1541 1542 1543
				if (flp->flowi4_oif &&
				    flp->flowi4_oif != nh->nh_oif)
					continue;
			}
A
Alexander Duyck 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1555
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1556
			this_cpu_inc(stats->semantic_match_passed);
1557
#endif
D
David Ahern 已提交
1558 1559
			trace_fib_table_lookup_nh(nh);

A
Alexander Duyck 已提交
1560
			return err;
1561
		}
1562
	}
1563
#ifdef CONFIG_IP_FIB_TRIE_STATS
1564
	this_cpu_inc(stats->semantic_match_miss);
1565 1566
#endif
	goto backtrace;
1567
}
1568
EXPORT_SYMBOL_GPL(fib_table_lookup);
1569

1570 1571
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1584 1585
		if (tp->slen == l->slen)
			node_pull_suffix(tp, tp->pos);
1586
		put_child_root(tp, l->key, NULL);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
1598
	node_pull_suffix(tp, fa->fa_slen);
1599 1600 1601
}

/* Caller must hold RTNL. */
1602 1603
int fib_table_delete(struct net *net, struct fib_table *tb,
		     struct fib_config *cfg)
1604 1605 1606
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1607
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1608 1609
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1610 1611
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1612

A
Alexander Duyck 已提交
1613
	if (plen > KEYLENGTH)
1614 1615
		return -EINVAL;

1616
	key = ntohl(cfg->fc_dst);
1617

1618
	if ((plen < KEYLENGTH) && (key << plen))
1619 1620
		return -EINVAL;

1621
	l = fib_find_node(t, &tp, key);
1622
	if (!l)
1623 1624
		return -ESRCH;

1625
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1626 1627 1628
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1629
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1630 1631

	fa_to_delete = NULL;
1632
	hlist_for_each_entry_from(fa, fa_list) {
1633 1634
		struct fib_info *fi = fa->fa_info;

1635 1636 1637
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1638 1639
			break;

1640 1641
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1642
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1643 1644
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1645 1646 1647
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1648 1649 1650 1651 1652
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1653 1654
	if (!fa_to_delete)
		return -ESRCH;
1655

1656
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1657
				 fa_to_delete->fa_info, tos,
1658
				 fa_to_delete->fa_type, tb->tb_id);
1659
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1660
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1661

1662 1663 1664
	if (!plen)
		tb->tb_num_default--;

1665
	fib_remove_alias(t, tp, l, fa_to_delete);
1666

1667
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1668
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1669

1670 1671
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1672
	return 0;
1673 1674
}

1675
/* Scan for the next leaf starting at the provided key value */
1676
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1677
{
1678
	struct key_vector *pn, *n = *tn;
1679
	unsigned long cindex;
1680

1681
	/* this loop is meant to try and find the key in the trie */
1682
	do {
1683 1684
		/* record parent and next child index */
		pn = n;
1685
		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1686 1687 1688

		if (cindex >> pn->bits)
			break;
1689

1690
		/* descend into the next child */
1691
		n = get_child_rcu(pn, cindex++);
1692 1693 1694 1695 1696 1697 1698
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1699

1700
	/* this loop will search for the next leaf with a greater key */
1701
	while (!IS_TRIE(pn)) {
1702 1703 1704
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1705

1706 1707 1708 1709
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1710

1711
		/* grab the next available node */
1712
		n = get_child_rcu(pn, cindex++);
1713 1714
		if (!n)
			continue;
1715

1716 1717 1718
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1719

1720 1721 1722 1723
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1724

1725 1726 1727 1728
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1729
	*tn = pn;
1730
	return n;
1731 1732
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1830 1831
					     NULL, l->key)) {
				kmem_cache_free(fn_alias_kmem, new_fa);
1832
				goto out;
1833
			}
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;

1870 1871 1872 1873
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;
		}

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
	}
}

1918
/* Caller must hold RTNL. */
1919
int fib_table_flush(struct net *net, struct fib_table *tb)
1920
{
1921
	struct trie *t = (struct trie *)tb->tb_data;
1922 1923
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1924 1925
	struct hlist_node *tmp;
	struct fib_alias *fa;
1926
	int found = 0;
1927

1928 1929 1930 1931
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1932

1933 1934
		if (!(cindex--)) {
			t_key pkey = pn->key;
1935

1936 1937 1938
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1939

1940 1941 1942 1943
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1944 1945 1946
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1947

1948 1949
			continue;
		}
1950

1951 1952 1953 1954
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1955

1956 1957 1958 1959
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1960

1961 1962
			continue;
		}
1963

1964 1965
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1966

1967 1968
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
			    tb->tb_id != fa->tb_id) {
1969 1970 1971
				slen = fa->fa_slen;
				continue;
			}
1972

1973 1974 1975 1976
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
						 n->key,
						 KEYLENGTH - fa->fa_slen,
						 fi, fa->fa_tos, fa->fa_type,
1977
						 tb->tb_id);
1978 1979 1980 1981
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1982 1983
		}

1984 1985
		/* update leaf slen */
		n->slen = slen;
1986

1987 1988 1989 1990
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1991
	}
1992

S
Stephen Hemminger 已提交
1993
	pr_debug("trie_flush found=%d\n", found);
1994 1995 1996
	return found;
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
static void fib_leaf_notify(struct net *net, struct key_vector *l,
			    struct fib_table *tb, struct notifier_block *nb,
			    enum fib_event_type event_type)
{
	struct fib_alias *fa;

	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (!fi)
			continue;

		/* local and main table can share the same trie,
		 * so don't notify twice for the same entry.
		 */
		if (tb->tb_id != fa->tb_id)
			continue;

		call_fib_entry_notifier(nb, net, event_type, l->key,
					KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
2017
					fa->fa_type, fa->tb_id);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	}
}

static void fib_table_notify(struct net *net, struct fib_table *tb,
			     struct notifier_block *nb,
			     enum fib_event_type event_type)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *l, *tp = t->kv;
	t_key key = 0;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		fib_leaf_notify(net, l, tb, nb, event_type);

		key = l->key + 1;
		/* stop in case of wrap around */
		if (key < l->key)
			break;
	}
}

static void fib_notify(struct net *net, struct notifier_block *nb,
		       enum fib_event_type event_type)
{
	unsigned int h;

	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

		hlist_for_each_entry_rcu(tb, head, tb_hlist)
			fib_table_notify(net, tb, nb, event_type);
	}
}

2053
static void __trie_free_rcu(struct rcu_head *head)
2054
{
2055
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2056 2057 2058
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

2059 2060
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
2061
#endif /* CONFIG_IP_FIB_TRIE_STATS */
2062 2063 2064
	kfree(tb);
}

2065 2066 2067 2068 2069
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

2070
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
2071
			     struct sk_buff *skb, struct netlink_callback *cb)
2072
{
A
Alexander Duyck 已提交
2073
	__be32 xkey = htonl(l->key);
2074
	struct fib_alias *fa;
A
Alexander Duyck 已提交
2075
	int i, s_i;
2076

A
Alexander Duyck 已提交
2077
	s_i = cb->args[4];
2078 2079
	i = 0;

R
Robert Olsson 已提交
2080
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
2081
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2082 2083 2084 2085 2086
		if (i < s_i) {
			i++;
			continue;
		}

2087 2088 2089 2090 2091
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

2092
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2093 2094 2095 2096
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
2097
				  xkey,
2098
				  KEYLENGTH - fa->fa_slen,
2099
				  fa->fa_tos,
2100
				  fa->fa_info, NLM_F_MULTI) < 0) {
2101
			cb->args[4] = i;
2102 2103
			return -1;
		}
2104
		i++;
2105
	}
2106

2107
	cb->args[4] = i;
2108 2109 2110
	return skb->len;
}

2111
/* rcu_read_lock needs to be hold by caller from readside */
2112 2113
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
2114
{
2115
	struct trie *t = (struct trie *)tb->tb_data;
2116
	struct key_vector *l, *tp = t->kv;
2117 2118 2119
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
2120 2121
	int count = cb->args[2];
	t_key key = cb->args[3];
2122

2123
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2124
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
2125 2126
			cb->args[3] = key;
			cb->args[2] = count;
2127
			return -1;
2128
		}
2129

2130
		++count;
2131 2132
		key = l->key + 1;

2133 2134
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2135 2136 2137 2138

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
2139
	}
2140 2141 2142 2143

	cb->args[3] = key;
	cb->args[2] = count;

2144 2145 2146
	return skb->len;
}

2147
void __init fib_trie_init(void)
2148
{
2149 2150
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
2151 2152 2153
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2154
					   LEAF_SIZE,
2155
					   0, SLAB_PANIC, NULL);
2156
}
2157

2158
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2159 2160 2161
{
	struct fib_table *tb;
	struct trie *t;
2162 2163 2164 2165
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
2166

2167
	tb = kzalloc(sz, GFP_KERNEL);
2168
	if (!tb)
2169 2170 2171
		return NULL;

	tb->tb_id = id;
2172
	tb->tb_num_default = 0;
2173 2174 2175 2176
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
2177 2178

	t = (struct trie *) tb->tb_data;
2179 2180
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2181 2182 2183 2184 2185 2186 2187
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2188 2189 2190 2191

	return tb;
}

2192 2193 2194
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2195
	struct seq_net_private p;
2196
	struct fib_table *tb;
2197
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2198 2199
	unsigned int index;
	unsigned int depth;
2200
};
2201

2202
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2203
{
2204
	unsigned long cindex = iter->index;
2205 2206
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2207

2208 2209
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2210

2211 2212 2213 2214 2215 2216 2217
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2218
			if (IS_LEAF(n)) {
2219 2220
				iter->tnode = pn;
				iter->index = cindex;
2221 2222
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2223
				iter->tnode = n;
2224 2225 2226
				iter->index = 0;
				++iter->depth;
			}
2227

2228 2229
			return n;
		}
2230

2231 2232 2233 2234
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2235
		--iter->depth;
2236
	}
2237

2238 2239 2240 2241
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2242
	return NULL;
2243 2244
}

2245 2246
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2247
{
2248
	struct key_vector *n, *pn;
2249

S
Stephen Hemminger 已提交
2250
	if (!t)
2251 2252
		return NULL;

2253
	pn = t->kv;
2254
	n = rcu_dereference(pn->tnode[0]);
2255
	if (!n)
2256
		return NULL;
2257

2258
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2259
		iter->tnode = n;
2260 2261 2262
		iter->index = 0;
		iter->depth = 1;
	} else {
2263
		iter->tnode = pn;
2264 2265
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2266
	}
2267 2268

	return n;
2269
}
O
Olof Johansson 已提交
2270

2271 2272
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2273
	struct key_vector *n;
2274
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2275

2276
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2277

2278
	rcu_read_lock();
2279
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2280
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2281
			struct fib_alias *fa;
2282

2283 2284 2285 2286
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2287

A
Alexander Duyck 已提交
2288
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2289
				++s->prefixes;
2290 2291
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2292 2293
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2294
			s->nullpointers += tn_info(n)->empty_children;
2295 2296
		}
	}
R
Robert Olsson 已提交
2297
	rcu_read_unlock();
2298 2299
}

2300 2301 2302 2303
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2304
{
E
Eric Dumazet 已提交
2305
	unsigned int i, max, pointers, bytes, avdepth;
2306

2307 2308 2309 2310
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2311

2312 2313
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2314
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2315

2316
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2317
	bytes = LEAF_SIZE * stat->leaves;
2318 2319

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2320
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2321

2322
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2323
	bytes += TNODE_SIZE(0) * stat->tnodes;
2324

R
Robert Olsson 已提交
2325 2326
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2327
		max--;
2328

2329
	pointers = 0;
2330
	for (i = 1; i < max; i++)
2331
		if (stat->nodesizes[i] != 0) {
2332
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2333 2334 2335
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2336
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2337

2338
	bytes += sizeof(struct key_vector *) * pointers;
2339 2340
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2341
}
R
Robert Olsson 已提交
2342

2343
#ifdef CONFIG_IP_FIB_TRIE_STATS
2344
static void trie_show_usage(struct seq_file *seq,
2345
			    const struct trie_use_stats __percpu *stats)
2346
{
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2362
	seq_printf(seq, "\nCounters:\n---------\n");
2363 2364
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2365
	seq_printf(seq, "semantic match passed = %u\n",
2366 2367 2368 2369
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2370
}
2371 2372
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2373
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2374
{
2375 2376 2377 2378 2379 2380
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2381
}
2382

2383

2384 2385
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2386
	struct net *net = (struct net *)seq->private;
2387
	unsigned int h;
2388

2389
	seq_printf(seq,
2390 2391
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2392
		   LEAF_SIZE, TNODE_SIZE(0));
2393

2394 2395 2396 2397
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2398
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2399 2400
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2401

2402 2403 2404 2405 2406 2407 2408 2409
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2410
			trie_show_usage(seq, t->stats);
2411 2412 2413
#endif
		}
	}
2414

2415
	return 0;
2416 2417
}

2418
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2419
{
2420
	return single_open_net(inode, file, fib_triestat_seq_show);
2421 2422
}

2423
static const struct file_operations fib_triestat_fops = {
2424 2425 2426 2427
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2428
	.release = single_release_net,
2429 2430
};

2431
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2432
{
2433 2434
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2435
	loff_t idx = 0;
2436
	unsigned int h;
2437

2438 2439 2440
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2441

2442
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2443
			struct key_vector *n;
2444 2445 2446 2447 2448 2449 2450 2451 2452

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2453
	}
2454

2455 2456 2457
	return NULL;
}

2458
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2459
	__acquires(RCU)
2460
{
2461
	rcu_read_lock();
2462
	return fib_trie_get_idx(seq, *pos);
2463 2464
}

2465
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2466
{
2467
	struct fib_trie_iter *iter = seq->private;
2468
	struct net *net = seq_file_net(seq);
2469 2470 2471
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2472
	struct key_vector *n;
2473

2474
	++*pos;
2475 2476 2477 2478
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2479

2480 2481
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2482
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2483 2484 2485 2486 2487
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2488

2489 2490 2491
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2492
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2493 2494 2495 2496 2497
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2498
	return NULL;
2499 2500 2501 2502

found:
	iter->tb = tb;
	return n;
2503
}
2504

2505
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2506
	__releases(RCU)
2507
{
2508 2509
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2510

2511 2512
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2513 2514
	while (n-- > 0)
		seq_puts(seq, "   ");
2515
}
2516

2517
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2518
{
S
Stephen Hemminger 已提交
2519
	switch (s) {
2520 2521 2522 2523 2524 2525
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2526
		snprintf(buf, len, "scope=%d", s);
2527 2528 2529
		return buf;
	}
}
2530

2531
static const char *const rtn_type_names[__RTN_MAX] = {
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2545

E
Eric Dumazet 已提交
2546
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2547 2548 2549
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2550
	snprintf(buf, len, "type %u", t);
2551
	return buf;
2552 2553
}

2554 2555
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2556
{
2557
	const struct fib_trie_iter *iter = seq->private;
2558
	struct key_vector *n = v;
2559

2560
	if (IS_TRIE(node_parent_rcu(n)))
2561
		fib_table_print(seq, iter->tb);
2562

2563
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2564
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2565

2566 2567 2568
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2569 2570
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2571
	} else {
A
Alexander Duyck 已提交
2572
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2573
		struct fib_alias *fa;
2574 2575

		seq_indent(seq, iter->depth);
2576
		seq_printf(seq, "  |-- %pI4\n", &val);
2577

A
Alexander Duyck 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2591
		}
2592
	}
2593

2594 2595 2596
	return 0;
}

2597
static const struct seq_operations fib_trie_seq_ops = {
2598 2599 2600 2601
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2602 2603
};

2604
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2605
{
2606 2607
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2608 2609
}

2610
static const struct file_operations fib_trie_fops = {
2611 2612 2613 2614
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2615
	.release = seq_release_net,
2616 2617
};

2618 2619
struct fib_route_iter {
	struct seq_net_private p;
2620
	struct fib_table *main_tb;
2621
	struct key_vector *tnode;
2622 2623 2624 2625
	loff_t	pos;
	t_key	key;
};

2626 2627
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2628
{
2629
	struct key_vector *l, **tp = &iter->tnode;
2630
	t_key key;
2631

2632
	/* use cached location of previously found key */
2633 2634 2635
	if (iter->pos > 0 && pos >= iter->pos) {
		key = iter->key;
	} else {
2636
		iter->pos = 1;
2637
		key = 0;
2638 2639
	}

2640 2641 2642
	pos -= iter->pos;

	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2643
		key = l->key + 1;
2644
		iter->pos++;
2645 2646 2647 2648 2649
		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2650 2651 2652
	}

	if (l)
2653
		iter->key = l->key;	/* remember it */
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2665
	struct trie *t;
2666 2667

	rcu_read_lock();
2668

2669
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2670 2671 2672
	if (!tb)
		return NULL;

2673
	iter->main_tb = tb;
2674 2675
	t = (struct trie *)tb->tb_data;
	iter->tnode = t->kv;
2676 2677 2678 2679 2680

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	iter->pos = 0;
2681
	iter->key = KEY_MAX;
2682 2683

	return SEQ_START_TOKEN;
2684 2685 2686 2687 2688
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2689
	struct key_vector *l = NULL;
2690
	t_key key = iter->key + 1;
2691 2692

	++*pos;
2693 2694 2695 2696 2697 2698

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
2699
		iter->key = l->key;
2700
		iter->pos++;
2701 2702
	} else {
		iter->pos = 0;
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2714
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2715
{
E
Eric Dumazet 已提交
2716
	unsigned int flags = 0;
2717

E
Eric Dumazet 已提交
2718 2719
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2720 2721
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2722
	if (mask == htonl(0xFFFFFFFF))
2723 2724 2725
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2726 2727
}

2728 2729 2730
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2731
 *	and needs to be same as fib_hash output to avoid breaking
2732 2733 2734
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2735
{
2736 2737
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2738
	struct fib_alias *fa;
2739
	struct key_vector *l = v;
2740
	__be32 prefix;
2741

2742 2743 2744 2745 2746 2747
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2748

2749 2750
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2751 2752 2753 2754
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2755

A
Alexander Duyck 已提交
2756 2757 2758
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2759

2760 2761 2762
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2784

A
Alexander Duyck 已提交
2785
		seq_pad(seq, '\n');
2786 2787 2788 2789 2790
	}

	return 0;
}

2791
static const struct seq_operations fib_route_seq_ops = {
2792 2793 2794
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2795
	.show   = fib_route_seq_show,
2796 2797
};

2798
static int fib_route_seq_open(struct inode *inode, struct file *file)
2799
{
2800
	return seq_open_net(inode, file, &fib_route_seq_ops,
2801
			    sizeof(struct fib_route_iter));
2802 2803
}

2804
static const struct file_operations fib_route_fops = {
2805 2806 2807 2808
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2809
	.release = seq_release_net,
2810 2811
};

2812
int __net_init fib_proc_init(struct net *net)
2813
{
2814
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2815 2816
		goto out1;

2817 2818
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2819 2820
		goto out2;

2821
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2822 2823
		goto out3;

2824
	return 0;
2825 2826

out3:
2827
	remove_proc_entry("fib_triestat", net->proc_net);
2828
out2:
2829
	remove_proc_entry("fib_trie", net->proc_net);
2830 2831
out1:
	return -ENOMEM;
2832 2833
}

2834
void __net_exit fib_proc_exit(struct net *net)
2835
{
2836 2837 2838
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2839 2840 2841
}

#endif /* CONFIG_PROC_FS */