fib_trie.c 66.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52

53
#include <linux/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <linux/vmalloc.h>
76
#include <linux/notifier.h>
77
#include <net/net_namespace.h>
78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
84
#include <net/fib_notifier.h>
D
David Ahern 已提交
85
#include <trace/events/fib.h>
86 87
#include "fib_lookup.h"

88 89
static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
				   enum fib_event_type event_type, u32 dst,
90
				   int dst_len, struct fib_alias *fa)
91 92 93 94
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
95 96 97 98
		.fi = fa->fa_info,
		.tos = fa->fa_tos,
		.type = fa->fa_type,
		.tb_id = fa->tb_id,
99
	};
100
	return call_fib4_notifier(nb, net, event_type, &info.info);
101 102
}

103 104
static int call_fib_entry_notifiers(struct net *net,
				    enum fib_event_type event_type, u32 dst,
105
				    int dst_len, struct fib_alias *fa)
106 107 108 109
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
110 111 112 113
		.fi = fa->fa_info,
		.tos = fa->fa_tos,
		.type = fa->fa_type,
		.tb_id = fa->tb_id,
114
	};
115
	return call_fib4_notifiers(net, event_type, &info.info);
116 117
}

R
Robert Olsson 已提交
118
#define MAX_STAT_DEPTH 32
119

120 121
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
122 123 124

typedef unsigned int t_key;

125 126 127
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
128

129
struct key_vector {
130 131
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
132
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
133
	unsigned char slen;
A
Alexander Duyck 已提交
134
	union {
135
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
136
		struct hlist_head leaf;
137
		/* This array is valid if (pos | bits) > 0 (TNODE) */
138
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
139
	};
140 141
};

142
struct tnode {
143
	struct rcu_head rcu;
144 145
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
146
	struct key_vector __rcu *parent;
147
	struct key_vector kv[1];
148
#define tn_bits kv[0].bits
149 150 151
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
152 153
#define LEAF_SIZE	TNODE_SIZE(1)

154 155 156 157 158 159 160
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
161
	unsigned int resize_node_skipped;
162 163 164 165 166 167 168 169 170
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
171
	unsigned int prefixes;
R
Robert Olsson 已提交
172
	unsigned int nodesizes[MAX_STAT_DEPTH];
173
};
174 175

struct trie {
176
	struct key_vector kv[1];
177
#ifdef CONFIG_IP_FIB_TRIE_STATS
178
	struct trie_use_stats __percpu *stats;
179 180 181
#endif
};

182
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
183 184 185 186 187 188 189 190
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
191

192
static struct kmem_cache *fn_alias_kmem __read_mostly;
193
static struct kmem_cache *trie_leaf_kmem __read_mostly;
194

195 196 197 198 199
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

200
/* caller must hold RTNL */
201
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
202
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
203

204
/* caller must hold RCU read lock or RTNL */
205
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
206
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
207

208
/* wrapper for rcu_assign_pointer */
209
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
210
{
A
Alexander Duyck 已提交
211
	if (n)
212
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
213 214
}

215
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
216 217 218

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
219
 */
220
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
221
{
222
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
223
}
R
Robert Olsson 已提交
224

225 226
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

227 228 229 230
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

231 232 233
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

234 235 236
	return index >> kv->pos;
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
283
 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
284 285 286 287 288 289 290 291
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
292
 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
293 294
 * at this point.
 */
295

296 297
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
298
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
299
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
300 301

static void __alias_free_mem(struct rcu_head *head)
302
{
R
Robert Olsson 已提交
303 304
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
305 306
}

R
Robert Olsson 已提交
307
static inline void alias_free_mem_rcu(struct fib_alias *fa)
308
{
R
Robert Olsson 已提交
309 310
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
311

312
#define TNODE_KMALLOC_MAX \
313
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
314
#define TNODE_VMALLOC_MAX \
315
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
316

317
static void __node_free_rcu(struct rcu_head *head)
318
{
319
	struct tnode *n = container_of(head, struct tnode, rcu);
320

321
	if (!n->tn_bits)
322 323
		kmem_cache_free(trie_leaf_kmem, n);
	else
324
		kvfree(n);
325 326
}

327
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
328

329
static struct tnode *tnode_alloc(int bits)
330
{
331 332 333 334 335 336 337 338 339
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
340
	if (size <= PAGE_SIZE)
341
		return kzalloc(size, GFP_KERNEL);
342
	else
343
		return vzalloc(size);
344
}
R
Robert Olsson 已提交
345

346
static inline void empty_child_inc(struct key_vector *n)
347
{
348
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
349 350
}

351
static inline void empty_child_dec(struct key_vector *n)
352
{
353
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
354 355
}

356
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
357
{
358 359
	struct key_vector *l;
	struct tnode *kv;
360

361
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
362 363 364 365
	if (!kv)
		return NULL;

	/* initialize key vector */
366
	l = kv->kv;
367 368 369 370 371 372 373 374 375
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
376 377 378
	return l;
}

379
static struct key_vector *tnode_new(t_key key, int pos, int bits)
380
{
381
	unsigned int shift = pos + bits;
382 383
	struct key_vector *tn;
	struct tnode *tnode;
384 385 386

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
387

388
	tnode = tnode_alloc(bits);
389 390 391
	if (!tnode)
		return NULL;

392 393 394
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

395
	if (bits == KEYLENGTH)
396
		tnode->full_children = 1;
397
	else
398
		tnode->empty_children = 1ul << bits;
399

400
	tn = tnode->kv;
401 402 403 404 405
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

406 407 408
	return tn;
}

409
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
410 411
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
412
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
413
{
414
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
415 416
}

417 418 419
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
420 421
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
422
{
423
	struct key_vector *chi = get_child(tn, i);
424
	int isfull, wasfull;
425

426
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
427

428
	/* update emptyChildren, overflow into fullChildren */
429
	if (!n && chi)
430
		empty_child_inc(tn);
431
	if (n && !chi)
432
		empty_child_dec(tn);
433

434
	/* update fullChildren */
435
	wasfull = tnode_full(tn, chi);
436
	isfull = tnode_full(tn, n);
437

438
	if (wasfull && !isfull)
439
		tn_info(tn)->full_children--;
440
	else if (!wasfull && isfull)
441
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
442

443 444 445
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

446
	rcu_assign_pointer(tn->tnode[i], n);
447 448
}

449
static void update_children(struct key_vector *tn)
450 451 452 453
{
	unsigned long i;

	/* update all of the child parent pointers */
454
	for (i = child_length(tn); i;) {
455
		struct key_vector *inode = get_child(tn, --i);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

471 472
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
473
{
474 475
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
476
	else
477
		put_child(tp, get_index(key, tp), n);
478 479
}

480
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
481
{
482
	tn_info(tn)->rcu.next = NULL;
483 484
}

485 486
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
487
{
488 489
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
490
}
E
Eric Dumazet 已提交
491

492
static void tnode_free(struct key_vector *tn)
493
{
494
	struct callback_head *head = &tn_info(tn)->rcu;
495 496 497

	while (head) {
		head = head->next;
498
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
499 500
		node_free(tn);

501
		tn = container_of(head, struct tnode, rcu)->kv;
502 503 504 505 506
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
507 508 509
	}
}

510 511 512
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
513
{
514
	struct key_vector *tp = node_parent(oldtnode);
515 516 517 518
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
519
	put_child_root(tp, tn->key, tn);
520 521 522 523 524 525 526 527

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
528
	for (i = child_length(tn); i;) {
529
		struct key_vector *inode = get_child(tn, --i);
530 531 532

		/* resize child node */
		if (tnode_full(tn, inode))
533
			tn = resize(t, inode);
534
	}
535

536
	return tp;
537 538
}

539 540
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
541
{
542
	struct key_vector *tn;
543
	unsigned long i;
544
	t_key m;
545

S
Stephen Hemminger 已提交
546
	pr_debug("In inflate\n");
547

548
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
549
	if (!tn)
550
		goto notnode;
551

552 553 554
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

555 556 557 558
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
559
	 */
560
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
561
		struct key_vector *inode = get_child(oldtnode, --i);
562
		struct key_vector *node0, *node1;
563
		unsigned long j, k;
564

565
		/* An empty child */
566
		if (!inode)
567 568 569
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
570
		if (!tnode_full(oldtnode, inode)) {
571
			put_child(tn, get_index(inode->key, tn), inode);
572 573 574
			continue;
		}

575 576 577
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

578 579
		/* An internal node with two children */
		if (inode->bits == 1) {
580 581
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
582
			continue;
583 584
		}

O
Olof Johansson 已提交
585
		/* We will replace this node 'inode' with two new
586
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
587 588 589 590 591
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
592
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
593 594
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
595 596 597
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
598
		 */
599 600 601
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
602
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
603

604
		tnode_free_append(tn, node1);
605 606 607 608 609
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
610
		for (k = child_length(inode), j = k / 2; j;) {
611 612 613 614
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
615
		}
616

617 618 619
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
620

621 622 623 624
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
625

626
	/* setup the parent pointers into and out of this node */
627
	return replace(t, oldtnode, tn);
628
nomem:
629 630
	/* all pointers should be clean so we are done */
	tnode_free(tn);
631 632
notnode:
	return NULL;
633 634
}

635 636
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
637
{
638
	struct key_vector *tn;
639
	unsigned long i;
640

S
Stephen Hemminger 已提交
641
	pr_debug("In halve\n");
642

643
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
644
	if (!tn)
645
		goto notnode;
646

647 648 649
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

650 651 652 653
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
654
	 */
655
	for (i = child_length(oldtnode); i;) {
656 657
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
658
		struct key_vector *inode;
659

660 661 662 663 664
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
665

666
		/* Two nonempty children */
667
		inode = tnode_new(node0->key, oldtnode->pos, 1);
668 669
		if (!inode)
			goto nomem;
670
		tnode_free_append(tn, inode);
671

672 673 674 675 676 677 678
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
679
	}
680

681
	/* setup the parent pointers into and out of this node */
682 683 684 685 686 687
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
688 689
}

690 691
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
692
{
693
	struct key_vector *n, *tp;
694 695 696
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
697
	for (n = NULL, i = child_length(oldtnode); !n && i;)
698
		n = get_child(oldtnode, --i);
699 700 701

	/* compress one level */
	tp = node_parent(oldtnode);
702
	put_child_root(tp, oldtnode->key, n);
703 704 705 706
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
707 708

	return tp;
709 710
}

711
static unsigned char update_suffix(struct key_vector *tn)
712 713 714
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;
715 716 717 718 719 720 721
	unsigned char slen_max;

	/* only vector 0 can have a suffix length greater than or equal to
	 * tn->pos + tn->bits, the second highest node will have a suffix
	 * length at most of tn->pos + tn->bits - 1
	 */
	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
722 723 724 725 726 727

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
728
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
729
		struct key_vector *n = get_child(tn, i);
730 731 732 733 734 735 736 737 738

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

739 740
		/* stop searching if we have hit the maximum possible value */
		if (slen >= slen_max)
741 742 743 744 745 746 747 748
			break;
	}

	tn->slen = slen;

	return slen;
}

749 750 751 752 753 754 755 756
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
757
 * child_length() and instead of multiplying by 2 (since the
758 759 760 761
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
762
 * The left-hand side may look a bit weird: child_length(tn)
763 764 765 766 767 768 769 770 771
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
772
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
773 774
 *     tn->full_children;
 *
775
 * new_child_length = child_length(tn) * 2;
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
792
 * 100 * (child_length(tn) - tn->empty_children +
793 794 795
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
796
 * 100 * (child_length(tn) - tn->empty_children +
797
 *    tn->full_children) >=
798
 *      inflate_threshold * child_length(tn) * 2
799 800
 *
 * shorten again:
801
 * 50 * (tn->full_children + child_length(tn) -
802
 *    tn->empty_children) >= inflate_threshold *
803
 *    child_length(tn)
804 805
 *
 */
806
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
807
{
808
	unsigned long used = child_length(tn);
809 810 811
	unsigned long threshold = used;

	/* Keep root node larger */
812
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
813 814
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
815

816 817 818
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
819 820
}

821
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
822
{
823
	unsigned long used = child_length(tn);
824 825 826
	unsigned long threshold = used;

	/* Keep root node larger */
827
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
828
	used -= tn_info(tn)->empty_children;
829

830 831 832 833 834
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

835
static inline bool should_collapse(struct key_vector *tn)
836
{
837
	unsigned long used = child_length(tn);
838

839
	used -= tn_info(tn)->empty_children;
840 841

	/* account for bits == KEYLENGTH case */
842
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
843 844 845 846
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
847 848
}

849
#define MAX_WORK 10
850
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
851
{
852 853 854
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
855
	struct key_vector *tp = node_parent(tn);
856
	unsigned long cindex = get_index(tn->key, tp);
857
	int max_work = MAX_WORK;
858 859 860 861

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

862 863 864 865
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
866
	BUG_ON(tn != get_child(tp, cindex));
867

868 869
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
870
	 */
871
	while (should_inflate(tp, tn) && max_work) {
872 873
		tp = inflate(t, tn);
		if (!tp) {
874
#ifdef CONFIG_IP_FIB_TRIE_STATS
875
			this_cpu_inc(stats->resize_node_skipped);
876 877 878
#endif
			break;
		}
879

880
		max_work--;
881
		tn = get_child(tp, cindex);
882 883
	}

884 885 886
	/* update parent in case inflate failed */
	tp = node_parent(tn);

887 888
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
889
		return tp;
890

891
	/* Halve as long as the number of empty children in this
892 893
	 * node is above threshold.
	 */
894
	while (should_halve(tp, tn) && max_work) {
895 896
		tp = halve(t, tn);
		if (!tp) {
897
#ifdef CONFIG_IP_FIB_TRIE_STATS
898
			this_cpu_inc(stats->resize_node_skipped);
899 900 901 902
#endif
			break;
		}

903
		max_work--;
904
		tn = get_child(tp, cindex);
905
	}
906 907

	/* Only one child remains */
908 909 910
	if (should_collapse(tn))
		return collapse(t, tn);

911
	/* update parent in case halve failed */
912
	return node_parent(tn);
913 914
}

915
static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
916
{
917 918 919 920 921
	unsigned char node_slen = tn->slen;

	while ((node_slen > tn->pos) && (node_slen > slen)) {
		slen = update_suffix(tn);
		if (node_slen == slen)
922
			break;
923 924 925

		tn = node_parent(tn);
		node_slen = tn->slen;
926 927 928
	}
}

929
static void node_push_suffix(struct key_vector *tn, unsigned char slen)
930
{
931 932
	while (tn->slen < slen) {
		tn->slen = slen;
933 934 935 936
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
937
/* rcu_read_lock needs to be hold by caller from readside */
938 939
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
940
{
941 942 943 944 945 946 947 948 949
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
950

951
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
952 953 954 955 956 957

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
958
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
959
		 *     we have a mismatch in skip bits and failed
960 961
		 *   else
		 *     we know the value is cindex
962 963 964 965
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
966
		 */
967 968 969 970
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
971

972 973
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
974

975
	*tp = pn;
976

A
Alexander Duyck 已提交
977
	return n;
978 979
}

980 981 982
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
983
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
984
					u8 tos, u32 prio, u32 tb_id)
985 986 987 988 989 990
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

991
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
992 993 994 995
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
996 997 998 999
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
1000 1001 1002 1003 1004 1005 1006 1007 1008
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

1009
static void trie_rebalance(struct trie *t, struct key_vector *tn)
1010
{
1011 1012
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
1013 1014
}

1015
static int fib_insert_node(struct trie *t, struct key_vector *tp,
1016
			   struct fib_alias *new, t_key key)
1017
{
1018
	struct key_vector *n, *l;
1019

1020
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
1021
	if (!l)
1022
		goto noleaf;
1023 1024

	/* retrieve child from parent node */
1025
	n = get_child(tp, get_index(key, tp));
1026

1027 1028 1029 1030 1031 1032 1033
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1034
		struct key_vector *tn;
1035

1036
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1037 1038
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1039

1040 1041 1042
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1043

1044
		/* start adding routes into the node */
1045
		put_child_root(tp, key, tn);
1046
		node_set_parent(n, tn);
1047

1048
		/* parent now has a NULL spot where the leaf can go */
1049
		tp = tn;
1050
	}
O
Olof Johansson 已提交
1051

1052
	/* Case 3: n is NULL, and will just insert a new leaf */
1053
	node_push_suffix(tp, new->fa_slen);
1054
	NODE_INIT_PARENT(l, tp);
1055
	put_child_root(tp, key, l);
1056 1057 1058
	trie_rebalance(t, tp);

	return 0;
1059 1060 1061 1062
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1063 1064
}

1065 1066
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1067 1068 1069 1070 1071 1072 1073
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1074
	} else {
1075 1076 1077 1078 1079
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1080 1081 1082
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1083 1084 1085 1086 1087 1088 1089
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1090
	}
R
Robert Olsson 已提交
1091

1092 1093 1094
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
1095
		node_push_suffix(tp, new->fa_slen);
1096 1097 1098
	}

	return 0;
1099 1100
}

1101
static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1102
{
1103 1104
	if (plen > KEYLENGTH) {
		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1105
		return false;
1106
	}
1107

1108 1109 1110
	if ((plen < KEYLENGTH) && (key << plen)) {
		NL_SET_ERR_MSG(extack,
			       "Invalid prefix for given prefix length");
1111
		return false;
1112
	}
1113 1114 1115 1116

	return true;
}

1117
/* Caller must hold RTNL. */
1118
int fib_table_insert(struct net *net, struct fib_table *tb,
1119
		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1120
{
1121
	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1122
	struct trie *t = (struct trie *)tb->tb_data;
1123
	struct fib_alias *fa, *new_fa;
1124
	struct key_vector *l, *tp;
1125
	u16 nlflags = NLM_F_EXCL;
1126
	struct fib_info *fi;
A
Alexander Duyck 已提交
1127 1128
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1129
	u8 tos = cfg->fc_tos;
1130
	u32 key;
1131 1132
	int err;

1133
	key = ntohl(cfg->fc_dst);
1134

1135
	if (!fib_valid_key_len(key, plen, extack))
1136 1137
		return -EINVAL;

1138 1139
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);

1140
	fi = fib_create_info(cfg, extack);
1141 1142
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1143
		goto err;
1144
	}
1145

1146
	l = fib_find_node(t, &tp, key);
1147 1148
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1149 1150 1151 1152 1153 1154

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1155 1156
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1157 1158
	 */

1159 1160 1161
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1162 1163

		err = -EEXIST;
1164
		if (cfg->fc_nlflags & NLM_F_EXCL)
1165 1166
			goto out;

1167 1168
		nlflags &= ~NLM_F_EXCL;

1169 1170 1171 1172 1173 1174 1175
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1176
		hlist_for_each_entry_from(fa, fa_list) {
1177 1178 1179
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1190
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1191 1192 1193
			struct fib_info *fi_drop;
			u8 state;

1194
			nlflags |= NLM_F_REPLACE;
1195 1196 1197 1198
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1199
				goto out;
1200
			}
R
Robert Olsson 已提交
1201
			err = -ENOBUFS;
1202
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1203
			if (!new_fa)
R
Robert Olsson 已提交
1204
				goto out;
1205 1206

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1207 1208
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1209
			new_fa->fa_type = cfg->fc_type;
1210
			state = fa->fa_state;
1211
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1212
			new_fa->fa_slen = fa->fa_slen;
1213
			new_fa->tb_id = tb->tb_id;
1214
			new_fa->fa_default = -1;
1215

1216
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1217
						 key, plen, new_fa);
1218 1219 1220
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				  tb->tb_id, &cfg->fc_nlinfo, nlflags);

1221
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1222

R
Robert Olsson 已提交
1223
			alias_free_mem_rcu(fa);
1224 1225 1226

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1227
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1228

O
Olof Johansson 已提交
1229
			goto succeeded;
1230 1231 1232 1233 1234
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1235 1236
		if (fa_match)
			goto out;
1237

1238 1239
		if (cfg->fc_nlflags & NLM_F_APPEND) {
			event = FIB_EVENT_ENTRY_APPEND;
1240
			nlflags |= NLM_F_APPEND;
1241
		} else {
1242
			fa = fa_first;
1243
		}
1244 1245
	}
	err = -ENOENT;
1246
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1247 1248
		goto out;

1249
	nlflags |= NLM_F_CREATE;
1250
	err = -ENOBUFS;
1251
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1252
	if (!new_fa)
1253 1254 1255 1256
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1257
	new_fa->fa_type = cfg->fc_type;
1258
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1259
	new_fa->fa_slen = slen;
1260
	new_fa->tb_id = tb->tb_id;
1261
	new_fa->fa_default = -1;
1262

1263
	/* Insert new entry to the list. */
1264 1265
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1266
		goto out_free_new_fa;
1267

1268 1269 1270
	if (!plen)
		tb->tb_num_default++;

1271
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1272
	call_fib_entry_notifiers(net, event, key, plen, new_fa);
1273
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1274
		  &cfg->fc_nlinfo, nlflags);
1275 1276
succeeded:
	return 0;
1277 1278 1279

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1280 1281
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1282
err:
1283 1284 1285
	return err;
}

1286
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1287 1288 1289 1290 1291 1292
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1293
/* should be called with rcu_read_lock */
1294
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1295
		     struct fib_result *res, int fib_flags)
1296
{
1297
	struct trie *t = (struct trie *) tb->tb_data;
1298 1299 1300
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1301
	const t_key key = ntohl(flp->daddr);
1302
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1303
	struct fib_alias *fa;
1304
	unsigned long index;
1305
	t_key cindex;
O
Olof Johansson 已提交
1306

D
David Ahern 已提交
1307 1308
	trace_fib_table_lookup(tb->tb_id, flp);

1309 1310 1311 1312
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1313
	if (!n)
1314
		return -EAGAIN;
1315 1316

#ifdef CONFIG_IP_FIB_TRIE_STATS
1317
	this_cpu_inc(stats->gets);
1318 1319
#endif

1320 1321
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1322
		index = get_cindex(key, n);
1323 1324 1325 1326 1327 1328

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1329
		 *   if (index >= (1ul << bits))
1330
		 *     we have a mismatch in skip bits and failed
1331 1332
		 *   else
		 *     we know the value is cindex
1333 1334 1335 1336
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1337
		 */
1338
		if (index >= (1ul << n->bits))
1339
			break;
1340

1341 1342
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1343
			goto found;
1344

1345 1346
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1347
		 */
1348
		if (n->slen > n->pos) {
1349 1350
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1351
		}
1352

1353
		n = get_child_rcu(n, index);
1354 1355 1356
		if (unlikely(!n))
			goto backtrace;
	}
1357

1358 1359 1360
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1361
		struct key_vector __rcu **cptr = n->tnode;
1362

1363 1364 1365
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1366
		 */
1367
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1368
			goto backtrace;
O
Olof Johansson 已提交
1369

1370 1371 1372
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1373

1374 1375 1376
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1377 1378
		 */

1379
		while ((n = rcu_dereference(*cptr)) == NULL) {
1380 1381
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1382 1383
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1384
#endif
1385 1386 1387 1388 1389 1390 1391 1392
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1393 1394 1395 1396 1397
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1398
					return -EAGAIN;
1399 1400 1401 1402
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1403
				pn = node_parent_rcu(pn);
1404 1405 1406 1407 1408 1409 1410
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1411
			cptr = &pn->tnode[cindex];
1412
		}
1413
	}
1414

1415
found:
1416 1417 1418
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1419
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1420 1421 1422
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1423

1424 1425 1426 1427
		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
			if (index >= (1ul << fa->fa_slen))
				continue;
		}
A
Alexander Duyck 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1437
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1438
			this_cpu_inc(stats->semantic_match_passed);
1439
#endif
A
Alexander Duyck 已提交
1440 1441 1442 1443 1444 1445
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1446
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1447 1448 1449

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1450 1451 1452 1453 1454
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
1455
			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1456 1457 1458 1459
				if (flp->flowi4_oif &&
				    flp->flowi4_oif != nh->nh_oif)
					continue;
			}
A
Alexander Duyck 已提交
1460 1461

			if (!(fib_flags & FIB_LOOKUP_NOREF))
1462
				refcount_inc(&fi->fib_clntref);
A
Alexander Duyck 已提交
1463

1464
			res->prefix = htonl(n->key);
A
Alexander Duyck 已提交
1465 1466 1467 1468 1469 1470 1471
			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1472
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1473
			this_cpu_inc(stats->semantic_match_passed);
1474
#endif
D
David Ahern 已提交
1475 1476
			trace_fib_table_lookup_nh(nh);

A
Alexander Duyck 已提交
1477
			return err;
1478
		}
1479
	}
1480
#ifdef CONFIG_IP_FIB_TRIE_STATS
1481
	this_cpu_inc(stats->semantic_match_miss);
1482 1483
#endif
	goto backtrace;
1484
}
1485
EXPORT_SYMBOL_GPL(fib_table_lookup);
1486

1487 1488
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1501 1502
		if (tp->slen == l->slen)
			node_pull_suffix(tp, tp->pos);
1503
		put_child_root(tp, l->key, NULL);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
1515
	node_pull_suffix(tp, fa->fa_slen);
1516 1517 1518
}

/* Caller must hold RTNL. */
1519
int fib_table_delete(struct net *net, struct fib_table *tb,
1520
		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1521 1522 1523
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1524
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1525 1526
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1527 1528
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1529

1530
	key = ntohl(cfg->fc_dst);
1531

1532
	if (!fib_valid_key_len(key, plen, extack))
1533 1534
		return -EINVAL;

1535
	l = fib_find_node(t, &tp, key);
1536
	if (!l)
1537 1538
		return -ESRCH;

1539
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1540 1541 1542
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1543
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1544 1545

	fa_to_delete = NULL;
1546
	hlist_for_each_entry_from(fa, fa_list) {
1547 1548
		struct fib_info *fi = fa->fa_info;

1549 1550 1551
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1552 1553
			break;

1554 1555
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1556
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1557 1558
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1559 1560
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
1561 1562
		    fib_nh_match(cfg, fi, extack) == 0 &&
		    fib_metrics_match(cfg, fi)) {
1563 1564 1565 1566 1567
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1568 1569
	if (!fa_to_delete)
		return -ESRCH;
1570

1571
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1572
				 fa_to_delete);
1573
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1574
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1575

1576 1577 1578
	if (!plen)
		tb->tb_num_default--;

1579
	fib_remove_alias(t, tp, l, fa_to_delete);
1580

1581
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1582
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1583

1584 1585
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1586
	return 0;
1587 1588
}

1589
/* Scan for the next leaf starting at the provided key value */
1590
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1591
{
1592
	struct key_vector *pn, *n = *tn;
1593
	unsigned long cindex;
1594

1595
	/* this loop is meant to try and find the key in the trie */
1596
	do {
1597 1598
		/* record parent and next child index */
		pn = n;
1599
		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1600 1601 1602

		if (cindex >> pn->bits)
			break;
1603

1604
		/* descend into the next child */
1605
		n = get_child_rcu(pn, cindex++);
1606 1607 1608 1609 1610 1611 1612
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1613

1614
	/* this loop will search for the next leaf with a greater key */
1615
	while (!IS_TRIE(pn)) {
1616 1617 1618
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1619

1620 1621 1622 1623
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1624

1625
		/* grab the next available node */
1626
		n = get_child_rcu(pn, cindex++);
1627 1628
		if (!n)
			continue;
1629

1630 1631 1632
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1633

1634 1635 1636 1637
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1638

1639 1640 1641 1642
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1643
	*tn = pn;
1644
	return n;
1645 1646
}

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1744 1745
					     NULL, l->key)) {
				kmem_cache_free(fn_alias_kmem, new_fa);
1746
				goto out;
1747
			}
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;

1784 1785 1786 1787
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;
		}

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
	}
}

1832
/* Caller must hold RTNL. */
1833
int fib_table_flush(struct net *net, struct fib_table *tb)
1834
{
1835
	struct trie *t = (struct trie *)tb->tb_data;
1836 1837
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1838 1839
	struct hlist_node *tmp;
	struct fib_alias *fa;
1840
	int found = 0;
1841

1842 1843 1844 1845
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1846

1847 1848
		if (!(cindex--)) {
			t_key pkey = pn->key;
1849

1850 1851 1852
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1853

1854 1855 1856 1857
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1858 1859 1860
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1861

1862 1863
			continue;
		}
1864

1865 1866 1867 1868
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1869

1870 1871 1872 1873
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1874

1875 1876
			continue;
		}
1877

1878 1879
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1880

1881 1882
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
			    tb->tb_id != fa->tb_id) {
1883 1884 1885
				slen = fa->fa_slen;
				continue;
			}
1886

1887 1888
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
						 n->key,
1889
						 KEYLENGTH - fa->fa_slen, fa);
1890 1891 1892 1893
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1894 1895
		}

1896 1897
		/* update leaf slen */
		n->slen = slen;
1898

1899 1900 1901 1902
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1903
	}
1904

S
Stephen Hemminger 已提交
1905
	pr_debug("trie_flush found=%d\n", found);
1906 1907 1908
	return found;
}

1909
static void fib_leaf_notify(struct net *net, struct key_vector *l,
1910
			    struct fib_table *tb, struct notifier_block *nb)
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
{
	struct fib_alias *fa;

	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (!fi)
			continue;

		/* local and main table can share the same trie,
		 * so don't notify twice for the same entry.
		 */
		if (tb->tb_id != fa->tb_id)
			continue;

1926
		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1927
					KEYLENGTH - fa->fa_slen, fa);
1928 1929 1930 1931
	}
}

static void fib_table_notify(struct net *net, struct fib_table *tb,
1932
			     struct notifier_block *nb)
1933 1934 1935 1936 1937 1938
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *l, *tp = t->kv;
	t_key key = 0;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1939
		fib_leaf_notify(net, l, tb, nb);
1940 1941 1942 1943 1944 1945 1946 1947

		key = l->key + 1;
		/* stop in case of wrap around */
		if (key < l->key)
			break;
	}
}

1948
void fib_notify(struct net *net, struct notifier_block *nb)
1949 1950 1951 1952 1953 1954 1955 1956
{
	unsigned int h;

	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1957
			fib_table_notify(net, tb, nb);
1958 1959 1960
	}
}

1961
static void __trie_free_rcu(struct rcu_head *head)
1962
{
1963
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1964 1965 1966
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1967 1968
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1969
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1970 1971 1972
	kfree(tb);
}

1973 1974 1975 1976 1977
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1978
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1979
			     struct sk_buff *skb, struct netlink_callback *cb)
1980
{
A
Alexander Duyck 已提交
1981
	__be32 xkey = htonl(l->key);
1982
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1983
	int i, s_i;
1984

A
Alexander Duyck 已提交
1985
	s_i = cb->args[4];
1986 1987
	i = 0;

R
Robert Olsson 已提交
1988
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1989
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1990 1991
		int err;

1992 1993 1994 1995 1996
		if (i < s_i) {
			i++;
			continue;
		}

1997 1998 1999 2000 2001
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

2002 2003 2004 2005 2006 2007
		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
				    tb->tb_id, fa->fa_type,
				    xkey, KEYLENGTH - fa->fa_slen,
				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
		if (err < 0) {
2008
			cb->args[4] = i;
2009
			return err;
2010
		}
2011
		i++;
2012
	}
2013

2014
	cb->args[4] = i;
2015 2016 2017
	return skb->len;
}

2018
/* rcu_read_lock needs to be hold by caller from readside */
2019 2020
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
2021
{
2022
	struct trie *t = (struct trie *)tb->tb_data;
2023
	struct key_vector *l, *tp = t->kv;
2024 2025 2026
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
2027 2028
	int count = cb->args[2];
	t_key key = cb->args[3];
2029

2030
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2031 2032 2033 2034
		int err;

		err = fn_trie_dump_leaf(l, tb, skb, cb);
		if (err < 0) {
2035 2036
			cb->args[3] = key;
			cb->args[2] = count;
2037
			return err;
2038
		}
2039

2040
		++count;
2041 2042
		key = l->key + 1;

2043 2044
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2045 2046 2047 2048

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
2049
	}
2050 2051 2052 2053

	cb->args[3] = key;
	cb->args[2] = count;

2054 2055 2056
	return skb->len;
}

2057
void __init fib_trie_init(void)
2058
{
2059 2060
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
2061 2062 2063
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2064
					   LEAF_SIZE,
2065
					   0, SLAB_PANIC, NULL);
2066
}
2067

2068
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2069 2070 2071
{
	struct fib_table *tb;
	struct trie *t;
2072 2073 2074 2075
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
2076

2077
	tb = kzalloc(sz, GFP_KERNEL);
2078
	if (!tb)
2079 2080 2081
		return NULL;

	tb->tb_id = id;
2082
	tb->tb_num_default = 0;
2083 2084 2085 2086
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
2087 2088

	t = (struct trie *) tb->tb_data;
2089 2090
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2091 2092 2093 2094 2095 2096 2097
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2098 2099 2100 2101

	return tb;
}

2102 2103 2104
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2105
	struct seq_net_private p;
2106
	struct fib_table *tb;
2107
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2108 2109
	unsigned int index;
	unsigned int depth;
2110
};
2111

2112
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2113
{
2114
	unsigned long cindex = iter->index;
2115 2116
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2117

2118 2119
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2120

2121 2122 2123 2124 2125 2126 2127
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2128
			if (IS_LEAF(n)) {
2129 2130
				iter->tnode = pn;
				iter->index = cindex;
2131 2132
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2133
				iter->tnode = n;
2134 2135 2136
				iter->index = 0;
				++iter->depth;
			}
2137

2138 2139
			return n;
		}
2140

2141 2142 2143 2144
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2145
		--iter->depth;
2146
	}
2147

2148 2149 2150 2151
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2152
	return NULL;
2153 2154
}

2155 2156
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2157
{
2158
	struct key_vector *n, *pn;
2159

S
Stephen Hemminger 已提交
2160
	if (!t)
2161 2162
		return NULL;

2163
	pn = t->kv;
2164
	n = rcu_dereference(pn->tnode[0]);
2165
	if (!n)
2166
		return NULL;
2167

2168
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2169
		iter->tnode = n;
2170 2171 2172
		iter->index = 0;
		iter->depth = 1;
	} else {
2173
		iter->tnode = pn;
2174 2175
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2176
	}
2177 2178

	return n;
2179
}
O
Olof Johansson 已提交
2180

2181 2182
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2183
	struct key_vector *n;
2184
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2185

2186
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2187

2188
	rcu_read_lock();
2189
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2190
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2191
			struct fib_alias *fa;
2192

2193 2194 2195 2196
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2197

A
Alexander Duyck 已提交
2198
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2199
				++s->prefixes;
2200 2201
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2202 2203
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2204
			s->nullpointers += tn_info(n)->empty_children;
2205 2206
		}
	}
R
Robert Olsson 已提交
2207
	rcu_read_unlock();
2208 2209
}

2210 2211 2212 2213
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2214
{
E
Eric Dumazet 已提交
2215
	unsigned int i, max, pointers, bytes, avdepth;
2216

2217 2218 2219 2220
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2221

2222 2223
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2224
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2225

2226
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2227
	bytes = LEAF_SIZE * stat->leaves;
2228 2229

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2230
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2231

2232
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2233
	bytes += TNODE_SIZE(0) * stat->tnodes;
2234

R
Robert Olsson 已提交
2235 2236
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2237
		max--;
2238

2239
	pointers = 0;
2240
	for (i = 1; i < max; i++)
2241
		if (stat->nodesizes[i] != 0) {
2242
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2243 2244 2245
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2246
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2247

2248
	bytes += sizeof(struct key_vector *) * pointers;
2249 2250
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2251
}
R
Robert Olsson 已提交
2252

2253
#ifdef CONFIG_IP_FIB_TRIE_STATS
2254
static void trie_show_usage(struct seq_file *seq,
2255
			    const struct trie_use_stats __percpu *stats)
2256
{
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2272
	seq_printf(seq, "\nCounters:\n---------\n");
2273 2274
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2275
	seq_printf(seq, "semantic match passed = %u\n",
2276 2277 2278 2279
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2280
}
2281 2282
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2283
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2284
{
2285 2286 2287 2288 2289 2290
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2291
}
2292

2293

2294 2295
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2296
	struct net *net = (struct net *)seq->private;
2297
	unsigned int h;
2298

2299
	seq_printf(seq,
2300
		   "Basic info: size of leaf:"
2301
		   " %zd bytes, size of tnode: %zd bytes.\n",
2302
		   LEAF_SIZE, TNODE_SIZE(0));
2303

2304 2305 2306 2307
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2308
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2309 2310
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2311

2312 2313 2314 2315 2316 2317 2318 2319
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2320
			trie_show_usage(seq, t->stats);
2321 2322 2323
#endif
		}
	}
2324

2325
	return 0;
2326 2327
}

2328
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2329
{
2330
	return single_open_net(inode, file, fib_triestat_seq_show);
2331 2332
}

2333
static const struct file_operations fib_triestat_fops = {
2334 2335 2336 2337
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2338
	.release = single_release_net,
2339 2340
};

2341
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2342
{
2343 2344
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2345
	loff_t idx = 0;
2346
	unsigned int h;
2347

2348 2349 2350
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2351

2352
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2353
			struct key_vector *n;
2354 2355 2356 2357 2358 2359 2360 2361 2362

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2363
	}
2364

2365 2366 2367
	return NULL;
}

2368
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2369
	__acquires(RCU)
2370
{
2371
	rcu_read_lock();
2372
	return fib_trie_get_idx(seq, *pos);
2373 2374
}

2375
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2376
{
2377
	struct fib_trie_iter *iter = seq->private;
2378
	struct net *net = seq_file_net(seq);
2379 2380 2381
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2382
	struct key_vector *n;
2383

2384
	++*pos;
2385 2386 2387 2388
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2389

2390 2391
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2392
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2393 2394 2395 2396 2397
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2398

2399 2400 2401
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2402
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2403 2404 2405 2406 2407
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2408
	return NULL;
2409 2410 2411 2412

found:
	iter->tb = tb;
	return n;
2413
}
2414

2415
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2416
	__releases(RCU)
2417
{
2418 2419
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2420

2421 2422
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2423 2424
	while (n-- > 0)
		seq_puts(seq, "   ");
2425
}
2426

2427
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2428
{
S
Stephen Hemminger 已提交
2429
	switch (s) {
2430 2431 2432 2433 2434 2435
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2436
		snprintf(buf, len, "scope=%d", s);
2437 2438 2439
		return buf;
	}
}
2440

2441
static const char *const rtn_type_names[__RTN_MAX] = {
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2455

E
Eric Dumazet 已提交
2456
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2457 2458 2459
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2460
	snprintf(buf, len, "type %u", t);
2461
	return buf;
2462 2463
}

2464 2465
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2466
{
2467
	const struct fib_trie_iter *iter = seq->private;
2468
	struct key_vector *n = v;
2469

2470
	if (IS_TRIE(node_parent_rcu(n)))
2471
		fib_table_print(seq, iter->tb);
2472

2473
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2474
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2475

2476 2477 2478
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2479 2480
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2481
	} else {
A
Alexander Duyck 已提交
2482
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2483
		struct fib_alias *fa;
2484 2485

		seq_indent(seq, iter->depth);
2486
		seq_printf(seq, "  |-- %pI4\n", &val);
2487

A
Alexander Duyck 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2501
		}
2502
	}
2503

2504 2505 2506
	return 0;
}

2507
static const struct seq_operations fib_trie_seq_ops = {
2508 2509 2510 2511
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2512 2513
};

2514
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2515
{
2516 2517
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2518 2519
}

2520
static const struct file_operations fib_trie_fops = {
2521 2522 2523 2524
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2525
	.release = seq_release_net,
2526 2527
};

2528 2529
struct fib_route_iter {
	struct seq_net_private p;
2530
	struct fib_table *main_tb;
2531
	struct key_vector *tnode;
2532 2533 2534 2535
	loff_t	pos;
	t_key	key;
};

2536 2537
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2538
{
2539
	struct key_vector *l, **tp = &iter->tnode;
2540
	t_key key;
2541

2542
	/* use cached location of previously found key */
2543 2544 2545
	if (iter->pos > 0 && pos >= iter->pos) {
		key = iter->key;
	} else {
2546
		iter->pos = 1;
2547
		key = 0;
2548 2549
	}

2550 2551 2552
	pos -= iter->pos;

	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2553
		key = l->key + 1;
2554
		iter->pos++;
2555 2556 2557 2558 2559
		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2560 2561 2562
	}

	if (l)
2563
		iter->key = l->key;	/* remember it */
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2575
	struct trie *t;
2576 2577

	rcu_read_lock();
2578

2579
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2580 2581 2582
	if (!tb)
		return NULL;

2583
	iter->main_tb = tb;
2584 2585
	t = (struct trie *)tb->tb_data;
	iter->tnode = t->kv;
2586 2587 2588 2589 2590

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	iter->pos = 0;
2591
	iter->key = KEY_MAX;
2592 2593

	return SEQ_START_TOKEN;
2594 2595 2596 2597 2598
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2599
	struct key_vector *l = NULL;
2600
	t_key key = iter->key + 1;
2601 2602

	++*pos;
2603 2604 2605 2606 2607 2608

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
2609
		iter->key = l->key;
2610
		iter->pos++;
2611 2612
	} else {
		iter->pos = 0;
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2624
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2625
{
E
Eric Dumazet 已提交
2626
	unsigned int flags = 0;
2627

E
Eric Dumazet 已提交
2628 2629
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2630 2631
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2632
	if (mask == htonl(0xFFFFFFFF))
2633 2634 2635
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2636 2637
}

2638 2639 2640
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2641
 *	and needs to be same as fib_hash output to avoid breaking
2642 2643 2644
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2645
{
2646 2647
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2648
	struct fib_alias *fa;
2649
	struct key_vector *l = v;
2650
	__be32 prefix;
2651

2652 2653 2654 2655 2656 2657
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2658

2659 2660
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2661 2662 2663 2664
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2665

A
Alexander Duyck 已提交
2666 2667 2668
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2669

2670 2671 2672
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2694

A
Alexander Duyck 已提交
2695
		seq_pad(seq, '\n');
2696 2697 2698 2699 2700
	}

	return 0;
}

2701
static const struct seq_operations fib_route_seq_ops = {
2702 2703 2704
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2705
	.show   = fib_route_seq_show,
2706 2707
};

2708
static int fib_route_seq_open(struct inode *inode, struct file *file)
2709
{
2710
	return seq_open_net(inode, file, &fib_route_seq_ops,
2711
			    sizeof(struct fib_route_iter));
2712 2713
}

2714
static const struct file_operations fib_route_fops = {
2715 2716 2717 2718
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2719
	.release = seq_release_net,
2720 2721
};

2722
int __net_init fib_proc_init(struct net *net)
2723
{
2724
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2725 2726
		goto out1;

2727 2728
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2729 2730
		goto out2;

2731
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2732 2733
		goto out3;

2734
	return 0;
2735 2736

out3:
2737
	remove_proc_entry("fib_triestat", net->proc_net);
2738
out2:
2739
	remove_proc_entry("fib_trie", net->proc_net);
2740 2741
out1:
	return -ENOMEM;
2742 2743
}

2744
void __net_exit fib_proc_exit(struct net *net)
2745
{
2746 2747 2748
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2749 2750 2751
}

#endif /* CONFIG_PROC_FS */