fib_trie.c 61.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
82
#include <net/switchdev.h>
83 84
#include "fib_lookup.h"

R
Robert Olsson 已提交
85
#define MAX_STAT_DEPTH 32
86

87 88
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
89 90 91

typedef unsigned int t_key;

92 93
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
94

95
struct key_vector {
96 97
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
98
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
99
	unsigned char slen;
A
Alexander Duyck 已提交
100
	union {
101
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
102
		struct hlist_head leaf;
103
		/* This array is valid if (pos | bits) > 0 (TNODE) */
104
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
105
	};
106 107
};

108
struct tnode {
109
	struct rcu_head rcu;
110 111
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
112
	struct key_vector __rcu *parent;
113
	struct key_vector kv[1];
114
#define tn_bits kv[0].bits
115 116 117
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
118 119
#define LEAF_SIZE	TNODE_SIZE(1)

120 121 122 123 124 125 126
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
127
	unsigned int resize_node_skipped;
128 129 130 131 132 133 134 135 136
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
137
	unsigned int prefixes;
R
Robert Olsson 已提交
138
	unsigned int nodesizes[MAX_STAT_DEPTH];
139
};
140 141

struct trie {
142
	struct key_vector __rcu *tnode[1];
143
#ifdef CONFIG_IP_FIB_TRIE_STATS
144
	struct trie_use_stats __percpu *stats;
145 146 147
#endif
};

148
static struct key_vector **resize(struct trie *t, struct key_vector *tn);
149 150 151 152 153 154 155 156
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
157

158
static struct kmem_cache *fn_alias_kmem __read_mostly;
159
static struct kmem_cache *trie_leaf_kmem __read_mostly;
160

161 162 163 164 165
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

166
/* caller must hold RTNL */
167
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
168
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
169

170
/* caller must hold RCU read lock or RTNL */
171
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
172
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
173

174
/* wrapper for rcu_assign_pointer */
175
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
176
{
A
Alexander Duyck 已提交
177
	if (n)
178
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
179 180
}

181
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
182 183 184

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
185
 */
186
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
187
{
188
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
189
}
R
Robert Olsson 已提交
190

191 192 193 194 195 196 197
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

	return index >> kv->pos;
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
256

257 258
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
259
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
260
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
261 262

static void __alias_free_mem(struct rcu_head *head)
263
{
R
Robert Olsson 已提交
264 265
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
266 267
}

R
Robert Olsson 已提交
268
static inline void alias_free_mem_rcu(struct fib_alias *fa)
269
{
R
Robert Olsson 已提交
270 271
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
272

273
#define TNODE_KMALLOC_MAX \
274
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
275
#define TNODE_VMALLOC_MAX \
276
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
277

278
static void __node_free_rcu(struct rcu_head *head)
279
{
280
	struct tnode *n = container_of(head, struct tnode, rcu);
281

282
	if (!n->tn_bits)
283
		kmem_cache_free(trie_leaf_kmem, n);
284
	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
285 286 287
		kfree(n);
	else
		vfree(n);
288 289
}

290
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
291

292
static struct tnode *tnode_alloc(int bits)
293
{
294 295 296 297 298 299 300 301 302
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
303
	if (size <= PAGE_SIZE)
304
		return kzalloc(size, GFP_KERNEL);
305
	else
306
		return vzalloc(size);
307
}
R
Robert Olsson 已提交
308

309
static inline void empty_child_inc(struct key_vector *n)
310
{
311
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
312 313
}

314
static inline void empty_child_dec(struct key_vector *n)
315
{
316
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
317 318
}

319
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
320
{
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
	struct key_vector *l = kv->kv;

	if (!kv)
		return NULL;

	/* initialize key vector */
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
337 338 339
	return l;
}

340
static struct key_vector *tnode_new(t_key key, int pos, int bits)
341
{
342
	struct tnode *tnode = tnode_alloc(bits);
343
	unsigned int shift = pos + bits;
344
	struct key_vector *tn = tnode->kv;
345 346 347

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
348

349
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
350
		 sizeof(struct key_vector *) << bits);
351 352 353 354 355

	if (!tnode)
		return NULL;

	if (bits == KEYLENGTH)
356
		tnode->full_children = 1;
357
	else
358
		tnode->empty_children = 1ul << bits;
359 360 361 362 363 364

	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

365 366 367
	return tn;
}

368
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
369 370
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
371
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
372
{
373
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
374 375
}

376 377 378
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
379 380
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
381
{
382
	struct key_vector *chi = get_child(tn, i);
383
	int isfull, wasfull;
384

385
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
386

387
	/* update emptyChildren, overflow into fullChildren */
388
	if (n == NULL && chi != NULL)
389 390 391
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
392

393
	/* update fullChildren */
394
	wasfull = tnode_full(tn, chi);
395
	isfull = tnode_full(tn, n);
396

397
	if (wasfull && !isfull)
398
		tn_info(tn)->full_children--;
399
	else if (!wasfull && isfull)
400
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
401

402 403 404
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

405
	rcu_assign_pointer(tn->tnode[i], n);
406 407
}

408
static void update_children(struct key_vector *tn)
409 410 411 412
{
	unsigned long i;

	/* update all of the child parent pointers */
413
	for (i = child_length(tn); i;) {
414
		struct key_vector *inode = get_child(tn, --i);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

430 431
static inline void put_child_root(struct key_vector *tp, struct trie *t,
				  t_key key, struct key_vector *n)
432 433 434 435
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
436
		rcu_assign_pointer(t->tnode[0], n);
437 438
}

439
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
440
{
441
	tn_info(tn)->rcu.next = NULL;
442 443
}

444 445
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
446
{
447 448
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
449
}
E
Eric Dumazet 已提交
450

451
static void tnode_free(struct key_vector *tn)
452
{
453
	struct callback_head *head = &tn_info(tn)->rcu;
454 455 456

	while (head) {
		head = head->next;
457
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
458 459
		node_free(tn);

460
		tn = container_of(head, struct tnode, rcu)->kv;
461 462 463 464 465
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
466 467 468
	}
}

469 470 471
static struct key_vector __rcu **replace(struct trie *t,
					 struct key_vector *oldtnode,
					 struct key_vector *tn)
472
{
473 474
	struct key_vector *tp = node_parent(oldtnode);
	struct key_vector **cptr;
475 476 477 478 479 480 481 482 483 484 485 486
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
	put_child_root(tp, t, tn->key, tn);

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

487
	/* record the pointer that is pointing to this node */
488
	cptr = tp ? tp->tnode : t->tnode;
489

490
	/* resize children now that oldtnode is freed */
491
	for (i = child_length(tn); i;) {
492
		struct key_vector *inode = get_child(tn, --i);
493 494 495 496 497

		/* resize child node */
		if (tnode_full(tn, inode))
			resize(t, inode);
	}
498 499

	return cptr;
500 501
}

502 503
static struct key_vector __rcu **inflate(struct trie *t,
					 struct key_vector *oldtnode)
504
{
505
	struct key_vector *tn;
506
	unsigned long i;
507
	t_key m;
508

S
Stephen Hemminger 已提交
509
	pr_debug("In inflate\n");
510

511
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
512
	if (!tn)
513
		goto notnode;
514

515 516 517
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

518 519 520 521
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
522
	 */
523
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
524
		struct key_vector *inode = get_child(oldtnode, --i);
525
		struct key_vector *node0, *node1;
526
		unsigned long j, k;
527

528
		/* An empty child */
A
Alexander Duyck 已提交
529
		if (inode == NULL)
530 531 532
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
533
		if (!tnode_full(oldtnode, inode)) {
534
			put_child(tn, get_index(inode->key, tn), inode);
535 536 537
			continue;
		}

538 539 540
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

541 542
		/* An internal node with two children */
		if (inode->bits == 1) {
543 544
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
545
			continue;
546 547
		}

O
Olof Johansson 已提交
548
		/* We will replace this node 'inode' with two new
549
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
550 551 552 553 554
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
555
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
556 557
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
558 559 560
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
561
		 */
562 563 564
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
565
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
566

567
		tnode_free_append(tn, node1);
568 569 570 571 572
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
573
		for (k = child_length(inode), j = k / 2; j;) {
574 575 576 577
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
578
		}
579

580 581 582
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
583

584 585 586 587
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
588

589
	/* setup the parent pointers into and out of this node */
590
	return replace(t, oldtnode, tn);
591
nomem:
592 593
	/* all pointers should be clean so we are done */
	tnode_free(tn);
594 595
notnode:
	return NULL;
596 597
}

598 599
static struct key_vector __rcu **halve(struct trie *t,
				       struct key_vector *oldtnode)
600
{
601
	struct key_vector *tn;
602
	unsigned long i;
603

S
Stephen Hemminger 已提交
604
	pr_debug("In halve\n");
605

606
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
607
	if (!tn)
608
		goto notnode;
609

610 611 612
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

613 614 615 616
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
617
	 */
618
	for (i = child_length(oldtnode); i;) {
619 620
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
621
		struct key_vector *inode;
622

623 624 625 626 627
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
628

629
		/* Two nonempty children */
630
		inode = tnode_new(node0->key, oldtnode->pos, 1);
631 632
		if (!inode)
			goto nomem;
633
		tnode_free_append(tn, inode);
634

635 636 637 638 639 640 641
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
642
	}
643

644
	/* setup the parent pointers into and out of this node */
645 646 647 648 649 650
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
651 652
}

653
static void collapse(struct trie *t, struct key_vector *oldtnode)
654
{
655
	struct key_vector *n, *tp;
656 657 658
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
659
	for (n = NULL, i = child_length(oldtnode); !n && i;)
660
		n = get_child(oldtnode, --i);
661 662 663 664 665 666 667 668 669 670

	/* compress one level */
	tp = node_parent(oldtnode);
	put_child_root(tp, t, oldtnode->key, n);
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
}

671
static unsigned char update_suffix(struct key_vector *tn)
672 673 674 675 676 677 678 679 680
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
681
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
682
		struct key_vector *n = get_child(tn, i);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

706 707 708 709 710 711 712 713
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
714
 * child_length() and instead of multiplying by 2 (since the
715 716 717 718
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
719
 * The left-hand side may look a bit weird: child_length(tn)
720 721 722 723 724 725 726 727 728
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
729
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
730 731
 *     tn->full_children;
 *
732
 * new_child_length = child_length(tn) * 2;
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
749
 * 100 * (child_length(tn) - tn->empty_children +
750 751 752
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
753
 * 100 * (child_length(tn) - tn->empty_children +
754
 *    tn->full_children) >=
755
 *      inflate_threshold * child_length(tn) * 2
756 757
 *
 * shorten again:
758
 * 50 * (tn->full_children + child_length(tn) -
759
 *    tn->empty_children) >= inflate_threshold *
760
 *    child_length(tn)
761 762
 *
 */
763
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
764
{
765
	unsigned long used = child_length(tn);
766 767 768
	unsigned long threshold = used;

	/* Keep root node larger */
769
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
770 771
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
772

773 774 775
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
776 777
}

778
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
779
{
780
	unsigned long used = child_length(tn);
781 782 783
	unsigned long threshold = used;

	/* Keep root node larger */
784
	threshold *= tp ? halve_threshold : halve_threshold_root;
785
	used -= tn_info(tn)->empty_children;
786

787 788 789 790 791
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

792
static inline bool should_collapse(struct key_vector *tn)
793
{
794
	unsigned long used = child_length(tn);
795

796
	used -= tn_info(tn)->empty_children;
797 798

	/* account for bits == KEYLENGTH case */
799
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
800 801 802 803
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
804 805
}

806
#define MAX_WORK 10
807 808
static struct key_vector __rcu **resize(struct trie *t,
					struct key_vector *tn)
809
{
810 811 812
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
813
	struct key_vector *tp = node_parent(tn);
814
	unsigned long cindex = tp ? get_index(tn->key, tp) : 0;
815
	struct key_vector __rcu **cptr = tp ? tp->tnode : t->tnode;
816
	int max_work = MAX_WORK;
817 818 819 820

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

821 822 823 824
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
825
	BUG_ON(tn != rtnl_dereference(cptr[cindex]));
826

827 828
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
829
	 */
830
	while (should_inflate(tp, tn) && max_work) {
831
		struct key_vector __rcu **tcptr = inflate(t, tn);
832 833

		if (!tcptr) {
834
#ifdef CONFIG_IP_FIB_TRIE_STATS
835
			this_cpu_inc(stats->resize_node_skipped);
836 837 838
#endif
			break;
		}
839

840
		max_work--;
841 842
		cptr = tcptr;
		tn = rtnl_dereference(cptr[cindex]);
843 844 845 846
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
847
		return cptr;
848

849
	/* Halve as long as the number of empty children in this
850 851
	 * node is above threshold.
	 */
852
	while (should_halve(tp, tn) && max_work) {
853
		struct key_vector __rcu **tcptr = halve(t, tn);
854 855

		if (!tcptr) {
856
#ifdef CONFIG_IP_FIB_TRIE_STATS
857
			this_cpu_inc(stats->resize_node_skipped);
858 859 860 861
#endif
			break;
		}

862
		max_work--;
863 864
		cptr = tcptr;
		tn = rtnl_dereference(cptr[cindex]);
865
	}
866 867

	/* Only one child remains */
868 869
	if (should_collapse(tn)) {
		collapse(t, tn);
870
		return cptr;
871 872 873 874
	}

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
875
		return cptr;
876 877 878 879 880 881 882

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

		if (tp && (slen > tp->slen))
			tp->slen = slen;
883
	}
884 885

	return cptr;
886 887
}

888
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
889 890 891 892 893 894 895 896
{
	while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

897
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
898
{
899 900 901 902 903 904 905 906 907
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	while (tn && (tn->slen < l->slen)) {
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
908
/* rcu_read_lock needs to be hold by caller from readside */
909 910
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
911
{
912
	struct key_vector *pn = NULL, *n = rcu_dereference_rtnl(t->tnode[0]);
A
Alexander Duyck 已提交
913 914 915 916 917 918 919 920 921

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
922
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
923
		 *     we have a mismatch in skip bits and failed
924 925
		 *   else
		 *     we know the value is cindex
926 927 928 929
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
930
		 */
931 932 933 934
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
935 936 937

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
938 939
			break;

940
		pn = n;
941
		n = get_child_rcu(n, index);
A
Alexander Duyck 已提交
942
	}
O
Olof Johansson 已提交
943

944
	*tp = pn;
945

A
Alexander Duyck 已提交
946
	return n;
947 948
}

949 950 951
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
952 953
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
					u8 tos, u32 prio)
954 955 956 957 958 959
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

960
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
961 962 963 964
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
965 966 967 968 969 970 971 972 973
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

974
static void trie_rebalance(struct trie *t, struct key_vector *tn)
975
{
976
	struct key_vector __rcu **cptr = t->tnode;
977

978
	while (tn) {
979
		struct key_vector *tp = node_parent(tn);
980 981 982 983

		cptr = resize(t, tn);
		if (!tp)
			break;
984
		tn = container_of(cptr, struct key_vector, tnode[0]);
985 986 987
	}
}

988
static int fib_insert_node(struct trie *t, struct key_vector *tp,
989
			   struct fib_alias *new, t_key key)
990
{
991
	struct key_vector *n, *l;
992

993
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
994
	if (!l)
995
		goto noleaf;
996 997 998

	/* retrieve child from parent node */
	if (tp)
999
		n = get_child(tp, get_index(key, tp));
1000
	else
1001
		n = rcu_dereference_rtnl(t->tnode[0]);
1002

1003 1004 1005 1006 1007 1008 1009
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1010
		struct key_vector *tn;
1011

1012
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1013 1014
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1015

1016 1017 1018
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1019

1020 1021 1022
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
1023

1024
		/* parent now has a NULL spot where the leaf can go */
1025
		tp = tn;
1026
	}
O
Olof Johansson 已提交
1027

1028
	/* Case 3: n is NULL, and will just insert a new leaf */
1029 1030 1031 1032 1033
	NODE_INIT_PARENT(l, tp);
	put_child_root(tp, t, key, l);
	trie_rebalance(t, tp);

	return 0;
1034 1035 1036 1037
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1038 1039
}

1040 1041
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1042 1043 1044 1045 1046 1047 1048
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1049
	} else {
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1062
	}
R
Robert Olsson 已提交
1063

1064 1065 1066 1067 1068 1069 1070
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1071 1072
}

1073
/* Caller must hold RTNL. */
1074
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1075
{
1076
	struct trie *t = (struct trie *)tb->tb_data;
1077
	struct fib_alias *fa, *new_fa;
1078
	struct key_vector *l, *tp;
1079
	struct fib_info *fi;
A
Alexander Duyck 已提交
1080 1081
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1082
	u8 tos = cfg->fc_tos;
1083
	u32 key;
1084 1085
	int err;

1086
	if (plen > KEYLENGTH)
1087 1088
		return -EINVAL;

1089
	key = ntohl(cfg->fc_dst);
1090

1091
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1092

1093
	if ((plen < KEYLENGTH) && (key << plen))
1094 1095
		return -EINVAL;

1096 1097 1098
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1099
		goto err;
1100
	}
1101

1102
	l = fib_find_node(t, &tp, key);
A
Alexander Duyck 已提交
1103
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1104 1105 1106 1107 1108 1109

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1110 1111
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1112 1113
	 */

1114 1115 1116
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1117 1118

		err = -EEXIST;
1119
		if (cfg->fc_nlflags & NLM_F_EXCL)
1120 1121
			goto out;

1122 1123 1124 1125 1126 1127 1128
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1129
		hlist_for_each_entry_from(fa, fa_list) {
A
Alexander Duyck 已提交
1130
			if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1141
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1142 1143 1144
			struct fib_info *fi_drop;
			u8 state;

1145 1146 1147 1148
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1149
				goto out;
1150
			}
R
Robert Olsson 已提交
1151
			err = -ENOBUFS;
1152
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1153 1154
			if (new_fa == NULL)
				goto out;
1155 1156

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1157 1158
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1159
			new_fa->fa_type = cfg->fc_type;
1160
			state = fa->fa_state;
1161
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1162
			new_fa->fa_slen = fa->fa_slen;
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			err = netdev_switch_fib_ipv4_add(key, plen, fi,
							 new_fa->fa_tos,
							 cfg->fc_type,
							 tb->tb_id);
			if (err) {
				netdev_switch_fib_ipv4_abort(fi);
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1174
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1175

R
Robert Olsson 已提交
1176
			alias_free_mem_rcu(fa);
1177 1178 1179

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1180
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1181 1182
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1183

O
Olof Johansson 已提交
1184
			goto succeeded;
1185 1186 1187 1188 1189
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1190 1191
		if (fa_match)
			goto out;
1192

1193
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1194
			fa = fa_first;
1195 1196
	}
	err = -ENOENT;
1197
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1198 1199 1200
		goto out;

	err = -ENOBUFS;
1201
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1202 1203 1204 1205 1206
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1207
	new_fa->fa_type = cfg->fc_type;
1208
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1209
	new_fa->fa_slen = slen;
1210

1211 1212 1213 1214 1215 1216 1217 1218
	/* (Optionally) offload fib entry to switch hardware. */
	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
					 cfg->fc_type, tb->tb_id);
	if (err) {
		netdev_switch_fib_ipv4_abort(fi);
		goto out_free_new_fa;
	}

1219
	/* Insert new entry to the list. */
1220 1221
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1222
		goto out_sw_fib_del;
1223

1224 1225 1226
	if (!plen)
		tb->tb_num_default++;

1227
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1228
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1229
		  &cfg->fc_nlinfo, 0);
1230 1231
succeeded:
	return 0;
1232

1233 1234
out_sw_fib_del:
	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1235 1236
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1237 1238
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1239
err:
1240 1241 1242
	return err;
}

1243
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1244 1245 1246 1247 1248 1249
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1250
/* should be called with rcu_read_lock */
1251
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1252
		     struct fib_result *res, int fib_flags)
1253
{
1254
	struct trie *t = (struct trie *)tb->tb_data;
1255 1256 1257
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1258
	const t_key key = ntohl(flp->daddr);
1259
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1260
	struct fib_alias *fa;
1261
	unsigned long index;
1262
	t_key cindex;
O
Olof Johansson 已提交
1263

1264
	n = rcu_dereference(t->tnode[0]);
1265
	if (!n)
1266
		return -EAGAIN;
1267 1268

#ifdef CONFIG_IP_FIB_TRIE_STATS
1269
	this_cpu_inc(stats->gets);
1270 1271
#endif

A
Alexander Duyck 已提交
1272
	pn = n;
1273 1274 1275 1276
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1277
		index = get_index(key, n);
1278 1279 1280 1281 1282 1283

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1284
		 *   if (index >= (1ul << bits))
1285
		 *     we have a mismatch in skip bits and failed
1286 1287
		 *   else
		 *     we know the value is cindex
1288 1289 1290 1291
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1292
		 */
1293
		if (index >= (1ul << n->bits))
1294
			break;
1295

1296 1297
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1298
			goto found;
1299

1300 1301
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1302
		 */
1303
		if (n->slen > n->pos) {
1304 1305
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1306
		}
1307

1308
		n = get_child_rcu(n, index);
1309 1310 1311
		if (unlikely(!n))
			goto backtrace;
	}
1312

1313 1314 1315
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1316
		struct key_vector __rcu **cptr = n->tnode;
1317

1318 1319 1320
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1321
		 */
1322
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1323
			goto backtrace;
O
Olof Johansson 已提交
1324

1325 1326 1327
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1328

1329 1330 1331
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1332 1333
		 */

1334
		while ((n = rcu_dereference(*cptr)) == NULL) {
1335 1336
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1337 1338
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1339
#endif
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1350
					return -EAGAIN;
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1362
			cptr = &pn->tnode[cindex];
1363
		}
1364
	}
1365

1366
found:
1367 1368 1369
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1370
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1371 1372 1373
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1374

1375
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1376
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1377
			continue;
A
Alexander Duyck 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1387
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1388
			this_cpu_inc(stats->semantic_match_passed);
1389
#endif
A
Alexander Duyck 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1400
				continue;
A
Alexander Duyck 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1412
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1413
			this_cpu_inc(stats->semantic_match_passed);
1414
#endif
A
Alexander Duyck 已提交
1415
			return err;
1416
		}
1417
	}
1418
#ifdef CONFIG_IP_FIB_TRIE_STATS
1419
	this_cpu_inc(stats->semantic_match_miss);
1420 1421
#endif
	goto backtrace;
1422
}
1423
EXPORT_SYMBOL_GPL(fib_table_lookup);
1424

1425 1426
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
		put_child_root(tp, t, l->key, NULL);
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1455
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1456 1457 1458
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1459
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1460 1461
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1462 1463
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1464

A
Alexander Duyck 已提交
1465
	if (plen > KEYLENGTH)
1466 1467
		return -EINVAL;

1468
	key = ntohl(cfg->fc_dst);
1469

1470
	if ((plen < KEYLENGTH) && (key << plen))
1471 1472
		return -EINVAL;

1473
	l = fib_find_node(t, &tp, key);
1474
	if (!l)
1475 1476
		return -ESRCH;

A
Alexander Duyck 已提交
1477
	fa = fib_find_alias(&l->leaf, slen, tos, 0);
1478 1479 1480
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1481
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1482 1483

	fa_to_delete = NULL;
1484
	hlist_for_each_entry_from(fa, fa_list) {
1485 1486
		struct fib_info *fi = fa->fa_info;

A
Alexander Duyck 已提交
1487
		if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1488 1489
			break;

1490 1491
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1492
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1493 1494
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1495 1496 1497
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1498 1499 1500 1501 1502
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1503 1504
	if (!fa_to_delete)
		return -ESRCH;
1505

1506 1507 1508
	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
				   cfg->fc_type, tb->tb_id);

1509
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1510
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1511

1512 1513 1514
	if (!plen)
		tb->tb_num_default--;

1515
	fib_remove_alias(t, tp, l, fa_to_delete);
1516

1517
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1518
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1519

1520 1521
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1522
	return 0;
1523 1524
}

1525
/* Scan for the next leaf starting at the provided key value */
1526
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1527
{
1528
	struct key_vector *pn, *n = *tn;
1529
	unsigned long cindex;
1530

1531 1532 1533
	/* record parent node for backtracing */
	pn = n;
	cindex = n ? get_index(key, n) : 0;
1534

1535 1536 1537
	/* this loop is meant to try and find the key in the trie */
	while (n) {
		unsigned long idx = get_index(key, n);
1538

1539 1540 1541 1542 1543
		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
		if (idx >= (1ul << n->bits))
			break;
1544

1545 1546 1547
		/* record parent and next child index */
		pn = n;
		cindex = idx;
1548

1549
		/* descend into the next child */
1550
		n = get_child_rcu(pn, cindex++);
1551
	}
1552

1553 1554 1555 1556 1557
	/* this loop will search for the next leaf with a greater key */
	while (pn) {
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1558

1559 1560 1561
			pn = node_parent_rcu(pn);
			if (!pn)
				break;
1562

1563 1564 1565
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1566

1567
		/* grab the next available node */
1568
		n = get_child_rcu(pn, cindex++);
1569 1570
		if (!n)
			continue;
1571

1572 1573 1574
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1575

1576 1577 1578 1579
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1580

1581 1582 1583 1584 1585 1586
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
	*tn = (n->key == KEY_MAX) ? NULL : pn;
	return n;
1587 1588
}

1589 1590 1591 1592 1593
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct fib_alias *fa;
1594
	struct key_vector *n, *pn;
1595 1596
	unsigned long cindex;

1597
	n = rcu_dereference(t->tnode[0]);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	if (!n)
		return;

	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
				t_key pkey = pn->key;

				/* if we got the root we are done */
1615
				pn = node_parent(pn);
1616 1617 1618 1619 1620 1621 1622
				if (!pn)
					return;

				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
1623
			n = get_child(pn, cindex);
1624 1625 1626 1627 1628 1629
		} while (!n);
	}

	hlist_for_each_entry(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

1630 1631 1632 1633 1634 1635 1636
		if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
			continue;

		netdev_switch_fib_ipv4_del(n->key,
					   KEYLENGTH - fa->fa_slen,
					   fi, fa->fa_tos,
					   fa->fa_type, tb->tb_id);
1637 1638 1639 1640 1641 1642 1643
	}

	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
}

1644
/* Caller must hold RTNL. */
1645
int fib_table_flush(struct fib_table *tb)
1646
{
1647
	struct trie *t = (struct trie *)tb->tb_data;
1648
	struct key_vector *n, *pn;
1649 1650 1651 1652
	struct hlist_node *tmp;
	struct fib_alias *fa;
	unsigned long cindex;
	unsigned char slen;
1653
	int found = 0;
1654

1655
	n = rcu_dereference(t->tnode[0]);
1656 1657
	if (!n)
		goto flush_complete;
1658

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
1670
				struct key_vector __rcu **cptr;
1671 1672 1673 1674 1675 1676
				t_key pkey = pn->key;

				n = pn;
				pn = node_parent(n);

				/* resize completed node */
1677
				cptr = resize(t, n);
1678 1679 1680 1681 1682

				/* if we got the root we are done */
				if (!pn)
					goto flush_complete;

1683 1684
				pn = container_of(cptr, struct key_vector,
						  tnode[0]);
1685 1686 1687 1688
				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
1689
			n = get_child(pn, cindex);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		} while (!n);
	}

	/* track slen in case any prefixes survive */
	slen = 0;

	hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1700 1701 1702 1703
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
1704 1705 1706 1707 1708 1709
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;

			continue;
1710 1711
		}

1712
		slen = fa->fa_slen;
1713 1714
	}

1715 1716 1717 1718 1719 1720 1721
	/* update leaf slen */
	n->slen = slen;

	if (hlist_empty(&n->leaf)) {
		put_child_root(pn, t, n->key, NULL);
		node_free(n);
	} else {
1722
		leaf_pull_suffix(pn, n);
1723
	}
1724

1725 1726 1727 1728
	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
flush_complete:
S
Stephen Hemminger 已提交
1729
	pr_debug("trie_flush found=%d\n", found);
1730 1731 1732
	return found;
}

1733
static void __trie_free_rcu(struct rcu_head *head)
1734
{
1735
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1736 1737 1738 1739 1740
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1741 1742 1743
	kfree(tb);
}

1744 1745 1746 1747 1748
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1749
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1750
			     struct sk_buff *skb, struct netlink_callback *cb)
1751
{
A
Alexander Duyck 已提交
1752
	__be32 xkey = htonl(l->key);
1753
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1754
	int i, s_i;
1755

A
Alexander Duyck 已提交
1756
	s_i = cb->args[4];
1757 1758
	i = 0;

R
Robert Olsson 已提交
1759
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1760
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1761 1762 1763 1764 1765
		if (i < s_i) {
			i++;
			continue;
		}

1766
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1767 1768 1769 1770
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1771
				  xkey,
1772
				  KEYLENGTH - fa->fa_slen,
1773
				  fa->fa_tos,
1774
				  fa->fa_info, NLM_F_MULTI) < 0) {
1775
			cb->args[4] = i;
1776 1777
			return -1;
		}
1778
		i++;
1779
	}
1780

1781
	cb->args[4] = i;
1782 1783 1784
	return skb->len;
}

1785
/* rcu_read_lock needs to be hold by caller from readside */
1786 1787
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1788
{
1789
	struct trie *t = (struct trie *)tb->tb_data;
1790
	struct key_vector *l, *tp;
1791 1792 1793
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1794 1795
	int count = cb->args[2];
	t_key key = cb->args[3];
1796

1797
	tp = rcu_dereference_rtnl(t->tnode[0]);
1798 1799

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1800
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1801 1802
			cb->args[3] = key;
			cb->args[2] = count;
1803
			return -1;
1804
		}
1805

1806
		++count;
1807 1808
		key = l->key + 1;

1809 1810
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1811 1812 1813 1814

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1815
	}
1816 1817 1818 1819

	cb->args[3] = key;
	cb->args[2] = count;

1820 1821 1822
	return skb->len;
}

1823
void __init fib_trie_init(void)
1824
{
1825 1826
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1827 1828 1829
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1830
					   LEAF_SIZE,
1831
					   0, SLAB_PANIC, NULL);
1832
}
1833

1834

1835
struct fib_table *fib_trie_table(u32 id)
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1846
	tb->tb_default = -1;
1847
	tb->tb_num_default = 0;
1848 1849

	t = (struct trie *) tb->tb_data;
1850
	RCU_INIT_POINTER(t->tnode[0], NULL);
1851 1852 1853 1854 1855 1856 1857
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1858 1859 1860 1861

	return tb;
}

1862 1863 1864
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1865
	struct seq_net_private p;
1866
	struct fib_table *tb;
1867
	struct key_vector *tnode;
E
Eric Dumazet 已提交
1868 1869
	unsigned int index;
	unsigned int depth;
1870
};
1871

1872
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
1873
{
1874
	unsigned long cindex = iter->index;
1875 1876
	struct key_vector *tn = iter->tnode;
	struct key_vector *p;
1877

1878 1879 1880 1881
	/* A single entry routing table */
	if (!tn)
		return NULL;

1882 1883 1884
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1885
	while (cindex < child_length(tn)) {
1886
		struct key_vector *n = get_child_rcu(tn, cindex);
1887

1888 1889 1890 1891 1892 1893
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1894
				iter->tnode = n;
1895 1896 1897 1898 1899
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1900

1901 1902
		++cindex;
	}
O
Olof Johansson 已提交
1903

1904
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1905
	p = node_parent_rcu(tn);
1906
	if (p) {
1907
		cindex = get_index(tn->key, p) + 1;
1908 1909 1910
		tn = p;
		--iter->depth;
		goto rescan;
1911
	}
1912 1913 1914

	/* got root? */
	return NULL;
1915 1916
}

1917 1918
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
1919
{
1920
	struct key_vector *n;
1921

S
Stephen Hemminger 已提交
1922
	if (!t)
1923 1924
		return NULL;

1925
	n = rcu_dereference(t->tnode[0]);
1926
	if (!n)
1927
		return NULL;
1928

1929
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1930
		iter->tnode = n;
1931 1932 1933 1934 1935 1936
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1937
	}
1938 1939

	return n;
1940
}
O
Olof Johansson 已提交
1941

1942 1943
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
1944
	struct key_vector *n;
1945
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1946

1947
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1948

1949
	rcu_read_lock();
1950
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1951
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
1952
			struct fib_alias *fa;
1953

1954 1955 1956 1957
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1958

A
Alexander Duyck 已提交
1959
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
1960
				++s->prefixes;
1961 1962
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
1963 1964
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
1965
			s->nullpointers += tn_info(n)->empty_children;
1966 1967
		}
	}
R
Robert Olsson 已提交
1968
	rcu_read_unlock();
1969 1970
}

1971 1972 1973 1974
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1975
{
E
Eric Dumazet 已提交
1976
	unsigned int i, max, pointers, bytes, avdepth;
1977

1978 1979 1980 1981
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
1982

1983 1984
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
1985
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
1986

1987
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
1988
	bytes = LEAF_SIZE * stat->leaves;
1989 1990

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
1991
	bytes += sizeof(struct fib_alias) * stat->prefixes;
1992

1993
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1994
	bytes += TNODE_SIZE(0) * stat->tnodes;
1995

R
Robert Olsson 已提交
1996 1997
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
1998
		max--;
1999

2000
	pointers = 0;
2001
	for (i = 1; i < max; i++)
2002
		if (stat->nodesizes[i] != 0) {
2003
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2004 2005 2006
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2007
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2008

2009
	bytes += sizeof(struct key_vector *) * pointers;
2010 2011
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2012
}
R
Robert Olsson 已提交
2013

2014
#ifdef CONFIG_IP_FIB_TRIE_STATS
2015
static void trie_show_usage(struct seq_file *seq,
2016
			    const struct trie_use_stats __percpu *stats)
2017
{
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2033
	seq_printf(seq, "\nCounters:\n---------\n");
2034 2035
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2036
	seq_printf(seq, "semantic match passed = %u\n",
2037 2038 2039 2040
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2041
}
2042 2043
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2044
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2045
{
2046 2047 2048 2049 2050 2051
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2052
}
2053

2054

2055 2056
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2057
	struct net *net = (struct net *)seq->private;
2058
	unsigned int h;
2059

2060
	seq_printf(seq,
2061 2062
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2063
		   LEAF_SIZE, TNODE_SIZE(0));
2064

2065 2066 2067 2068
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2069
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2070 2071
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2072

2073 2074 2075 2076 2077 2078 2079 2080
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2081
			trie_show_usage(seq, t->stats);
2082 2083 2084
#endif
		}
	}
2085

2086
	return 0;
2087 2088
}

2089
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2090
{
2091
	return single_open_net(inode, file, fib_triestat_seq_show);
2092 2093
}

2094
static const struct file_operations fib_triestat_fops = {
2095 2096 2097 2098
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2099
	.release = single_release_net,
2100 2101
};

2102
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2103
{
2104 2105
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2106
	loff_t idx = 0;
2107
	unsigned int h;
2108

2109 2110 2111
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2112

2113
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2114
			struct key_vector *n;
2115 2116 2117 2118 2119 2120 2121 2122 2123

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2124
	}
2125

2126 2127 2128
	return NULL;
}

2129
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2130
	__acquires(RCU)
2131
{
2132
	rcu_read_lock();
2133
	return fib_trie_get_idx(seq, *pos);
2134 2135
}

2136
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2137
{
2138
	struct fib_trie_iter *iter = seq->private;
2139
	struct net *net = seq_file_net(seq);
2140 2141 2142
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2143
	struct key_vector *n;
2144

2145
	++*pos;
2146 2147 2148 2149
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2150

2151 2152
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2153
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2154 2155 2156 2157 2158
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2159

2160 2161 2162
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2163
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2164 2165 2166 2167 2168
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2169
	return NULL;
2170 2171 2172 2173

found:
	iter->tb = tb;
	return n;
2174
}
2175

2176
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2177
	__releases(RCU)
2178
{
2179 2180
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2181

2182 2183
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2184 2185
	while (n-- > 0)
		seq_puts(seq, "   ");
2186
}
2187

2188
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2189
{
S
Stephen Hemminger 已提交
2190
	switch (s) {
2191 2192 2193 2194 2195 2196
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2197
		snprintf(buf, len, "scope=%d", s);
2198 2199 2200
		return buf;
	}
}
2201

2202
static const char *const rtn_type_names[__RTN_MAX] = {
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2216

E
Eric Dumazet 已提交
2217
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2218 2219 2220
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2221
	snprintf(buf, len, "type %u", t);
2222
	return buf;
2223 2224
}

2225 2226
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2227
{
2228
	const struct fib_trie_iter *iter = seq->private;
2229
	struct key_vector *n = v;
2230

2231 2232
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2233

2234
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2235
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2236

2237 2238 2239
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2240 2241
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2242
	} else {
A
Alexander Duyck 已提交
2243
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2244
		struct fib_alias *fa;
2245 2246

		seq_indent(seq, iter->depth);
2247
		seq_printf(seq, "  |-- %pI4\n", &val);
2248

A
Alexander Duyck 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2262
		}
2263
	}
2264

2265 2266 2267
	return 0;
}

2268
static const struct seq_operations fib_trie_seq_ops = {
2269 2270 2271 2272
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2273 2274
};

2275
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2276
{
2277 2278
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2279 2280
}

2281
static const struct file_operations fib_trie_fops = {
2282 2283 2284 2285
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2286
	.release = seq_release_net,
2287 2288
};

2289 2290
struct fib_route_iter {
	struct seq_net_private p;
2291
	struct fib_table *main_tb;
2292
	struct key_vector *tnode;
2293 2294 2295 2296
	loff_t	pos;
	t_key	key;
};

2297 2298
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2299
{
2300
	struct fib_table *tb = iter->main_tb;
2301
	struct key_vector *l, **tp = &iter->tnode;
2302 2303
	struct trie *t;
	t_key key;
2304

2305 2306
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2307
		pos -= iter->pos;
2308 2309 2310
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
2311
		iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
2312
		iter->pos = 0;
2313
		key = 0;
2314 2315
	}

2316 2317
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2318
		iter->pos++;
2319 2320 2321 2322 2323 2324 2325 2326 2327

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2328 2329 2330
	}

	if (l)
2331
		iter->key = key;	/* remember it */
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2343
	struct trie *t;
2344 2345

	rcu_read_lock();
2346

2347
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2348 2349 2350
	if (!tb)
		return NULL;

2351 2352 2353 2354 2355 2356
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
2357
	iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
2358 2359 2360 2361
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2362 2363 2364 2365 2366
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2367
	struct key_vector *l = NULL;
2368
	t_key key = iter->key;
2369 2370

	++*pos;
2371 2372 2373 2374 2375 2376 2377

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2378
		iter->pos++;
2379 2380
	} else {
		iter->pos = 0;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2392
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2393
{
E
Eric Dumazet 已提交
2394
	unsigned int flags = 0;
2395

E
Eric Dumazet 已提交
2396 2397
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2398 2399
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2400
	if (mask == htonl(0xFFFFFFFF))
2401 2402 2403
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2404 2405
}

2406 2407 2408
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2409
 *	and needs to be same as fib_hash output to avoid breaking
2410 2411 2412
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2413
{
A
Alexander Duyck 已提交
2414
	struct fib_alias *fa;
2415
	struct key_vector *l = v;
2416
	__be32 prefix;
2417

2418 2419 2420 2421 2422 2423
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2424

2425 2426
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2427 2428 2429 2430
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2431

A
Alexander Duyck 已提交
2432 2433 2434
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2435

A
Alexander Duyck 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2457

A
Alexander Duyck 已提交
2458
		seq_pad(seq, '\n');
2459 2460 2461 2462 2463
	}

	return 0;
}

2464
static const struct seq_operations fib_route_seq_ops = {
2465 2466 2467
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2468
	.show   = fib_route_seq_show,
2469 2470
};

2471
static int fib_route_seq_open(struct inode *inode, struct file *file)
2472
{
2473
	return seq_open_net(inode, file, &fib_route_seq_ops,
2474
			    sizeof(struct fib_route_iter));
2475 2476
}

2477
static const struct file_operations fib_route_fops = {
2478 2479 2480 2481
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2482
	.release = seq_release_net,
2483 2484
};

2485
int __net_init fib_proc_init(struct net *net)
2486
{
2487
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2488 2489
		goto out1;

2490 2491
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2492 2493
		goto out2;

2494
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2495 2496
		goto out3;

2497
	return 0;
2498 2499

out3:
2500
	remove_proc_entry("fib_triestat", net->proc_net);
2501
out2:
2502
	remove_proc_entry("fib_trie", net->proc_net);
2503 2504
out1:
	return -ENOMEM;
2505 2506
}

2507
void __net_exit fib_proc_exit(struct net *net)
2508
{
2509 2510 2511
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2512 2513 2514
}

#endif /* CONFIG_PROC_FS */