fib_trie.c 59.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
#include "fib_lookup.h"

R
Robert Olsson 已提交
84
#define MAX_STAT_DEPTH 32
85

86 87
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
88 89 90

typedef unsigned int t_key;

91 92
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
93

94
#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
95

96 97 98 99
struct tnode {
	t_key key;
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
100
	unsigned char slen;
101
	struct tnode __rcu *parent;
102
	struct rcu_head rcu;
A
Alexander Duyck 已提交
103 104 105
	union {
		/* The fields in this struct are valid if bits > 0 (TNODE) */
		struct {
106 107
			t_key empty_children; /* KEYLENGTH bits needed */
			t_key full_children;  /* KEYLENGTH bits needed */
A
Alexander Duyck 已提交
108 109 110 111 112
			struct tnode __rcu *child[0];
		};
		/* This list pointer if valid if bits == 0 (LEAF) */
		struct hlist_head list;
	};
113 114 115 116
};

struct leaf_info {
	struct hlist_node hlist;
117
	unsigned char slen;
118
	struct hlist_head falh;
119
	struct rcu_head rcu;
120 121 122 123 124 125 126 127 128
};

#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
129
	unsigned int resize_node_skipped;
130 131 132 133 134 135 136 137 138
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
139
	unsigned int prefixes;
R
Robert Olsson 已提交
140
	unsigned int nodesizes[MAX_STAT_DEPTH];
141
};
142 143

struct trie {
A
Alexander Duyck 已提交
144
	struct tnode __rcu *trie;
145
#ifdef CONFIG_IP_FIB_TRIE_STATS
146
	struct trie_use_stats __percpu *stats;
147 148 149
#endif
};

150
static void resize(struct trie *t, struct tnode *tn);
151 152 153 154 155 156 157 158
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
159

160
static struct kmem_cache *fn_alias_kmem __read_mostly;
161
static struct kmem_cache *trie_leaf_kmem __read_mostly;
162

163 164
/* caller must hold RTNL */
#define node_parent(n) rtnl_dereference((n)->parent)
E
Eric Dumazet 已提交
165

166 167
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
E
Eric Dumazet 已提交
168

169
/* wrapper for rcu_assign_pointer */
A
Alexander Duyck 已提交
170
static inline void node_set_parent(struct tnode *n, struct tnode *tp)
171
{
A
Alexander Duyck 已提交
172 173
	if (n)
		rcu_assign_pointer(n->parent, tp);
S
Stephen Hemminger 已提交
174 175
}

176 177 178 179
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
180
 */
181
static inline unsigned long tnode_child_length(const struct tnode *tn)
S
Stephen Hemminger 已提交
182
{
183
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
184
}
R
Robert Olsson 已提交
185

186 187 188
/* caller must hold RTNL */
static inline struct tnode *tnode_get_child(const struct tnode *tn,
					    unsigned long i)
189
{
E
Eric Dumazet 已提交
190
	return rtnl_dereference(tn->child[i]);
191 192
}

193 194 195
/* caller must hold RCU read lock or RTNL */
static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
						unsigned long i)
196
{
E
Eric Dumazet 已提交
197
	return rcu_dereference_rtnl(tn->child[i]);
198 199
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
258

259 260
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
261
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
262
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
263 264

static void __alias_free_mem(struct rcu_head *head)
265
{
R
Robert Olsson 已提交
266 267
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
268 269
}

R
Robert Olsson 已提交
270
static inline void alias_free_mem_rcu(struct fib_alias *fa)
271
{
R
Robert Olsson 已提交
272 273
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
274

275
#define TNODE_KMALLOC_MAX \
A
Alexander Duyck 已提交
276
	ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
O
Olof Johansson 已提交
277

278
static void __node_free_rcu(struct rcu_head *head)
279
{
A
Alexander Duyck 已提交
280
	struct tnode *n = container_of(head, struct tnode, rcu);
281 282 283 284 285 286 287

	if (IS_LEAF(n))
		kmem_cache_free(trie_leaf_kmem, n);
	else if (n->bits <= TNODE_KMALLOC_MAX)
		kfree(n);
	else
		vfree(n);
288 289
}

290 291
#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)

R
Robert Olsson 已提交
292
static inline void free_leaf_info(struct leaf_info *leaf)
293
{
294
	kfree_rcu(leaf, rcu);
295 296
}

297
static struct tnode *tnode_alloc(size_t size)
298
{
R
Robert Olsson 已提交
299
	if (size <= PAGE_SIZE)
300
		return kzalloc(size, GFP_KERNEL);
301
	else
302
		return vzalloc(size);
303
}
R
Robert Olsson 已提交
304

305 306 307 308 309 310 311 312 313 314
static inline void empty_child_inc(struct tnode *n)
{
	++n->empty_children ? : ++n->full_children;
}

static inline void empty_child_dec(struct tnode *n)
{
	n->empty_children-- ? : n->full_children--;
}

A
Alexander Duyck 已提交
315
static struct tnode *leaf_new(t_key key)
R
Robert Olsson 已提交
316
{
A
Alexander Duyck 已提交
317
	struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
318
	if (l) {
319 320 321 322 323 324
		l->parent = NULL;
		/* set key and pos to reflect full key value
		 * any trailing zeros in the key should be ignored
		 * as the nodes are searched
		 */
		l->key = key;
325
		l->slen = 0;
326
		l->pos = 0;
327 328 329
		/* set bits to 0 indicating we are not a tnode */
		l->bits = 0;

R
Robert Olsson 已提交
330 331 332 333 334 335 336 337 338
		INIT_HLIST_HEAD(&l->list);
	}
	return l;
}

static struct leaf_info *leaf_info_new(int plen)
{
	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
	if (li) {
339
		li->slen = KEYLENGTH - plen;
340
		INIT_HLIST_HEAD(&li->falh);
R
Robert Olsson 已提交
341 342 343 344
	}
	return li;
}

345
static struct tnode *tnode_new(t_key key, int pos, int bits)
346
{
347
	size_t sz = offsetof(struct tnode, child[1ul << bits]);
348
	struct tnode *tn = tnode_alloc(sz);
349 350 351 352
	unsigned int shift = pos + bits;

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
353

O
Olof Johansson 已提交
354
	if (tn) {
355
		tn->parent = NULL;
356
		tn->slen = pos;
357 358
		tn->pos = pos;
		tn->bits = bits;
359
		tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
360 361 362 363
		if (bits == KEYLENGTH)
			tn->full_children = 1;
		else
			tn->empty_children = 1ul << bits;
364
	}
365

E
Eric Dumazet 已提交
366
	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
A
Alexander Duyck 已提交
367
		 sizeof(struct tnode *) << bits);
368 369 370
	return tn;
}

371
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
372 373
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
A
Alexander Duyck 已提交
374
static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
375
{
376
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
377 378
}

379 380 381 382
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
383
{
384
	struct tnode *chi = tnode_get_child(tn, i);
385
	int isfull, wasfull;
386

387
	BUG_ON(i >= tnode_child_length(tn));
S
Stephen Hemminger 已提交
388

389
	/* update emptyChildren, overflow into fullChildren */
390
	if (n == NULL && chi != NULL)
391 392 393
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
394

395
	/* update fullChildren */
396
	wasfull = tnode_full(tn, chi);
397
	isfull = tnode_full(tn, n);
398

399
	if (wasfull && !isfull)
400
		tn->full_children--;
401
	else if (!wasfull && isfull)
402
		tn->full_children++;
O
Olof Johansson 已提交
403

404 405 406
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

407
	rcu_assign_pointer(tn->child[i], n);
408 409
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static void update_children(struct tnode *tn)
{
	unsigned long i;

	/* update all of the child parent pointers */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

static inline void put_child_root(struct tnode *tp, struct trie *t,
				  t_key key, struct tnode *n)
434 435 436 437 438 439 440
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
		rcu_assign_pointer(t->trie, n);
}

441
static inline void tnode_free_init(struct tnode *tn)
E
Eric Dumazet 已提交
442
{
443 444 445 446 447 448 449 450
	tn->rcu.next = NULL;
}

static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
{
	n->rcu.next = tn->rcu.next;
	tn->rcu.next = &n->rcu;
}
E
Eric Dumazet 已提交
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static void tnode_free(struct tnode *tn)
{
	struct callback_head *head = &tn->rcu;

	while (head) {
		head = head->next;
		tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
		node_free(tn);

		tn = container_of(head, struct tnode, rcu);
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
467 468 469
	}
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
{
	struct tnode *tp = node_parent(oldtnode);
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
	put_child_root(tp, t, tn->key, tn);

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		/* resize child node */
		if (tnode_full(tn, inode))
			resize(t, inode);
	}
}

495
static int inflate(struct trie *t, struct tnode *oldtnode)
496
{
497 498
	struct tnode *tn;
	unsigned long i;
499
	t_key m;
500

S
Stephen Hemminger 已提交
501
	pr_debug("In inflate\n");
502

503
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
504
	if (!tn)
505
		return -ENOMEM;
506

507 508 509
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

510 511 512 513
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
514
	 */
515
	for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
516 517 518
		struct tnode *inode = tnode_get_child(oldtnode, --i);
		struct tnode *node0, *node1;
		unsigned long j, k;
519

520
		/* An empty child */
A
Alexander Duyck 已提交
521
		if (inode == NULL)
522 523 524
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
525
		if (!tnode_full(oldtnode, inode)) {
526
			put_child(tn, get_index(inode->key, tn), inode);
527 528 529
			continue;
		}

530 531 532
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

533 534
		/* An internal node with two children */
		if (inode->bits == 1) {
535 536
			put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
			put_child(tn, 2 * i, tnode_get_child(inode, 0));
O
Olof Johansson 已提交
537
			continue;
538 539
		}

O
Olof Johansson 已提交
540
		/* We will replace this node 'inode' with two new
541
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
542 543 544 545 546
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
547
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
548 549
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
550 551 552
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
553
		 */
554 555 556
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
557
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
558

559
		tnode_free_append(tn, node1);
560 561 562 563 564 565 566 567 568 569 570
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
		for (k = tnode_child_length(inode), j = k / 2; j;) {
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
		}
571

572 573 574
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
575

576 577 578 579
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
580

581 582
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
583

584
	return 0;
585
nomem:
586 587
	/* all pointers should be clean so we are done */
	tnode_free(tn);
588
	return -ENOMEM;
589 590
}

591
static int halve(struct trie *t, struct tnode *oldtnode)
592
{
593
	struct tnode *tn;
594
	unsigned long i;
595

S
Stephen Hemminger 已提交
596
	pr_debug("In halve\n");
597

598
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
599
	if (!tn)
600
		return -ENOMEM;
601

602 603 604
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

605 606 607 608
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
609
	 */
610
	for (i = tnode_child_length(oldtnode); i;) {
611 612 613
		struct tnode *node1 = tnode_get_child(oldtnode, --i);
		struct tnode *node0 = tnode_get_child(oldtnode, --i);
		struct tnode *inode;
614

615 616 617 618 619
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
620

621
		/* Two nonempty children */
622 623 624 625
		inode = tnode_new(node0->key, oldtnode->pos, 1);
		if (!inode) {
			tnode_free(tn);
			return -ENOMEM;
626
		}
627
		tnode_free_append(tn, inode);
628

629 630 631 632 633 634 635
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
636
	}
637

638 639
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
640 641

	return 0;
642 643
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static void collapse(struct trie *t, struct tnode *oldtnode)
{
	struct tnode *n, *tp;
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
	for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
		n = tnode_get_child(oldtnode, --i);

	/* compress one level */
	tp = node_parent(oldtnode);
	put_child_root(tp, t, oldtnode->key, n);
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static unsigned char update_suffix(struct tnode *tn)
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
	for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
		struct tnode *n = tnode_get_child(tn, i);

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
 * tnode_child_length() and instead of multiplying by 2 (since the
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
 * The left-hand side may look a bit weird: tnode_child_length(tn)
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 *     tn->full_children;
 *
 * new_child_length = tnode_child_length(tn) * 2;
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >=
 *      inflate_threshold * tnode_child_length(tn) * 2
 *
 * shorten again:
 * 50 * (tn->full_children + tnode_child_length(tn) -
 *    tn->empty_children) >= inflate_threshold *
 *    tnode_child_length(tn)
 *
 */
754
static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
755 756 757 758 759
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
760
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
761
	used -= tn->empty_children;
762
	used += tn->full_children;
763

764 765 766
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
767 768
}

769
static bool should_halve(const struct tnode *tp, const struct tnode *tn)
770 771 772 773 774
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
775
	threshold *= tp ? halve_threshold : halve_threshold_root;
776 777
	used -= tn->empty_children;

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

static bool should_collapse(const struct tnode *tn)
{
	unsigned long used = tnode_child_length(tn);

	used -= tn->empty_children;

	/* account for bits == KEYLENGTH case */
	if ((tn->bits == KEYLENGTH) && tn->full_children)
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
795 796
}

797
#define MAX_WORK 10
798
static void resize(struct trie *t, struct tnode *tn)
799
{
800
	struct tnode *tp = node_parent(tn);
801
	struct tnode __rcu **cptr;
802
	int max_work = MAX_WORK;
803 804 805 806

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

807 808 809 810 811 812 813
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
	cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie;
	BUG_ON(tn != rtnl_dereference(*cptr));

814 815
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
816
	 */
817
	while (should_inflate(tp, tn) && max_work) {
818
		if (inflate(t, tn)) {
819 820 821 822 823
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}
824

825
		max_work--;
826
		tn = rtnl_dereference(*cptr);
827 828 829 830
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
831
		return;
832

833
	/* Halve as long as the number of empty children in this
834 835
	 * node is above threshold.
	 */
836
	while (should_halve(tp, tn) && max_work) {
837
		if (halve(t, tn)) {
838 839 840 841 842 843
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}

844
		max_work--;
845 846
		tn = rtnl_dereference(*cptr);
	}
847 848

	/* Only one child remains */
849 850
	if (should_collapse(tn)) {
		collapse(t, tn);
851 852 853 854 855 856 857 858 859 860 861 862 863
		return;
	}

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
		return;

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

		if (tp && (slen > tp->slen))
			tp->slen = slen;
864 865 866
	}
}

R
Robert Olsson 已提交
867
/* readside must use rcu_read_lock currently dump routines
R
Robert Olsson 已提交
868 869
 via get_fa_head and dump */

A
Alexander Duyck 已提交
870
static struct leaf_info *find_leaf_info(struct tnode *l, int plen)
871
{
R
Robert Olsson 已提交
872
	struct hlist_head *head = &l->list;
873
	struct leaf_info *li;
874
	int slen = KEYLENGTH - plen;
875

876
	hlist_for_each_entry_rcu(li, head, hlist)
877
		if (li->slen == slen)
878
			return li;
O
Olof Johansson 已提交
879

880 881 882
	return NULL;
}

883
static inline struct hlist_head *get_fa_head(struct tnode *l, int plen)
884
{
R
Robert Olsson 已提交
885
	struct leaf_info *li = find_leaf_info(l, plen);
886

O
Olof Johansson 已提交
887 888
	if (!li)
		return NULL;
889

O
Olof Johansson 已提交
890
	return &li->falh;
891 892
}

893 894 895 896 897 898 899 900 901 902 903 904
static void leaf_pull_suffix(struct tnode *l)
{
	struct tnode *tp = node_parent(l);

	while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

static void leaf_push_suffix(struct tnode *l)
905
{
906 907 908 909 910 911 912 913 914 915 916 917 918
	struct tnode *tn = node_parent(l);

	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	while (tn && (tn->slen < l->slen)) {
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

static void remove_leaf_info(struct tnode *l, struct leaf_info *old)
{
919 920 921
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->hlist.pprev;
	struct leaf_info *li = hlist_entry(pprev, typeof(*li), hlist.next);
922 923 924 925

	/* remove the leaf info from the list */
	hlist_del_rcu(&old->hlist);

926 927
	/* only access li if it is pointing at the last valid hlist_node */
	if (hlist_empty(&l->list) || (*pprev))
928 929
		return;

930
	/* update the trie with the latest suffix length */
931
	l->slen = li->slen;
932
	leaf_pull_suffix(l);
933 934 935 936 937
}

static void insert_leaf_info(struct tnode *l, struct leaf_info *new)
{
	struct hlist_head *head = &l->list;
938
	struct leaf_info *li, *last = NULL;
939

940 941 942 943
	hlist_for_each_entry(li, head, hlist) {
		if (new->slen < li->slen)
			break;
		last = li;
944
	}
945

946 947 948 949 950
	if (last)
		hlist_add_behind_rcu(&new->hlist, &last->hlist);
	else
		hlist_add_head_rcu(&new->hlist, head);

951
	/* if we added to the tail node then we need to update slen */
952 953
	if (l->slen < new->slen) {
		l->slen = new->slen;
954 955
		leaf_push_suffix(l);
	}
956 957
}

R
Robert Olsson 已提交
958
/* rcu_read_lock needs to be hold by caller from readside */
A
Alexander Duyck 已提交
959
static struct tnode *fib_find_node(struct trie *t, u32 key)
960
{
A
Alexander Duyck 已提交
961
	struct tnode *n = rcu_dereference_rtnl(t->trie);
A
Alexander Duyck 已提交
962 963 964 965 966 967 968 969 970

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
971
		 *   if (index & (~0ul << bits))
A
Alexander Duyck 已提交
972
		 *     we have a mismatch in skip bits and failed
973 974
		 *   else
		 *     we know the value is cindex
A
Alexander Duyck 已提交
975
		 */
976
		if (index & (~0ul << n->bits))
A
Alexander Duyck 已提交
977 978 979 980
			return NULL;

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
981 982
			break;

983
		n = tnode_get_child_rcu(n, index);
A
Alexander Duyck 已提交
984
	}
O
Olof Johansson 已提交
985

A
Alexander Duyck 已提交
986
	return n;
987 988
}

989 990 991
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
992 993
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 tos,
					u32 prio)
994 995 996 997 998 999
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

1000
	hlist_for_each_entry(fa, fah, fa_list) {
1001 1002 1003 1004 1005 1006 1007 1008 1009
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

1010
static void trie_rebalance(struct trie *t, struct tnode *tn)
1011
{
S
Stephen Hemminger 已提交
1012
	struct tnode *tp;
1013

1014 1015
	while ((tp = node_parent(tn)) != NULL) {
		resize(t, tn);
S
Stephen Hemminger 已提交
1016
		tn = tp;
1017
	}
S
Stephen Hemminger 已提交
1018

1019
	/* Handle last (top) tnode */
1020
	if (IS_TNODE(tn))
1021
		resize(t, tn);
1022 1023
}

R
Robert Olsson 已提交
1024 1025
/* only used from updater-side */

1026
static struct hlist_head *fib_insert_node(struct trie *t, u32 key, int plen)
1027
{
1028
	struct hlist_head *fa_head = NULL;
1029
	struct tnode *l, *n, *tp = NULL;
1030 1031
	struct leaf_info *li;

1032 1033 1034 1035 1036
	li = leaf_info_new(plen);
	if (!li)
		return NULL;
	fa_head = &li->falh;

E
Eric Dumazet 已提交
1037
	n = rtnl_dereference(t->trie);
1038

1039 1040
	/* If we point to NULL, stop. Either the tree is empty and we should
	 * just put a new leaf in if, or we have reached an empty child slot,
1041 1042
	 * and we should just put our new leaf in that.
	 *
1043 1044 1045
	 * If we hit a node with a key that does't match then we should stop
	 * and create a new tnode to replace that node and insert ourselves
	 * and the other node into the new tnode.
1046
	 */
1047 1048
	while (n) {
		unsigned long index = get_index(key, n);
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
		 *   if !(index >> bits)
		 *     we know the value is child index
		 *   else
		 *     we have a mismatch in skip bits and failed
		 */
		if (index >> n->bits)
1061 1062
			break;

1063 1064 1065
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n)) {
			/* Case 1: n is a leaf, and prefixes match*/
1066
			insert_leaf_info(n, li);
1067 1068
			return fa_head;
		}
1069

1070
		tp = n;
1071
		n = tnode_get_child_rcu(n, index);
1072 1073
	}

1074 1075 1076
	l = leaf_new(key);
	if (!l) {
		free_leaf_info(li);
1077
		return NULL;
1078
	}
1079

1080
	insert_leaf_info(l, li);
1081

1082 1083 1084 1085 1086 1087 1088 1089
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
		struct tnode *tn;
1090

1091
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1092
		if (!tn) {
1093
			free_leaf_info(li);
1094
			node_free(l);
1095
			return NULL;
O
Olof Johansson 已提交
1096 1097
		}

1098 1099 1100
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1101

1102 1103 1104
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
1105

1106
		/* parent now has a NULL spot where the leaf can go */
1107
		tp = tn;
1108
	}
O
Olof Johansson 已提交
1109

1110 1111 1112 1113 1114 1115 1116 1117
	/* Case 3: n is NULL, and will just insert a new leaf */
	if (tp) {
		NODE_INIT_PARENT(l, tp);
		put_child(tp, get_index(key, tp), l);
		trie_rebalance(t, tp);
	} else {
		rcu_assign_pointer(t->trie, l);
	}
R
Robert Olsson 已提交
1118

1119 1120 1121
	return fa_head;
}

1122 1123 1124
/*
 * Caller must hold RTNL.
 */
1125
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1126 1127 1128
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *new_fa;
1129
	struct hlist_head *fa_head = NULL;
1130
	struct fib_info *fi;
1131 1132
	int plen = cfg->fc_dst_len;
	u8 tos = cfg->fc_tos;
1133 1134
	u32 key, mask;
	int err;
A
Alexander Duyck 已提交
1135
	struct tnode *l;
1136

1137
	if (plen > KEYLENGTH)
1138 1139
		return -EINVAL;

1140
	key = ntohl(cfg->fc_dst);
1141

1142
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1143

O
Olof Johansson 已提交
1144
	mask = ntohl(inet_make_mask(plen));
1145

1146
	if (key & ~mask)
1147 1148 1149 1150
		return -EINVAL;

	key = key & mask;

1151 1152 1153
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1154
		goto err;
1155
	}
1156 1157

	l = fib_find_node(t, key);
1158
	fa = NULL;
1159

1160
	if (l) {
1161 1162 1163 1164 1165 1166 1167 1168 1169
		fa_head = get_fa_head(l, plen);
		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
	}

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1170 1171
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1172 1173
	 */

1174 1175 1176
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1177 1178

		err = -EEXIST;
1179
		if (cfg->fc_nlflags & NLM_F_EXCL)
1180 1181
			goto out;

1182 1183 1184 1185 1186 1187 1188
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1189
		hlist_for_each_entry_from(fa, fa_list) {
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
			if (fa->fa_tos != tos)
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1201
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1202 1203 1204
			struct fib_info *fi_drop;
			u8 state;

1205 1206 1207 1208
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1209
				goto out;
1210
			}
R
Robert Olsson 已提交
1211
			err = -ENOBUFS;
1212
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1213 1214
			if (new_fa == NULL)
				goto out;
1215 1216

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1217 1218
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1219
			new_fa->fa_type = cfg->fc_type;
1220
			state = fa->fa_state;
1221
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1222
			new_fa->fa_slen = fa->fa_slen;
1223

1224
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
R
Robert Olsson 已提交
1225
			alias_free_mem_rcu(fa);
1226 1227 1228

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1229
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1230 1231
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1232

O
Olof Johansson 已提交
1233
			goto succeeded;
1234 1235 1236 1237 1238
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1239 1240
		if (fa_match)
			goto out;
1241

1242
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1243
			fa = fa_first;
1244 1245
	}
	err = -ENOENT;
1246
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1247 1248 1249
		goto out;

	err = -ENOBUFS;
1250
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1251 1252 1253 1254 1255
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1256
	new_fa->fa_type = cfg->fc_type;
1257
	new_fa->fa_state = 0;
1258
	new_fa->fa_slen = KEYLENGTH - plen;
1259

1260
	/* Insert new entry to the list. */
1261
	if (!fa_head) {
1262 1263 1264
		fa_head = fib_insert_node(t, key, plen);
		if (unlikely(!fa_head)) {
			err = -ENOMEM;
1265
			goto out_free_new_fa;
1266
		}
1267
	}
1268

1269 1270 1271
	if (!plen)
		tb->tb_num_default++;

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	if (fa) {
		hlist_add_before_rcu(&new_fa->fa_list, &fa->fa_list);
	} else {
		struct fib_alias *last;

		hlist_for_each_entry(last, fa_head, fa_list)
			fa = last;

		if (fa)
			hlist_add_behind_rcu(&new_fa->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new_fa->fa_list, fa_head);
	}
1285

1286
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1287
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1288
		  &cfg->fc_nlinfo, 0);
1289 1290
succeeded:
	return 0;
1291 1292 1293

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1294 1295
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1296
err:
1297 1298 1299
	return err;
}

1300 1301 1302 1303 1304 1305 1306
static inline t_key prefix_mismatch(t_key key, struct tnode *n)
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1307
/* should be called with rcu_read_lock */
1308
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1309
		     struct fib_result *res, int fib_flags)
1310
{
1311
	struct trie *t = (struct trie *)tb->tb_data;
1312 1313 1314
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1315 1316
	const t_key key = ntohl(flp->daddr);
	struct tnode *n, *pn;
1317
	struct leaf_info *li;
1318
	t_key cindex;
O
Olof Johansson 已提交
1319

R
Robert Olsson 已提交
1320
	n = rcu_dereference(t->trie);
1321
	if (!n)
1322
		return -EAGAIN;
1323 1324

#ifdef CONFIG_IP_FIB_TRIE_STATS
1325
	this_cpu_inc(stats->gets);
1326 1327
#endif

A
Alexander Duyck 已提交
1328
	pn = n;
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1340
		 *   if (index & (~0ul << bits))
1341
		 *     we have a mismatch in skip bits and failed
1342 1343
		 *   else
		 *     we know the value is cindex
1344
		 */
1345
		if (index & (~0ul << n->bits))
1346
			break;
1347

1348 1349
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1350
			goto found;
1351

1352 1353
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1354
		 */
1355
		if (n->slen > n->pos) {
1356 1357
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1358
		}
1359

1360
		n = tnode_get_child_rcu(n, index);
1361 1362 1363
		if (unlikely(!n))
			goto backtrace;
	}
1364

1365 1366 1367 1368
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
		struct tnode __rcu **cptr = n->child;
1369

1370 1371 1372
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1373
		 */
1374
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1375
			goto backtrace;
O
Olof Johansson 已提交
1376

1377 1378 1379
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1380

1381 1382 1383
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1384 1385
		 */

1386
		while ((n = rcu_dereference(*cptr)) == NULL) {
1387 1388
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1389 1390
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1391
#endif
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1402
					return -EAGAIN;
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
			cptr = &pn->child[cindex];
1415
		}
1416
	}
1417

1418
found:
1419
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1420 1421 1422
	hlist_for_each_entry_rcu(li, &n->list, hlist) {
		struct fib_alias *fa;

1423
		hlist_for_each_entry_rcu(fa, &li->falh, fa_list) {
1424 1425 1426
			struct fib_info *fi = fa->fa_info;
			int nhsel, err;

1427 1428 1429 1430
			if (((key ^ n->key) >= (1ul << fa->fa_slen)) &&
			    ((BITS_PER_LONG > KEYLENGTH) ||
			     (fa->fa_slen != KEYLENGTH)))
				continue;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
				continue;
			if (fi->fib_dead)
				continue;
			if (fa->fa_info->fib_scope < flp->flowi4_scope)
				continue;
			fib_alias_accessed(fa);
			err = fib_props[fa->fa_type].error;
			if (unlikely(err < 0)) {
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->semantic_match_passed);
#endif
				return err;
			}
			if (fi->fib_flags & RTNH_F_DEAD)
				continue;
			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
				const struct fib_nh *nh = &fi->fib_nh[nhsel];

				if (nh->nh_flags & RTNH_F_DEAD)
					continue;
				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
					continue;

				if (!(fib_flags & FIB_LOOKUP_NOREF))
					atomic_inc(&fi->fib_clntref);

1458
				res->prefixlen = KEYLENGTH - fa->fa_slen;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
				res->nh_sel = nhsel;
				res->type = fa->fa_type;
				res->scope = fi->fib_scope;
				res->fi = fi;
				res->table = tb;
				res->fa_head = &li->falh;
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->semantic_match_passed);
#endif
				return err;
			}
		}
1471
	}
1472
#ifdef CONFIG_IP_FIB_TRIE_STATS
1473
	this_cpu_inc(stats->semantic_match_miss);
1474 1475
#endif
	goto backtrace;
1476
}
1477
EXPORT_SYMBOL_GPL(fib_table_lookup);
1478

1479 1480 1481
/*
 * Remove the leaf and return parent.
 */
A
Alexander Duyck 已提交
1482
static void trie_leaf_remove(struct trie *t, struct tnode *l)
1483
{
1484
	struct tnode *tp = node_parent(l);
1485

1486
	pr_debug("entering trie_leaf_remove(%p)\n", l);
1487

1488
	if (tp) {
1489
		put_child(tp, get_index(l->key, tp), NULL);
1490
		trie_rebalance(t, tp);
1491
	} else {
1492
		RCU_INIT_POINTER(t->trie, NULL);
1493
	}
1494

1495
	node_free(l);
1496 1497
}

1498 1499 1500
/*
 * Caller must hold RTNL.
 */
1501
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1502 1503 1504
{
	struct trie *t = (struct trie *) tb->tb_data;
	u32 key, mask;
1505 1506
	int plen = cfg->fc_dst_len;
	u8 tos = cfg->fc_tos;
1507
	struct fib_alias *fa, *fa_to_delete;
1508
	struct hlist_head *fa_head;
A
Alexander Duyck 已提交
1509
	struct tnode *l;
O
Olof Johansson 已提交
1510 1511
	struct leaf_info *li;

1512
	if (plen > 32)
1513 1514
		return -EINVAL;

1515
	key = ntohl(cfg->fc_dst);
O
Olof Johansson 已提交
1516
	mask = ntohl(inet_make_mask(plen));
1517

1518
	if (key & ~mask)
1519 1520 1521 1522 1523
		return -EINVAL;

	key = key & mask;
	l = fib_find_node(t, key);

1524
	if (!l)
1525 1526
		return -ESRCH;

1527 1528 1529 1530 1531 1532
	li = find_leaf_info(l, plen);

	if (!li)
		return -ESRCH;

	fa_head = &li->falh;
1533 1534 1535 1536 1537
	fa = fib_find_alias(fa_head, tos, 0);

	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1538
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1539 1540

	fa_to_delete = NULL;
1541
	hlist_for_each_entry_from(fa, fa_list) {
1542 1543 1544 1545 1546
		struct fib_info *fi = fa->fa_info;

		if (fa->fa_tos != tos)
			break;

1547 1548
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1549
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1550 1551
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1552 1553 1554
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1555 1556 1557 1558 1559
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1560 1561
	if (!fa_to_delete)
		return -ESRCH;
1562

O
Olof Johansson 已提交
1563
	fa = fa_to_delete;
1564
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1565
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1566

1567
	hlist_del_rcu(&fa->fa_list);
1568

1569 1570 1571
	if (!plen)
		tb->tb_num_default--;

1572
	if (hlist_empty(fa_head)) {
1573
		remove_leaf_info(l, li);
O
Olof Johansson 已提交
1574
		free_leaf_info(li);
R
Robert Olsson 已提交
1575
	}
1576

O
Olof Johansson 已提交
1577
	if (hlist_empty(&l->list))
1578
		trie_leaf_remove(t, l);
1579

O
Olof Johansson 已提交
1580
	if (fa->fa_state & FA_S_ACCESSED)
1581
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1582

R
Robert Olsson 已提交
1583 1584
	fib_release_info(fa->fa_info);
	alias_free_mem_rcu(fa);
O
Olof Johansson 已提交
1585
	return 0;
1586 1587
}

1588
static int trie_flush_list(struct hlist_head *head)
1589
{
1590 1591
	struct hlist_node *tmp;
	struct fib_alias *fa;
1592 1593
	int found = 0;

1594
	hlist_for_each_entry_safe(fa, tmp, head, fa_list) {
1595 1596
		struct fib_info *fi = fa->fa_info;

R
Robert Olsson 已提交
1597
		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1598
			hlist_del_rcu(&fa->fa_list);
R
Robert Olsson 已提交
1599 1600
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
1601 1602 1603 1604 1605 1606
			found++;
		}
	}
	return found;
}

A
Alexander Duyck 已提交
1607
static int trie_flush_leaf(struct tnode *l)
1608 1609
{
	int found = 0;
1610
	struct hlist_node *tmp;
1611
	struct leaf_info *li;
1612
	unsigned char slen = 0;
1613

1614
	hlist_for_each_entry_safe(li, tmp, &l->list, hlist) {
1615
		found += trie_flush_list(&li->falh);
1616

1617
		if (hlist_empty(&li->falh)) {
R
Robert Olsson 已提交
1618
			hlist_del_rcu(&li->hlist);
1619
			free_leaf_info(li);
1620
			continue;
1621
		}
1622

1623
		slen = li->slen;
1624
	}
1625

1626
	l->slen = slen;
1627

1628 1629 1630
	return found;
}

1631 1632 1633 1634
/*
 * Scan for the next right leaf starting at node p->child[idx]
 * Since we have back pointer, no recursion necessary.
 */
A
Alexander Duyck 已提交
1635
static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c)
1636
{
1637
	do {
1638
		unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0;
R
Robert Olsson 已提交
1639

1640
		while (idx < tnode_child_length(p)) {
1641
			c = tnode_get_child_rcu(p, idx++);
R
Robert Olsson 已提交
1642
			if (!c)
O
Olof Johansson 已提交
1643 1644
				continue;

1645
			if (IS_LEAF(c))
A
Alexander Duyck 已提交
1646
				return c;
1647 1648

			/* Rescan start scanning in new node */
A
Alexander Duyck 已提交
1649
			p = c;
1650
			idx = 0;
1651
		}
1652 1653

		/* Node empty, walk back up to parent */
A
Alexander Duyck 已提交
1654
		c = p;
E
Eric Dumazet 已提交
1655
	} while ((p = node_parent_rcu(c)) != NULL);
1656 1657 1658 1659

	return NULL; /* Root of trie */
}

A
Alexander Duyck 已提交
1660
static struct tnode *trie_firstleaf(struct trie *t)
1661
{
A
Alexander Duyck 已提交
1662
	struct tnode *n = rcu_dereference_rtnl(t->trie);
1663 1664 1665 1666 1667

	if (!n)
		return NULL;

	if (IS_LEAF(n))          /* trie is just a leaf */
A
Alexander Duyck 已提交
1668
		return n;
1669 1670 1671 1672

	return leaf_walk_rcu(n, NULL);
}

A
Alexander Duyck 已提交
1673
static struct tnode *trie_nextleaf(struct tnode *l)
1674
{
A
Alexander Duyck 已提交
1675
	struct tnode *p = node_parent_rcu(l);
1676 1677 1678 1679

	if (!p)
		return NULL;	/* trie with just one leaf */

A
Alexander Duyck 已提交
1680
	return leaf_walk_rcu(p, l);
1681 1682
}

A
Alexander Duyck 已提交
1683
static struct tnode *trie_leafindex(struct trie *t, int index)
1684
{
A
Alexander Duyck 已提交
1685
	struct tnode *l = trie_firstleaf(t);
1686

S
Stephen Hemminger 已提交
1687
	while (l && index-- > 0)
1688
		l = trie_nextleaf(l);
S
Stephen Hemminger 已提交
1689

1690 1691 1692 1693
	return l;
}


1694 1695 1696
/*
 * Caller must hold RTNL.
 */
1697
int fib_table_flush(struct fib_table *tb)
1698 1699
{
	struct trie *t = (struct trie *) tb->tb_data;
A
Alexander Duyck 已提交
1700
	struct tnode *l, *ll = NULL;
1701
	int found = 0;
1702

1703
	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1704
		found += trie_flush_leaf(l);
1705

1706 1707 1708 1709 1710 1711 1712
		if (ll) {
			if (hlist_empty(&ll->list))
				trie_leaf_remove(t, ll);
			else
				leaf_pull_suffix(ll);
		}

1713 1714 1715
		ll = l;
	}

1716 1717 1718 1719 1720 1721
	if (ll) {
		if (hlist_empty(&ll->list))
			trie_leaf_remove(t, ll);
		else
			leaf_pull_suffix(ll);
	}
1722

S
Stephen Hemminger 已提交
1723
	pr_debug("trie_flush found=%d\n", found);
1724 1725 1726
	return found;
}

1727 1728
void fib_free_table(struct fib_table *tb)
{
1729 1730 1731 1732 1733
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1734 1735 1736
	kfree(tb);
}

1737
static int fn_trie_dump_fa(t_key key, struct hlist_head *fah,
1738
			   struct fib_table *tb,
1739 1740 1741 1742
			   struct sk_buff *skb, struct netlink_callback *cb)
{
	int i, s_i;
	struct fib_alias *fa;
A
Al Viro 已提交
1743
	__be32 xkey = htonl(key);
1744

1745
	s_i = cb->args[5];
1746 1747
	i = 0;

R
Robert Olsson 已提交
1748 1749
	/* rcu_read_lock is hold by caller */

1750
	hlist_for_each_entry_rcu(fa, fah, fa_list) {
1751 1752 1753 1754 1755
		if (i < s_i) {
			i++;
			continue;
		}

1756
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1757 1758 1759 1760
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1761
				  xkey,
1762
				  KEYLENGTH - fa->fa_slen,
1763
				  fa->fa_tos,
1764
				  fa->fa_info, NLM_F_MULTI) < 0) {
1765
			cb->args[5] = i;
1766
			return -1;
O
Olof Johansson 已提交
1767
		}
1768 1769
		i++;
	}
1770
	cb->args[5] = i;
1771 1772 1773
	return skb->len;
}

A
Alexander Duyck 已提交
1774
static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1775
			struct sk_buff *skb, struct netlink_callback *cb)
1776
{
1777 1778
	struct leaf_info *li;
	int i, s_i;
1779

1780
	s_i = cb->args[4];
1781
	i = 0;
1782

1783
	/* rcu_read_lock is hold by caller */
1784
	hlist_for_each_entry_rcu(li, &l->list, hlist) {
1785 1786
		if (i < s_i) {
			i++;
1787
			continue;
1788
		}
O
Olof Johansson 已提交
1789

1790
		if (i > s_i)
1791
			cb->args[5] = 0;
1792

1793
		if (hlist_empty(&li->falh))
1794 1795
			continue;

1796
		if (fn_trie_dump_fa(l->key, &li->falh, tb, skb, cb) < 0) {
1797
			cb->args[4] = i;
1798 1799
			return -1;
		}
1800
		i++;
1801
	}
1802

1803
	cb->args[4] = i;
1804 1805 1806
	return skb->len;
}

1807 1808
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1809
{
A
Alexander Duyck 已提交
1810
	struct tnode *l;
1811
	struct trie *t = (struct trie *) tb->tb_data;
1812
	t_key key = cb->args[2];
1813
	int count = cb->args[3];
1814

R
Robert Olsson 已提交
1815
	rcu_read_lock();
1816 1817 1818
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1819
	if (count == 0)
1820 1821
		l = trie_firstleaf(t);
	else {
1822 1823 1824
		/* Normally, continue from last key, but if that is missing
		 * fallback to using slow rescan
		 */
1825
		l = fib_find_node(t, key);
1826 1827
		if (!l)
			l = trie_leafindex(t, count);
1828
	}
1829

1830 1831
	while (l) {
		cb->args[2] = l->key;
1832
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1833
			cb->args[3] = count;
1834 1835
			rcu_read_unlock();
			return -1;
1836
		}
1837

1838
		++count;
1839
		l = trie_nextleaf(l);
1840 1841
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1842
	}
1843
	cb->args[3] = count;
R
Robert Olsson 已提交
1844
	rcu_read_unlock();
1845

1846 1847 1848
	return skb->len;
}

1849
void __init fib_trie_init(void)
1850
{
1851 1852
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1853 1854 1855
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
A
Alexander Duyck 已提交
1856
					   max(sizeof(struct tnode),
1857 1858
					       sizeof(struct leaf_info)),
					   0, SLAB_PANIC, NULL);
1859
}
1860

1861

1862
struct fib_table *fib_trie_table(u32 id)
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1873
	tb->tb_default = -1;
1874
	tb->tb_num_default = 0;
1875 1876

	t = (struct trie *) tb->tb_data;
1877 1878 1879 1880 1881 1882 1883 1884
	RCU_INIT_POINTER(t->trie, NULL);
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1885 1886 1887 1888

	return tb;
}

1889 1890 1891
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1892
	struct seq_net_private p;
1893
	struct fib_table *tb;
1894
	struct tnode *tnode;
E
Eric Dumazet 已提交
1895 1896
	unsigned int index;
	unsigned int depth;
1897
};
1898

A
Alexander Duyck 已提交
1899
static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1900
{
1901
	unsigned long cindex = iter->index;
1902 1903
	struct tnode *tn = iter->tnode;
	struct tnode *p;
1904

1905 1906 1907 1908
	/* A single entry routing table */
	if (!tn)
		return NULL;

1909 1910 1911
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1912
	while (cindex < tnode_child_length(tn)) {
A
Alexander Duyck 已提交
1913
		struct tnode *n = tnode_get_child_rcu(tn, cindex);
1914

1915 1916 1917 1918 1919 1920
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1921
				iter->tnode = n;
1922 1923 1924 1925 1926
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1927

1928 1929
		++cindex;
	}
O
Olof Johansson 已提交
1930

1931
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1932
	p = node_parent_rcu(tn);
1933
	if (p) {
1934
		cindex = get_index(tn->key, p) + 1;
1935 1936 1937
		tn = p;
		--iter->depth;
		goto rescan;
1938
	}
1939 1940 1941

	/* got root? */
	return NULL;
1942 1943
}

A
Alexander Duyck 已提交
1944
static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1945
				       struct trie *t)
1946
{
A
Alexander Duyck 已提交
1947
	struct tnode *n;
1948

S
Stephen Hemminger 已提交
1949
	if (!t)
1950 1951 1952
		return NULL;

	n = rcu_dereference(t->trie);
1953
	if (!n)
1954
		return NULL;
1955

1956
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1957
		iter->tnode = n;
1958 1959 1960 1961 1962 1963
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1964
	}
1965 1966

	return n;
1967
}
O
Olof Johansson 已提交
1968

1969 1970
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
A
Alexander Duyck 已提交
1971
	struct tnode *n;
1972
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1973

1974
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1975

1976
	rcu_read_lock();
1977
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1978
		if (IS_LEAF(n)) {
1979 1980
			struct leaf_info *li;

1981 1982 1983 1984
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1985

A
Alexander Duyck 已提交
1986
			hlist_for_each_entry_rcu(li, &n->list, hlist)
1987
				++s->prefixes;
1988 1989
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
1990 1991
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
1992
			s->nullpointers += n->empty_children;
1993 1994
		}
	}
R
Robert Olsson 已提交
1995
	rcu_read_unlock();
1996 1997
}

1998 1999 2000 2001
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2002
{
E
Eric Dumazet 已提交
2003
	unsigned int i, max, pointers, bytes, avdepth;
2004

2005 2006 2007 2008
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2009

2010 2011
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2012
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2013

2014
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
A
Alexander Duyck 已提交
2015
	bytes = sizeof(struct tnode) * stat->leaves;
2016 2017 2018 2019

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
	bytes += sizeof(struct leaf_info) * stat->prefixes;

2020
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2021
	bytes += sizeof(struct tnode) * stat->tnodes;
2022

R
Robert Olsson 已提交
2023 2024
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2025
		max--;
2026

2027
	pointers = 0;
2028
	for (i = 1; i < max; i++)
2029
		if (stat->nodesizes[i] != 0) {
2030
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2031 2032 2033
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2034
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2035

A
Alexander Duyck 已提交
2036
	bytes += sizeof(struct tnode *) * pointers;
2037 2038
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2039
}
R
Robert Olsson 已提交
2040

2041
#ifdef CONFIG_IP_FIB_TRIE_STATS
2042
static void trie_show_usage(struct seq_file *seq,
2043
			    const struct trie_use_stats __percpu *stats)
2044
{
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2060
	seq_printf(seq, "\nCounters:\n---------\n");
2061 2062
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2063
	seq_printf(seq, "semantic match passed = %u\n",
2064 2065 2066 2067
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2068
}
2069 2070
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2071
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2072
{
2073 2074 2075 2076 2077 2078
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2079
}
2080

2081

2082 2083
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2084
	struct net *net = (struct net *)seq->private;
2085
	unsigned int h;
2086

2087
	seq_printf(seq,
2088 2089
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
A
Alexander Duyck 已提交
2090
		   sizeof(struct tnode), sizeof(struct tnode));
2091

2092 2093 2094 2095
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2096
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2097 2098
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2099

2100 2101 2102 2103 2104 2105 2106 2107
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2108
			trie_show_usage(seq, t->stats);
2109 2110 2111
#endif
		}
	}
2112

2113
	return 0;
2114 2115
}

2116
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2117
{
2118
	return single_open_net(inode, file, fib_triestat_seq_show);
2119 2120
}

2121
static const struct file_operations fib_triestat_fops = {
2122 2123 2124 2125
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2126
	.release = single_release_net,
2127 2128
};

A
Alexander Duyck 已提交
2129
static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2130
{
2131 2132
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2133
	loff_t idx = 0;
2134
	unsigned int h;
2135

2136 2137 2138
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2139

2140
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
A
Alexander Duyck 已提交
2141
			struct tnode *n;
2142 2143 2144 2145 2146 2147 2148 2149 2150

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2151
	}
2152

2153 2154 2155
	return NULL;
}

2156
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2157
	__acquires(RCU)
2158
{
2159
	rcu_read_lock();
2160
	return fib_trie_get_idx(seq, *pos);
2161 2162
}

2163
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2164
{
2165
	struct fib_trie_iter *iter = seq->private;
2166
	struct net *net = seq_file_net(seq);
2167 2168 2169
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
A
Alexander Duyck 已提交
2170
	struct tnode *n;
2171

2172
	++*pos;
2173 2174 2175 2176
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2177

2178 2179
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2180
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2181 2182 2183 2184 2185
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2186

2187 2188 2189
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2190
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2191 2192 2193 2194 2195
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2196
	return NULL;
2197 2198 2199 2200

found:
	iter->tb = tb;
	return n;
2201
}
2202

2203
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2204
	__releases(RCU)
2205
{
2206 2207
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2208

2209 2210
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2211 2212
	while (n-- > 0)
		seq_puts(seq, "   ");
2213
}
2214

2215
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2216
{
S
Stephen Hemminger 已提交
2217
	switch (s) {
2218 2219 2220 2221 2222 2223
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2224
		snprintf(buf, len, "scope=%d", s);
2225 2226 2227
		return buf;
	}
}
2228

2229
static const char *const rtn_type_names[__RTN_MAX] = {
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2243

E
Eric Dumazet 已提交
2244
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2245 2246 2247
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2248
	snprintf(buf, len, "type %u", t);
2249
	return buf;
2250 2251
}

2252 2253
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2254
{
2255
	const struct fib_trie_iter *iter = seq->private;
A
Alexander Duyck 已提交
2256
	struct tnode *n = v;
2257

2258 2259
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2260

2261
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2262
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2263

2264 2265 2266 2267
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
			   n->full_children, n->empty_children);
2268
	} else {
2269
		struct leaf_info *li;
A
Alexander Duyck 已提交
2270
		__be32 val = htonl(n->key);
2271 2272

		seq_indent(seq, iter->depth);
2273
		seq_printf(seq, "  |-- %pI4\n", &val);
2274

A
Alexander Duyck 已提交
2275
		hlist_for_each_entry_rcu(li, &n->list, hlist) {
2276 2277
			struct fib_alias *fa;

2278
			hlist_for_each_entry_rcu(fa, &li->falh, fa_list) {
2279 2280 2281
				char buf1[32], buf2[32];

				seq_indent(seq, iter->depth+1);
2282
				seq_printf(seq, "  /%zu %s %s",
2283
					   KEYLENGTH - fa->fa_slen,
2284
					   rtn_scope(buf1, sizeof(buf1),
2285
						     fa->fa_info->fib_scope),
2286 2287 2288
					   rtn_type(buf2, sizeof(buf2),
						    fa->fa_type));
				if (fa->fa_tos)
2289
					seq_printf(seq, " tos=%d", fa->fa_tos);
2290
				seq_putc(seq, '\n');
2291 2292
			}
		}
2293
	}
2294

2295 2296 2297
	return 0;
}

2298
static const struct seq_operations fib_trie_seq_ops = {
2299 2300 2301 2302
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2303 2304
};

2305
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2306
{
2307 2308
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2309 2310
}

2311
static const struct file_operations fib_trie_fops = {
2312 2313 2314 2315
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2316
	.release = seq_release_net,
2317 2318
};

2319 2320 2321 2322 2323 2324 2325
struct fib_route_iter {
	struct seq_net_private p;
	struct trie *main_trie;
	loff_t	pos;
	t_key	key;
};

A
Alexander Duyck 已提交
2326
static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2327
{
A
Alexander Duyck 已提交
2328
	struct tnode *l = NULL;
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	struct trie *t = iter->main_trie;

	/* use cache location of last found key */
	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
		pos -= iter->pos;
	else {
		iter->pos = 0;
		l = trie_firstleaf(t);
	}

	while (l && pos-- > 0) {
		iter->pos++;
		l = trie_nextleaf(l);
	}

	if (l)
		iter->key = pos;	/* remember it */
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;

	rcu_read_lock();
2359
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	if (!tb)
		return NULL;

	iter->main_trie = (struct trie *) tb->tb_data;
	if (*pos == 0)
		return SEQ_START_TOKEN;
	else
		return fib_route_get_idx(iter, *pos - 1);
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
A
Alexander Duyck 已提交
2373
	struct tnode *l = v;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

	++*pos;
	if (v == SEQ_START_TOKEN) {
		iter->pos = 0;
		l = trie_firstleaf(iter->main_trie);
	} else {
		iter->pos++;
		l = trie_nextleaf(l);
	}

	if (l)
		iter->key = l->key;
	else
		iter->pos = 0;
	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2397
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2398
{
E
Eric Dumazet 已提交
2399
	unsigned int flags = 0;
2400

E
Eric Dumazet 已提交
2401 2402
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2403 2404
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2405
	if (mask == htonl(0xFFFFFFFF))
2406 2407 2408
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2409 2410
}

2411 2412 2413
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2414
 *	and needs to be same as fib_hash output to avoid breaking
2415 2416 2417
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2418
{
A
Alexander Duyck 已提交
2419
	struct tnode *l = v;
2420
	struct leaf_info *li;
2421
	__be32 prefix;
2422

2423 2424 2425 2426 2427 2428
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2429

2430 2431
	prefix = htonl(l->key);

2432
	hlist_for_each_entry_rcu(li, &l->list, hlist) {
2433
		struct fib_alias *fa;
2434

2435
		hlist_for_each_entry_rcu(fa, &li->falh, fa_list) {
2436
			const struct fib_info *fi = fa->fa_info;
2437
			__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
E
Eric Dumazet 已提交
2438
			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2439

2440 2441 2442
			if (fa->fa_type == RTN_BROADCAST
			    || fa->fa_type == RTN_MULTICAST)
				continue;
2443

2444 2445
			seq_setwidth(seq, 127);

2446
			if (fi)
2447 2448
				seq_printf(seq,
					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2449
					 "%d\t%08X\t%d\t%u\t%u",
2450 2451 2452 2453 2454
					 fi->fib_dev ? fi->fib_dev->name : "*",
					 prefix,
					 fi->fib_nh->nh_gw, flags, 0, 0,
					 fi->fib_priority,
					 mask,
2455 2456
					 (fi->fib_advmss ?
					  fi->fib_advmss + 40 : 0),
2457
					 fi->fib_window,
2458
					 fi->fib_rtt >> 3);
2459
			else
2460 2461
				seq_printf(seq,
					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2462
					 "%d\t%08X\t%d\t%u\t%u",
2463
					 prefix, 0, flags, 0, 0, 0,
2464
					 mask, 0, 0, 0);
2465

2466
			seq_pad(seq, '\n');
2467
		}
2468 2469 2470 2471 2472
	}

	return 0;
}

2473
static const struct seq_operations fib_route_seq_ops = {
2474 2475 2476
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2477
	.show   = fib_route_seq_show,
2478 2479
};

2480
static int fib_route_seq_open(struct inode *inode, struct file *file)
2481
{
2482
	return seq_open_net(inode, file, &fib_route_seq_ops,
2483
			    sizeof(struct fib_route_iter));
2484 2485
}

2486
static const struct file_operations fib_route_fops = {
2487 2488 2489 2490
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2491
	.release = seq_release_net,
2492 2493
};

2494
int __net_init fib_proc_init(struct net *net)
2495
{
2496
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2497 2498
		goto out1;

2499 2500
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2501 2502
		goto out2;

2503
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2504 2505
		goto out3;

2506
	return 0;
2507 2508

out3:
2509
	remove_proc_entry("fib_triestat", net->proc_net);
2510
out2:
2511
	remove_proc_entry("fib_trie", net->proc_net);
2512 2513
out1:
	return -ENOMEM;
2514 2515
}

2516
void __net_exit fib_proc_exit(struct net *net)
2517
{
2518 2519 2520
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2521 2522 2523
}

#endif /* CONFIG_PROC_FS */