fib_trie.c 57.2 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
#include "fib_lookup.h"

R
Robert Olsson 已提交
84
#define MAX_STAT_DEPTH 32
85

86 87
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
88 89 90

typedef unsigned int t_key;

91 92
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
93

94
#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
95

96
struct tnode {
97 98 99 100 101 102
	struct rcu_head rcu;

	t_key empty_children; /* KEYLENGTH bits needed */
	t_key full_children;  /* KEYLENGTH bits needed */
	struct tnode __rcu *parent;

103 104
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
105
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
106
	unsigned char slen;
A
Alexander Duyck 已提交
107
	union {
108
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
109
		struct hlist_head leaf;
110 111
		/* This array is valid if (pos | bits) > 0 (TNODE) */
		struct tnode __rcu *tnode[0];
A
Alexander Duyck 已提交
112
	};
113 114
};

115 116 117
#define TNODE_SIZE(n)	offsetof(struct tnode, tnode[n])
#define LEAF_SIZE	TNODE_SIZE(1)

118 119 120 121 122 123 124
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
125
	unsigned int resize_node_skipped;
126 127 128 129 130 131 132 133 134
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
135
	unsigned int prefixes;
R
Robert Olsson 已提交
136
	unsigned int nodesizes[MAX_STAT_DEPTH];
137
};
138 139

struct trie {
A
Alexander Duyck 已提交
140
	struct tnode __rcu *trie;
141
#ifdef CONFIG_IP_FIB_TRIE_STATS
142
	struct trie_use_stats __percpu *stats;
143 144 145
#endif
};

146
static void resize(struct trie *t, struct tnode *tn);
147 148 149 150 151 152 153 154
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
155

156
static struct kmem_cache *fn_alias_kmem __read_mostly;
157
static struct kmem_cache *trie_leaf_kmem __read_mostly;
158

159 160
/* caller must hold RTNL */
#define node_parent(n) rtnl_dereference((n)->parent)
E
Eric Dumazet 已提交
161

162 163
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
E
Eric Dumazet 已提交
164

165
/* wrapper for rcu_assign_pointer */
A
Alexander Duyck 已提交
166
static inline void node_set_parent(struct tnode *n, struct tnode *tp)
167
{
A
Alexander Duyck 已提交
168 169
	if (n)
		rcu_assign_pointer(n->parent, tp);
S
Stephen Hemminger 已提交
170 171
}

172 173 174 175
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
176
 */
177
static inline unsigned long tnode_child_length(const struct tnode *tn)
S
Stephen Hemminger 已提交
178
{
179
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
180
}
R
Robert Olsson 已提交
181

182 183 184
/* caller must hold RTNL */
static inline struct tnode *tnode_get_child(const struct tnode *tn,
					    unsigned long i)
185
{
186
	return rtnl_dereference(tn->tnode[i]);
187 188
}

189 190 191
/* caller must hold RCU read lock or RTNL */
static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
						unsigned long i)
192
{
193
	return rcu_dereference_rtnl(tn->tnode[i]);
194 195
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
254

255 256
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
257
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
258
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
259 260

static void __alias_free_mem(struct rcu_head *head)
261
{
R
Robert Olsson 已提交
262 263
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
264 265
}

R
Robert Olsson 已提交
266
static inline void alias_free_mem_rcu(struct fib_alias *fa)
267
{
R
Robert Olsson 已提交
268 269
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
270

271
#define TNODE_KMALLOC_MAX \
272
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct tnode *))
O
Olof Johansson 已提交
273

274
static void __node_free_rcu(struct rcu_head *head)
275
{
A
Alexander Duyck 已提交
276
	struct tnode *n = container_of(head, struct tnode, rcu);
277 278 279 280 281 282 283

	if (IS_LEAF(n))
		kmem_cache_free(trie_leaf_kmem, n);
	else if (n->bits <= TNODE_KMALLOC_MAX)
		kfree(n);
	else
		vfree(n);
284 285
}

286 287
#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)

288
static struct tnode *tnode_alloc(size_t size)
289
{
R
Robert Olsson 已提交
290
	if (size <= PAGE_SIZE)
291
		return kzalloc(size, GFP_KERNEL);
292
	else
293
		return vzalloc(size);
294
}
R
Robert Olsson 已提交
295

296 297 298 299 300 301 302 303 304 305
static inline void empty_child_inc(struct tnode *n)
{
	++n->empty_children ? : ++n->full_children;
}

static inline void empty_child_dec(struct tnode *n)
{
	n->empty_children-- ? : n->full_children--;
}

306
static struct tnode *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
307
{
A
Alexander Duyck 已提交
308
	struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
309
	if (l) {
310 311 312 313 314 315
		l->parent = NULL;
		/* set key and pos to reflect full key value
		 * any trailing zeros in the key should be ignored
		 * as the nodes are searched
		 */
		l->key = key;
316
		l->slen = fa->fa_slen;
317
		l->pos = 0;
318 319 320
		/* set bits to 0 indicating we are not a tnode */
		l->bits = 0;

321
		/* link leaf to fib alias */
A
Alexander Duyck 已提交
322
		INIT_HLIST_HEAD(&l->leaf);
323
		hlist_add_head(&fa->fa_list, &l->leaf);
R
Robert Olsson 已提交
324 325 326 327
	}
	return l;
}

328
static struct tnode *tnode_new(t_key key, int pos, int bits)
329
{
330
	size_t sz = TNODE_SIZE(1ul << bits);
331
	struct tnode *tn = tnode_alloc(sz);
332 333 334 335
	unsigned int shift = pos + bits;

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
336

O
Olof Johansson 已提交
337
	if (tn) {
338
		tn->parent = NULL;
339
		tn->slen = pos;
340 341
		tn->pos = pos;
		tn->bits = bits;
342
		tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
343 344 345 346
		if (bits == KEYLENGTH)
			tn->full_children = 1;
		else
			tn->empty_children = 1ul << bits;
347
	}
348

349
	pr_debug("AT %p s=%zu %zu\n", tn, TNODE_SIZE(0),
A
Alexander Duyck 已提交
350
		 sizeof(struct tnode *) << bits);
351 352 353
	return tn;
}

354
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
355 356
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
A
Alexander Duyck 已提交
357
static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
358
{
359
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
360 361
}

362 363 364 365
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
366
{
367
	struct tnode *chi = tnode_get_child(tn, i);
368
	int isfull, wasfull;
369

370
	BUG_ON(i >= tnode_child_length(tn));
S
Stephen Hemminger 已提交
371

372
	/* update emptyChildren, overflow into fullChildren */
373
	if (n == NULL && chi != NULL)
374 375 376
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
377

378
	/* update fullChildren */
379
	wasfull = tnode_full(tn, chi);
380
	isfull = tnode_full(tn, n);
381

382
	if (wasfull && !isfull)
383
		tn->full_children--;
384
	else if (!wasfull && isfull)
385
		tn->full_children++;
O
Olof Johansson 已提交
386

387 388 389
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

390
	rcu_assign_pointer(tn->tnode[i], n);
391 392
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static void update_children(struct tnode *tn)
{
	unsigned long i;

	/* update all of the child parent pointers */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

static inline void put_child_root(struct tnode *tp, struct trie *t,
				  t_key key, struct tnode *n)
417 418 419 420 421 422 423
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
		rcu_assign_pointer(t->trie, n);
}

424
static inline void tnode_free_init(struct tnode *tn)
E
Eric Dumazet 已提交
425
{
426 427 428 429 430 431 432 433
	tn->rcu.next = NULL;
}

static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
{
	n->rcu.next = tn->rcu.next;
	tn->rcu.next = &n->rcu;
}
E
Eric Dumazet 已提交
434

435 436 437 438 439 440
static void tnode_free(struct tnode *tn)
{
	struct callback_head *head = &tn->rcu;

	while (head) {
		head = head->next;
441
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
442 443 444 445 446 447 448 449
		node_free(tn);

		tn = container_of(head, struct tnode, rcu);
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
450 451 452
	}
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
{
	struct tnode *tp = node_parent(oldtnode);
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
	put_child_root(tp, t, tn->key, tn);

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		/* resize child node */
		if (tnode_full(tn, inode))
			resize(t, inode);
	}
}

478
static int inflate(struct trie *t, struct tnode *oldtnode)
479
{
480 481
	struct tnode *tn;
	unsigned long i;
482
	t_key m;
483

S
Stephen Hemminger 已提交
484
	pr_debug("In inflate\n");
485

486
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
487
	if (!tn)
488
		return -ENOMEM;
489

490 491 492
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

493 494 495 496
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
497
	 */
498
	for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
499 500 501
		struct tnode *inode = tnode_get_child(oldtnode, --i);
		struct tnode *node0, *node1;
		unsigned long j, k;
502

503
		/* An empty child */
A
Alexander Duyck 已提交
504
		if (inode == NULL)
505 506 507
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
508
		if (!tnode_full(oldtnode, inode)) {
509
			put_child(tn, get_index(inode->key, tn), inode);
510 511 512
			continue;
		}

513 514 515
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

516 517
		/* An internal node with two children */
		if (inode->bits == 1) {
518 519
			put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
			put_child(tn, 2 * i, tnode_get_child(inode, 0));
O
Olof Johansson 已提交
520
			continue;
521 522
		}

O
Olof Johansson 已提交
523
		/* We will replace this node 'inode' with two new
524
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
525 526 527 528 529
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
530
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
531 532
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
533 534 535
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
536
		 */
537 538 539
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
540
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
541

542
		tnode_free_append(tn, node1);
543 544 545 546 547 548 549 550 551 552 553
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
		for (k = tnode_child_length(inode), j = k / 2; j;) {
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
		}
554

555 556 557
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
558

559 560 561 562
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
563

564 565
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
566

567
	return 0;
568
nomem:
569 570
	/* all pointers should be clean so we are done */
	tnode_free(tn);
571
	return -ENOMEM;
572 573
}

574
static int halve(struct trie *t, struct tnode *oldtnode)
575
{
576
	struct tnode *tn;
577
	unsigned long i;
578

S
Stephen Hemminger 已提交
579
	pr_debug("In halve\n");
580

581
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
582
	if (!tn)
583
		return -ENOMEM;
584

585 586 587
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

588 589 590 591
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
592
	 */
593
	for (i = tnode_child_length(oldtnode); i;) {
594 595 596
		struct tnode *node1 = tnode_get_child(oldtnode, --i);
		struct tnode *node0 = tnode_get_child(oldtnode, --i);
		struct tnode *inode;
597

598 599 600 601 602
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
603

604
		/* Two nonempty children */
605 606 607 608
		inode = tnode_new(node0->key, oldtnode->pos, 1);
		if (!inode) {
			tnode_free(tn);
			return -ENOMEM;
609
		}
610
		tnode_free_append(tn, inode);
611

612 613 614 615 616 617 618
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
619
	}
620

621 622
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
623 624

	return 0;
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static void collapse(struct trie *t, struct tnode *oldtnode)
{
	struct tnode *n, *tp;
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
	for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
		n = tnode_get_child(oldtnode, --i);

	/* compress one level */
	tp = node_parent(oldtnode);
	put_child_root(tp, t, oldtnode->key, n);
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
static unsigned char update_suffix(struct tnode *tn)
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
	for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
		struct tnode *n = tnode_get_child(tn, i);

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
 * tnode_child_length() and instead of multiplying by 2 (since the
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
 * The left-hand side may look a bit weird: tnode_child_length(tn)
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 *     tn->full_children;
 *
 * new_child_length = tnode_child_length(tn) * 2;
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >=
 *      inflate_threshold * tnode_child_length(tn) * 2
 *
 * shorten again:
 * 50 * (tn->full_children + tnode_child_length(tn) -
 *    tn->empty_children) >= inflate_threshold *
 *    tnode_child_length(tn)
 *
 */
737
static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
738 739 740 741 742
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
743
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
744
	used -= tn->empty_children;
745
	used += tn->full_children;
746

747 748 749
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
750 751
}

752
static bool should_halve(const struct tnode *tp, const struct tnode *tn)
753 754 755 756 757
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
758
	threshold *= tp ? halve_threshold : halve_threshold_root;
759 760
	used -= tn->empty_children;

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

static bool should_collapse(const struct tnode *tn)
{
	unsigned long used = tnode_child_length(tn);

	used -= tn->empty_children;

	/* account for bits == KEYLENGTH case */
	if ((tn->bits == KEYLENGTH) && tn->full_children)
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
778 779
}

780
#define MAX_WORK 10
781
static void resize(struct trie *t, struct tnode *tn)
782
{
783
	struct tnode *tp = node_parent(tn);
784
	struct tnode __rcu **cptr;
785
	int max_work = MAX_WORK;
786 787 788 789

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

790 791 792 793
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
794
	cptr = tp ? &tp->tnode[get_index(tn->key, tp)] : &t->trie;
795 796
	BUG_ON(tn != rtnl_dereference(*cptr));

797 798
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
799
	 */
800
	while (should_inflate(tp, tn) && max_work) {
801
		if (inflate(t, tn)) {
802 803 804 805 806
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}
807

808
		max_work--;
809
		tn = rtnl_dereference(*cptr);
810 811 812 813
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
814
		return;
815

816
	/* Halve as long as the number of empty children in this
817 818
	 * node is above threshold.
	 */
819
	while (should_halve(tp, tn) && max_work) {
820
		if (halve(t, tn)) {
821 822 823 824 825 826
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}

827
		max_work--;
828 829
		tn = rtnl_dereference(*cptr);
	}
830 831

	/* Only one child remains */
832 833
	if (should_collapse(tn)) {
		collapse(t, tn);
834 835 836 837 838 839 840 841 842 843 844 845 846
		return;
	}

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
		return;

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

		if (tp && (slen > tp->slen))
			tp->slen = slen;
847 848 849
	}
}

850
static void leaf_pull_suffix(struct tnode *tp, struct tnode *l)
851 852 853 854 855 856 857 858
{
	while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

859
static void leaf_push_suffix(struct tnode *tn, struct tnode *l)
860
{
861 862 863 864 865 866 867 868 869
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	while (tn && (tn->slen < l->slen)) {
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
870
/* rcu_read_lock needs to be hold by caller from readside */
871
static struct tnode *fib_find_node(struct trie *t, struct tnode **tn, u32 key)
872
{
873
	struct tnode *pn = NULL, *n = rcu_dereference_rtnl(t->trie);
A
Alexander Duyck 已提交
874 875 876 877 878 879 880 881 882

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
883
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
884
		 *     we have a mismatch in skip bits and failed
885 886
		 *   else
		 *     we know the value is cindex
887 888 889 890
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
891
		 */
892 893 894 895
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
896 897 898

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
899 900
			break;

901
		pn = n;
902
		n = tnode_get_child_rcu(n, index);
A
Alexander Duyck 已提交
903
	}
O
Olof Johansson 已提交
904

905 906
	*tn = pn;

A
Alexander Duyck 已提交
907
	return n;
908 909
}

910 911 912
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
913 914
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
					u8 tos, u32 prio)
915 916 917 918 919 920
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

921
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
922 923 924 925
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
926 927 928 929 930 931 932 933 934
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

935
static void trie_rebalance(struct trie *t, struct tnode *tn)
936
{
S
Stephen Hemminger 已提交
937
	struct tnode *tp;
938

939 940
	while (tn) {
		tp = node_parent(tn);
941
		resize(t, tn);
S
Stephen Hemminger 已提交
942
		tn = tp;
943 944 945
	}
}

R
Robert Olsson 已提交
946
/* only used from updater-side */
947 948
static int fib_insert_node(struct trie *t, struct tnode *tp,
			   struct fib_alias *new, t_key key)
949
{
950
	struct tnode *n, *l;
951

952
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
953
	if (!l)
954 955 956 957 958 959 960
		return -ENOMEM;

	/* retrieve child from parent node */
	if (tp)
		n = tnode_get_child(tp, get_index(key, tp));
	else
		n = rcu_dereference_rtnl(t->trie);
961

962 963 964 965 966 967 968 969
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
		struct tnode *tn;
970

971
		tn = tnode_new(key, __fls(key ^ n->key), 1);
972
		if (!tn) {
973
			node_free(l);
974
			return -ENOMEM;
O
Olof Johansson 已提交
975 976
		}

977 978 979
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
980

981 982 983
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
984

985
		/* parent now has a NULL spot where the leaf can go */
986
		tp = tn;
987
	}
O
Olof Johansson 已提交
988

989
	/* Case 3: n is NULL, and will just insert a new leaf */
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	NODE_INIT_PARENT(l, tp);
	put_child_root(tp, t, key, l);
	trie_rebalance(t, tp);

	return 0;
}

static int fib_insert_alias(struct trie *t, struct tnode *tp,
			    struct tnode *l, struct fib_alias *new,
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1006
	} else {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1019
	}
R
Robert Olsson 已提交
1020

1021 1022 1023 1024 1025 1026 1027
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1028 1029
}

1030
/* Caller must hold RTNL. */
1031
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1032
{
1033
	struct trie *t = (struct trie *)tb->tb_data;
1034
	struct fib_alias *fa, *new_fa;
1035
	struct tnode *l, *tp;
1036
	struct fib_info *fi;
A
Alexander Duyck 已提交
1037 1038
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1039
	u8 tos = cfg->fc_tos;
1040
	u32 key;
1041 1042
	int err;

1043
	if (plen > KEYLENGTH)
1044 1045
		return -EINVAL;

1046
	key = ntohl(cfg->fc_dst);
1047

1048
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1049

1050
	if ((plen < KEYLENGTH) && (key << plen))
1051 1052
		return -EINVAL;

1053 1054 1055
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1056
		goto err;
1057
	}
1058

1059
	l = fib_find_node(t, &tp, key);
A
Alexander Duyck 已提交
1060
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1061 1062 1063 1064 1065 1066

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1067 1068
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1069 1070
	 */

1071 1072 1073
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1074 1075

		err = -EEXIST;
1076
		if (cfg->fc_nlflags & NLM_F_EXCL)
1077 1078
			goto out;

1079 1080 1081 1082 1083 1084 1085
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1086
		hlist_for_each_entry_from(fa, fa_list) {
A
Alexander Duyck 已提交
1087
			if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1098
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1099 1100 1101
			struct fib_info *fi_drop;
			u8 state;

1102 1103 1104 1105
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1106
				goto out;
1107
			}
R
Robert Olsson 已提交
1108
			err = -ENOBUFS;
1109
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1110 1111
			if (new_fa == NULL)
				goto out;
1112 1113

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1114 1115
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1116
			new_fa->fa_type = cfg->fc_type;
1117
			state = fa->fa_state;
1118
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1119
			new_fa->fa_slen = fa->fa_slen;
1120

1121
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
R
Robert Olsson 已提交
1122
			alias_free_mem_rcu(fa);
1123 1124 1125

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1126
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1127 1128
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1129

O
Olof Johansson 已提交
1130
			goto succeeded;
1131 1132 1133 1134 1135
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1136 1137
		if (fa_match)
			goto out;
1138

1139
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1140
			fa = fa_first;
1141 1142
	}
	err = -ENOENT;
1143
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1144 1145 1146
		goto out;

	err = -ENOBUFS;
1147
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1148 1149 1150 1151 1152
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1153
	new_fa->fa_type = cfg->fc_type;
1154
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1155
	new_fa->fa_slen = slen;
1156

1157
	/* Insert new entry to the list. */
1158 1159 1160
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
		goto out_free_new_fa;
1161

1162 1163 1164
	if (!plen)
		tb->tb_num_default++;

1165
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1166
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1167
		  &cfg->fc_nlinfo, 0);
1168 1169
succeeded:
	return 0;
1170 1171 1172

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1173 1174
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1175
err:
1176 1177 1178
	return err;
}

1179 1180 1181 1182 1183 1184 1185
static inline t_key prefix_mismatch(t_key key, struct tnode *n)
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1186
/* should be called with rcu_read_lock */
1187
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1188
		     struct fib_result *res, int fib_flags)
1189
{
1190
	struct trie *t = (struct trie *)tb->tb_data;
1191 1192 1193
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1194 1195
	const t_key key = ntohl(flp->daddr);
	struct tnode *n, *pn;
A
Alexander Duyck 已提交
1196
	struct fib_alias *fa;
1197
	t_key cindex;
O
Olof Johansson 已提交
1198

R
Robert Olsson 已提交
1199
	n = rcu_dereference(t->trie);
1200
	if (!n)
1201
		return -EAGAIN;
1202 1203

#ifdef CONFIG_IP_FIB_TRIE_STATS
1204
	this_cpu_inc(stats->gets);
1205 1206
#endif

A
Alexander Duyck 已提交
1207
	pn = n;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1219
		 *   if (index & (~0ul << bits))
1220
		 *     we have a mismatch in skip bits and failed
1221 1222
		 *   else
		 *     we know the value is cindex
1223
		 */
1224
		if (index & (~0ul << n->bits))
1225
			break;
1226

1227 1228
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1229
			goto found;
1230

1231 1232
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1233
		 */
1234
		if (n->slen > n->pos) {
1235 1236
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1237
		}
1238

1239
		n = tnode_get_child_rcu(n, index);
1240 1241 1242
		if (unlikely(!n))
			goto backtrace;
	}
1243

1244 1245 1246
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1247
		struct tnode __rcu **cptr = n->tnode;
1248

1249 1250 1251
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1252
		 */
1253
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1254
			goto backtrace;
O
Olof Johansson 已提交
1255

1256 1257 1258
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1259

1260 1261 1262
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1263 1264
		 */

1265
		while ((n = rcu_dereference(*cptr)) == NULL) {
1266 1267
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1268 1269
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1270
#endif
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1281
					return -EAGAIN;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1293
			cptr = &pn->tnode[cindex];
1294
		}
1295
	}
1296

1297
found:
1298
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1299 1300 1301
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1302

A
Alexander Duyck 已提交
1303 1304
		if (((key ^ n->key) >= (1ul << fa->fa_slen)) &&
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1305
				continue;
A
Alexander Duyck 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1315
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1316
			this_cpu_inc(stats->semantic_match_passed);
1317
#endif
A
Alexander Duyck 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1328
				continue;
A
Alexander Duyck 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1340
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1341
			this_cpu_inc(stats->semantic_match_passed);
1342
#endif
A
Alexander Duyck 已提交
1343
			return err;
1344
		}
1345
	}
1346
#ifdef CONFIG_IP_FIB_TRIE_STATS
1347
	this_cpu_inc(stats->semantic_match_miss);
1348 1349
#endif
	goto backtrace;
1350
}
1351
EXPORT_SYMBOL_GPL(fib_table_lookup);
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static void fib_remove_alias(struct trie *t, struct tnode *tp,
			     struct tnode *l, struct fib_alias *old)
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
		put_child_root(tp, t, l->key, NULL);
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1383
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1384 1385 1386
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1387
	struct tnode *l, *tp;
A
Alexander Duyck 已提交
1388 1389
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1390 1391
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1392

A
Alexander Duyck 已提交
1393
	if (plen > KEYLENGTH)
1394 1395
		return -EINVAL;

1396
	key = ntohl(cfg->fc_dst);
1397

1398
	if ((plen < KEYLENGTH) && (key << plen))
1399 1400
		return -EINVAL;

1401
	l = fib_find_node(t, &tp, key);
1402
	if (!l)
1403 1404
		return -ESRCH;

A
Alexander Duyck 已提交
1405
	fa = fib_find_alias(&l->leaf, slen, tos, 0);
1406 1407 1408
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1409
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1410 1411

	fa_to_delete = NULL;
1412
	hlist_for_each_entry_from(fa, fa_list) {
1413 1414
		struct fib_info *fi = fa->fa_info;

A
Alexander Duyck 已提交
1415
		if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1416 1417
			break;

1418 1419
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1420
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1421 1422
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1423 1424 1425
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1426 1427 1428 1429 1430
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1431 1432
	if (!fa_to_delete)
		return -ESRCH;
1433

1434
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1435
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1436

1437 1438 1439
	if (!plen)
		tb->tb_num_default--;

1440
	fib_remove_alias(t, tp, l, fa_to_delete);
1441

1442
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1443
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1444

1445 1446
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1447
	return 0;
1448 1449
}

1450 1451
/* Scan for the next leaf starting at the provided key value */
static struct tnode *leaf_walk_rcu(struct tnode **tn, t_key key)
1452
{
1453 1454
	struct tnode *pn, *n = *tn;
	unsigned long cindex;
1455

1456 1457 1458
	/* record parent node for backtracing */
	pn = n;
	cindex = n ? get_index(key, n) : 0;
1459

1460 1461 1462
	/* this loop is meant to try and find the key in the trie */
	while (n) {
		unsigned long idx = get_index(key, n);
1463

1464 1465 1466 1467 1468
		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
		if (idx >= (1ul << n->bits))
			break;
1469

1470 1471 1472
		/* record parent and next child index */
		pn = n;
		cindex = idx;
1473

1474 1475 1476
		/* descend into the next child */
		n = tnode_get_child_rcu(pn, cindex++);
	}
1477

1478 1479 1480 1481 1482
	/* this loop will search for the next leaf with a greater key */
	while (pn) {
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1483

1484 1485 1486
			pn = node_parent_rcu(pn);
			if (!pn)
				break;
1487

1488 1489 1490
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1491

1492 1493 1494 1495
		/* grab the next available node */
		n = tnode_get_child_rcu(pn, cindex++);
		if (!n)
			continue;
1496

1497 1498 1499
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1500

1501 1502 1503 1504
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1505

1506 1507 1508 1509 1510 1511
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
	*tn = (n->key == KEY_MAX) ? NULL : pn;
	return n;
1512 1513
}

1514
/* Caller must hold RTNL. */
1515
int fib_table_flush(struct fib_table *tb)
1516
{
1517 1518 1519 1520 1521 1522
	struct trie *t = (struct trie *)tb->tb_data;
	struct hlist_node *tmp;
	struct fib_alias *fa;
	struct tnode *n, *pn;
	unsigned long cindex;
	unsigned char slen;
1523
	int found = 0;
1524

1525 1526 1527
	n = rcu_dereference(t->trie);
	if (!n)
		goto flush_complete;
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
				t_key pkey = pn->key;

				n = pn;
				pn = node_parent(n);

				/* resize completed node */
				resize(t, n);

				/* if we got the root we are done */
				if (!pn)
					goto flush_complete;

				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
			n = tnode_get_child(pn, cindex);
		} while (!n);
	}

	/* track slen in case any prefixes survive */
	slen = 0;

	hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;

			continue;
1573 1574
		}

1575
		slen = fa->fa_slen;
1576 1577
	}

1578 1579 1580 1581 1582 1583 1584
	/* update leaf slen */
	n->slen = slen;

	if (hlist_empty(&n->leaf)) {
		put_child_root(pn, t, n->key, NULL);
		node_free(n);
	} else {
1585
		leaf_pull_suffix(pn, n);
1586
	}
1587

1588 1589 1590 1591
	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
flush_complete:
S
Stephen Hemminger 已提交
1592
	pr_debug("trie_flush found=%d\n", found);
1593 1594 1595
	return found;
}

1596 1597
void fib_free_table(struct fib_table *tb)
{
1598 1599 1600 1601 1602
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1603 1604 1605
	kfree(tb);
}

A
Alexander Duyck 已提交
1606 1607
static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
			     struct sk_buff *skb, struct netlink_callback *cb)
1608
{
A
Alexander Duyck 已提交
1609
	__be32 xkey = htonl(l->key);
1610
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1611
	int i, s_i;
1612

A
Alexander Duyck 已提交
1613
	s_i = cb->args[4];
1614 1615
	i = 0;

R
Robert Olsson 已提交
1616
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1617
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1618 1619 1620 1621 1622
		if (i < s_i) {
			i++;
			continue;
		}

1623
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1624 1625 1626 1627
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1628
				  xkey,
1629
				  KEYLENGTH - fa->fa_slen,
1630
				  fa->fa_tos,
1631
				  fa->fa_info, NLM_F_MULTI) < 0) {
1632
			cb->args[4] = i;
1633 1634
			return -1;
		}
1635
		i++;
1636
	}
1637

1638
	cb->args[4] = i;
1639 1640 1641
	return skb->len;
}

1642 1643
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1644
{
1645 1646
	struct trie *t = (struct trie *)tb->tb_data;
	struct tnode *l, *tp;
1647 1648 1649
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1650 1651
	int count = cb->args[2];
	t_key key = cb->args[3];
1652

1653 1654 1655 1656 1657
	rcu_read_lock();

	tp = rcu_dereference_rtnl(t->trie);

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1658
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1659 1660
			cb->args[3] = key;
			cb->args[2] = count;
1661 1662
			rcu_read_unlock();
			return -1;
1663
		}
1664

1665
		++count;
1666 1667
		key = l->key + 1;

1668 1669
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1670 1671 1672 1673

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1674
	}
1675

R
Robert Olsson 已提交
1676
	rcu_read_unlock();
1677

1678 1679 1680
	cb->args[3] = key;
	cb->args[2] = count;

1681 1682 1683
	return skb->len;
}

1684
void __init fib_trie_init(void)
1685
{
1686 1687
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1688 1689 1690
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1691
					   LEAF_SIZE,
1692
					   0, SLAB_PANIC, NULL);
1693
}
1694

1695

1696
struct fib_table *fib_trie_table(u32 id)
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1707
	tb->tb_default = -1;
1708
	tb->tb_num_default = 0;
1709 1710

	t = (struct trie *) tb->tb_data;
1711 1712 1713 1714 1715 1716 1717 1718
	RCU_INIT_POINTER(t->trie, NULL);
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1719 1720 1721 1722

	return tb;
}

1723 1724 1725
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1726
	struct seq_net_private p;
1727
	struct fib_table *tb;
1728
	struct tnode *tnode;
E
Eric Dumazet 已提交
1729 1730
	unsigned int index;
	unsigned int depth;
1731
};
1732

A
Alexander Duyck 已提交
1733
static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1734
{
1735
	unsigned long cindex = iter->index;
1736 1737
	struct tnode *tn = iter->tnode;
	struct tnode *p;
1738

1739 1740 1741 1742
	/* A single entry routing table */
	if (!tn)
		return NULL;

1743 1744 1745
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1746
	while (cindex < tnode_child_length(tn)) {
A
Alexander Duyck 已提交
1747
		struct tnode *n = tnode_get_child_rcu(tn, cindex);
1748

1749 1750 1751 1752 1753 1754
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1755
				iter->tnode = n;
1756 1757 1758 1759 1760
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1761

1762 1763
		++cindex;
	}
O
Olof Johansson 已提交
1764

1765
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1766
	p = node_parent_rcu(tn);
1767
	if (p) {
1768
		cindex = get_index(tn->key, p) + 1;
1769 1770 1771
		tn = p;
		--iter->depth;
		goto rescan;
1772
	}
1773 1774 1775

	/* got root? */
	return NULL;
1776 1777
}

A
Alexander Duyck 已提交
1778
static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1779
				       struct trie *t)
1780
{
A
Alexander Duyck 已提交
1781
	struct tnode *n;
1782

S
Stephen Hemminger 已提交
1783
	if (!t)
1784 1785 1786
		return NULL;

	n = rcu_dereference(t->trie);
1787
	if (!n)
1788
		return NULL;
1789

1790
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1791
		iter->tnode = n;
1792 1793 1794 1795 1796 1797
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1798
	}
1799 1800

	return n;
1801
}
O
Olof Johansson 已提交
1802

1803 1804
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
A
Alexander Duyck 已提交
1805
	struct tnode *n;
1806
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1807

1808
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1809

1810
	rcu_read_lock();
1811
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1812
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
1813
			struct fib_alias *fa;
1814

1815 1816 1817 1818
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1819

A
Alexander Duyck 已提交
1820
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
1821
				++s->prefixes;
1822 1823
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
1824 1825
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
1826
			s->nullpointers += n->empty_children;
1827 1828
		}
	}
R
Robert Olsson 已提交
1829
	rcu_read_unlock();
1830 1831
}

1832 1833 1834 1835
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1836
{
E
Eric Dumazet 已提交
1837
	unsigned int i, max, pointers, bytes, avdepth;
1838

1839 1840 1841 1842
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
1843

1844 1845
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
1846
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
1847

1848
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
1849
	bytes = LEAF_SIZE * stat->leaves;
1850 1851

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
1852
	bytes += sizeof(struct fib_alias) * stat->prefixes;
1853

1854
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1855
	bytes += TNODE_SIZE(0) * stat->tnodes;
1856

R
Robert Olsson 已提交
1857 1858
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
1859
		max--;
1860

1861
	pointers = 0;
1862
	for (i = 1; i < max; i++)
1863
		if (stat->nodesizes[i] != 0) {
1864
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
1865 1866 1867
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
1868
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
1869

A
Alexander Duyck 已提交
1870
	bytes += sizeof(struct tnode *) * pointers;
1871 1872
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
1873
}
R
Robert Olsson 已提交
1874

1875
#ifdef CONFIG_IP_FIB_TRIE_STATS
1876
static void trie_show_usage(struct seq_file *seq,
1877
			    const struct trie_use_stats __percpu *stats)
1878
{
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

1894
	seq_printf(seq, "\nCounters:\n---------\n");
1895 1896
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
1897
	seq_printf(seq, "semantic match passed = %u\n",
1898 1899 1900 1901
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
1902
}
1903 1904
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

1905
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
1906
{
1907 1908 1909 1910 1911 1912
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
1913
}
1914

1915

1916 1917
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
1918
	struct net *net = (struct net *)seq->private;
1919
	unsigned int h;
1920

1921
	seq_printf(seq,
1922 1923
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
1924
		   LEAF_SIZE, TNODE_SIZE(0));
1925

1926 1927 1928 1929
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

1930
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
1931 1932
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
1933

1934 1935 1936 1937 1938 1939 1940 1941
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
1942
			trie_show_usage(seq, t->stats);
1943 1944 1945
#endif
		}
	}
1946

1947
	return 0;
1948 1949
}

1950
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
1951
{
1952
	return single_open_net(inode, file, fib_triestat_seq_show);
1953 1954
}

1955
static const struct file_operations fib_triestat_fops = {
1956 1957 1958 1959
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
1960
	.release = single_release_net,
1961 1962
};

A
Alexander Duyck 已提交
1963
static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
1964
{
1965 1966
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
1967
	loff_t idx = 0;
1968
	unsigned int h;
1969

1970 1971 1972
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
1973

1974
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
A
Alexander Duyck 已提交
1975
			struct tnode *n;
1976 1977 1978 1979 1980 1981 1982 1983 1984

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
1985
	}
1986

1987 1988 1989
	return NULL;
}

1990
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
1991
	__acquires(RCU)
1992
{
1993
	rcu_read_lock();
1994
	return fib_trie_get_idx(seq, *pos);
1995 1996
}

1997
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1998
{
1999
	struct fib_trie_iter *iter = seq->private;
2000
	struct net *net = seq_file_net(seq);
2001 2002 2003
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
A
Alexander Duyck 已提交
2004
	struct tnode *n;
2005

2006
	++*pos;
2007 2008 2009 2010
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2011

2012 2013
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2014
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2015 2016 2017 2018 2019
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2020

2021 2022 2023
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2024
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2025 2026 2027 2028 2029
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2030
	return NULL;
2031 2032 2033 2034

found:
	iter->tb = tb;
	return n;
2035
}
2036

2037
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2038
	__releases(RCU)
2039
{
2040 2041
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2042

2043 2044
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2045 2046
	while (n-- > 0)
		seq_puts(seq, "   ");
2047
}
2048

2049
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2050
{
S
Stephen Hemminger 已提交
2051
	switch (s) {
2052 2053 2054 2055 2056 2057
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2058
		snprintf(buf, len, "scope=%d", s);
2059 2060 2061
		return buf;
	}
}
2062

2063
static const char *const rtn_type_names[__RTN_MAX] = {
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2077

E
Eric Dumazet 已提交
2078
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2079 2080 2081
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2082
	snprintf(buf, len, "type %u", t);
2083
	return buf;
2084 2085
}

2086 2087
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2088
{
2089
	const struct fib_trie_iter *iter = seq->private;
A
Alexander Duyck 已提交
2090
	struct tnode *n = v;
2091

2092 2093
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2094

2095
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2096
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2097

2098 2099 2100 2101
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
			   n->full_children, n->empty_children);
2102
	} else {
A
Alexander Duyck 已提交
2103
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2104
		struct fib_alias *fa;
2105 2106

		seq_indent(seq, iter->depth);
2107
		seq_printf(seq, "  |-- %pI4\n", &val);
2108

A
Alexander Duyck 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2122
		}
2123
	}
2124

2125 2126 2127
	return 0;
}

2128
static const struct seq_operations fib_trie_seq_ops = {
2129 2130 2131 2132
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2133 2134
};

2135
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2136
{
2137 2138
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2139 2140
}

2141
static const struct file_operations fib_trie_fops = {
2142 2143 2144 2145
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2146
	.release = seq_release_net,
2147 2148
};

2149 2150
struct fib_route_iter {
	struct seq_net_private p;
2151 2152
	struct fib_table *main_tb;
	struct tnode *tnode;
2153 2154 2155 2156
	loff_t	pos;
	t_key	key;
};

A
Alexander Duyck 已提交
2157
static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2158
{
2159 2160 2161 2162
	struct fib_table *tb = iter->main_tb;
	struct tnode *l, **tp = &iter->tnode;
	struct trie *t;
	t_key key;
2163

2164 2165
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2166
		pos -= iter->pos;
2167 2168 2169 2170
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
		iter->tnode = rcu_dereference_rtnl(t->trie);
2171
		iter->pos = 0;
2172
		key = 0;
2173 2174
	}

2175 2176
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2177
		iter->pos++;
2178 2179 2180 2181 2182 2183 2184 2185 2186

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2187 2188 2189
	}

	if (l)
2190
		iter->key = key;	/* remember it */
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2202
	struct trie *t;
2203 2204

	rcu_read_lock();
2205

2206
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2207 2208 2209
	if (!tb)
		return NULL;

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
	iter->tnode = rcu_dereference_rtnl(t->trie);
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2221 2222 2223 2224 2225
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2226 2227
	struct tnode *l = NULL;
	t_key key = iter->key;
2228 2229

	++*pos;
2230 2231 2232 2233 2234 2235 2236

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2237
		iter->pos++;
2238 2239
	} else {
		iter->pos = 0;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2251
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2252
{
E
Eric Dumazet 已提交
2253
	unsigned int flags = 0;
2254

E
Eric Dumazet 已提交
2255 2256
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2257 2258
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2259
	if (mask == htonl(0xFFFFFFFF))
2260 2261 2262
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2263 2264
}

2265 2266 2267
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2268
 *	and needs to be same as fib_hash output to avoid breaking
2269 2270 2271
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2272
{
A
Alexander Duyck 已提交
2273
	struct fib_alias *fa;
A
Alexander Duyck 已提交
2274
	struct tnode *l = v;
2275
	__be32 prefix;
2276

2277 2278 2279 2280 2281 2282
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2283

2284 2285
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2286 2287 2288 2289
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2290

A
Alexander Duyck 已提交
2291 2292 2293
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2294

A
Alexander Duyck 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2316

A
Alexander Duyck 已提交
2317
		seq_pad(seq, '\n');
2318 2319 2320 2321 2322
	}

	return 0;
}

2323
static const struct seq_operations fib_route_seq_ops = {
2324 2325 2326
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2327
	.show   = fib_route_seq_show,
2328 2329
};

2330
static int fib_route_seq_open(struct inode *inode, struct file *file)
2331
{
2332
	return seq_open_net(inode, file, &fib_route_seq_ops,
2333
			    sizeof(struct fib_route_iter));
2334 2335
}

2336
static const struct file_operations fib_route_fops = {
2337 2338 2339 2340
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2341
	.release = seq_release_net,
2342 2343
};

2344
int __net_init fib_proc_init(struct net *net)
2345
{
2346
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2347 2348
		goto out1;

2349 2350
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2351 2352
		goto out2;

2353
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2354 2355
		goto out3;

2356
	return 0;
2357 2358

out3:
2359
	remove_proc_entry("fib_triestat", net->proc_net);
2360
out2:
2361
	remove_proc_entry("fib_trie", net->proc_net);
2362 2363
out1:
	return -ENOMEM;
2364 2365
}

2366
void __net_exit fib_proc_exit(struct net *net)
2367
{
2368 2369 2370
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2371 2372 2373
}

#endif /* CONFIG_PROC_FS */