fib_trie.c 63.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <linux/vmalloc.h>
76
#include <net/net_namespace.h>
77 78 79 80 81 82
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
83
#include <net/switchdev.h>
D
David Ahern 已提交
84
#include <trace/events/fib.h>
85 86
#include "fib_lookup.h"

R
Robert Olsson 已提交
87
#define MAX_STAT_DEPTH 32
88

89 90
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
91 92 93

typedef unsigned int t_key;

94 95 96
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
97

98
struct key_vector {
99 100
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
101
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
102
	unsigned char slen;
A
Alexander Duyck 已提交
103
	union {
104
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
105
		struct hlist_head leaf;
106
		/* This array is valid if (pos | bits) > 0 (TNODE) */
107
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
108
	};
109 110
};

111
struct tnode {
112
	struct rcu_head rcu;
113 114
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
115
	struct key_vector __rcu *parent;
116
	struct key_vector kv[1];
117
#define tn_bits kv[0].bits
118 119 120
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
121 122
#define LEAF_SIZE	TNODE_SIZE(1)

123 124 125 126 127 128 129
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
130
	unsigned int resize_node_skipped;
131 132 133 134 135 136 137 138 139
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
140
	unsigned int prefixes;
R
Robert Olsson 已提交
141
	unsigned int nodesizes[MAX_STAT_DEPTH];
142
};
143 144

struct trie {
145
	struct key_vector kv[1];
146
#ifdef CONFIG_IP_FIB_TRIE_STATS
147
	struct trie_use_stats __percpu *stats;
148 149 150
#endif
};

151
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
152 153 154 155 156 157 158 159
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
160

161
static struct kmem_cache *fn_alias_kmem __read_mostly;
162
static struct kmem_cache *trie_leaf_kmem __read_mostly;
163

164 165 166 167 168
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

169
/* caller must hold RTNL */
170
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
171
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
172

173
/* caller must hold RCU read lock or RTNL */
174
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
175
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
176

177
/* wrapper for rcu_assign_pointer */
178
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
179
{
A
Alexander Duyck 已提交
180
	if (n)
181
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
182 183
}

184
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
185 186 187

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
188
 */
189
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
190
{
191
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
192
}
R
Robert Olsson 已提交
193

194 195
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

196 197 198 199
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

200 201 202
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

203 204 205
	return index >> kv->pos;
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
264

265 266
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
267
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
268
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
269 270

static void __alias_free_mem(struct rcu_head *head)
271
{
R
Robert Olsson 已提交
272 273
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
274 275
}

R
Robert Olsson 已提交
276
static inline void alias_free_mem_rcu(struct fib_alias *fa)
277
{
R
Robert Olsson 已提交
278 279
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
280

281
#define TNODE_KMALLOC_MAX \
282
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283
#define TNODE_VMALLOC_MAX \
284
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
285

286
static void __node_free_rcu(struct rcu_head *head)
287
{
288
	struct tnode *n = container_of(head, struct tnode, rcu);
289

290
	if (!n->tn_bits)
291 292
		kmem_cache_free(trie_leaf_kmem, n);
	else
293
		kvfree(n);
294 295
}

296
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297

298
static struct tnode *tnode_alloc(int bits)
299
{
300 301 302 303 304 305 306 307 308
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
309
	if (size <= PAGE_SIZE)
310
		return kzalloc(size, GFP_KERNEL);
311
	else
312
		return vzalloc(size);
313
}
R
Robert Olsson 已提交
314

315
static inline void empty_child_inc(struct key_vector *n)
316
{
317
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 319
}

320
static inline void empty_child_dec(struct key_vector *n)
321
{
322
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 324
}

325
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
326
{
327 328
	struct key_vector *l;
	struct tnode *kv;
329

330
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
331 332 333 334
	if (!kv)
		return NULL;

	/* initialize key vector */
335
	l = kv->kv;
336 337 338 339 340 341 342 343 344
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
345 346 347
	return l;
}

348
static struct key_vector *tnode_new(t_key key, int pos, int bits)
349
{
350
	unsigned int shift = pos + bits;
351 352
	struct key_vector *tn;
	struct tnode *tnode;
353 354 355

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
356

357
	tnode = tnode_alloc(bits);
358 359 360
	if (!tnode)
		return NULL;

361 362 363
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

364
	if (bits == KEYLENGTH)
365
		tnode->full_children = 1;
366
	else
367
		tnode->empty_children = 1ul << bits;
368

369
	tn = tnode->kv;
370 371 372 373 374
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

375 376 377
	return tn;
}

378
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
379 380
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
381
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
382
{
383
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
384 385
}

386 387 388
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
389 390
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
391
{
392
	struct key_vector *chi = get_child(tn, i);
393
	int isfull, wasfull;
394

395
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
396

397
	/* update emptyChildren, overflow into fullChildren */
398
	if (!n && chi)
399
		empty_child_inc(tn);
400
	if (n && !chi)
401
		empty_child_dec(tn);
402

403
	/* update fullChildren */
404
	wasfull = tnode_full(tn, chi);
405
	isfull = tnode_full(tn, n);
406

407
	if (wasfull && !isfull)
408
		tn_info(tn)->full_children--;
409
	else if (!wasfull && isfull)
410
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
411

412 413 414
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

415
	rcu_assign_pointer(tn->tnode[i], n);
416 417
}

418
static void update_children(struct key_vector *tn)
419 420 421 422
{
	unsigned long i;

	/* update all of the child parent pointers */
423
	for (i = child_length(tn); i;) {
424
		struct key_vector *inode = get_child(tn, --i);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

440 441
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
442
{
443 444
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
445
	else
446
		put_child(tp, get_index(key, tp), n);
447 448
}

449
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
450
{
451
	tn_info(tn)->rcu.next = NULL;
452 453
}

454 455
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
456
{
457 458
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
459
}
E
Eric Dumazet 已提交
460

461
static void tnode_free(struct key_vector *tn)
462
{
463
	struct callback_head *head = &tn_info(tn)->rcu;
464 465 466

	while (head) {
		head = head->next;
467
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
468 469
		node_free(tn);

470
		tn = container_of(head, struct tnode, rcu)->kv;
471 472 473 474 475
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
476 477 478
	}
}

479 480 481
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
482
{
483
	struct key_vector *tp = node_parent(oldtnode);
484 485 486 487
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
488
	put_child_root(tp, tn->key, tn);
489 490 491 492 493 494 495 496

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
497
	for (i = child_length(tn); i;) {
498
		struct key_vector *inode = get_child(tn, --i);
499 500 501

		/* resize child node */
		if (tnode_full(tn, inode))
502
			tn = resize(t, inode);
503
	}
504

505
	return tp;
506 507
}

508 509
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
510
{
511
	struct key_vector *tn;
512
	unsigned long i;
513
	t_key m;
514

S
Stephen Hemminger 已提交
515
	pr_debug("In inflate\n");
516

517
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
518
	if (!tn)
519
		goto notnode;
520

521 522 523
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

524 525 526 527
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
528
	 */
529
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
530
		struct key_vector *inode = get_child(oldtnode, --i);
531
		struct key_vector *node0, *node1;
532
		unsigned long j, k;
533

534
		/* An empty child */
535
		if (!inode)
536 537 538
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
539
		if (!tnode_full(oldtnode, inode)) {
540
			put_child(tn, get_index(inode->key, tn), inode);
541 542 543
			continue;
		}

544 545 546
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

547 548
		/* An internal node with two children */
		if (inode->bits == 1) {
549 550
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
551
			continue;
552 553
		}

O
Olof Johansson 已提交
554
		/* We will replace this node 'inode' with two new
555
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
556 557 558 559 560
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
561
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
562 563
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
564 565 566
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
567
		 */
568 569 570
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
571
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
572

573
		tnode_free_append(tn, node1);
574 575 576 577 578
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
579
		for (k = child_length(inode), j = k / 2; j;) {
580 581 582 583
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
584
		}
585

586 587 588
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
589

590 591 592 593
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
594

595
	/* setup the parent pointers into and out of this node */
596
	return replace(t, oldtnode, tn);
597
nomem:
598 599
	/* all pointers should be clean so we are done */
	tnode_free(tn);
600 601
notnode:
	return NULL;
602 603
}

604 605
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
606
{
607
	struct key_vector *tn;
608
	unsigned long i;
609

S
Stephen Hemminger 已提交
610
	pr_debug("In halve\n");
611

612
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
613
	if (!tn)
614
		goto notnode;
615

616 617 618
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

619 620 621 622
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
623
	 */
624
	for (i = child_length(oldtnode); i;) {
625 626
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
627
		struct key_vector *inode;
628

629 630 631 632 633
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
634

635
		/* Two nonempty children */
636
		inode = tnode_new(node0->key, oldtnode->pos, 1);
637 638
		if (!inode)
			goto nomem;
639
		tnode_free_append(tn, inode);
640

641 642 643 644 645 646 647
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
648
	}
649

650
	/* setup the parent pointers into and out of this node */
651 652 653 654 655 656
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
657 658
}

659 660
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
661
{
662
	struct key_vector *n, *tp;
663 664 665
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
666
	for (n = NULL, i = child_length(oldtnode); !n && i;)
667
		n = get_child(oldtnode, --i);
668 669 670

	/* compress one level */
	tp = node_parent(oldtnode);
671
	put_child_root(tp, oldtnode->key, n);
672 673 674 675
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
676 677

	return tp;
678 679
}

680
static unsigned char update_suffix(struct key_vector *tn)
681 682 683 684 685 686 687 688 689
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
690
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
691
		struct key_vector *n = get_child(tn, i);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

715 716 717 718 719 720 721 722
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
723
 * child_length() and instead of multiplying by 2 (since the
724 725 726 727
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
728
 * The left-hand side may look a bit weird: child_length(tn)
729 730 731 732 733 734 735 736 737
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
738
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
739 740
 *     tn->full_children;
 *
741
 * new_child_length = child_length(tn) * 2;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
758
 * 100 * (child_length(tn) - tn->empty_children +
759 760 761
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
762
 * 100 * (child_length(tn) - tn->empty_children +
763
 *    tn->full_children) >=
764
 *      inflate_threshold * child_length(tn) * 2
765 766
 *
 * shorten again:
767
 * 50 * (tn->full_children + child_length(tn) -
768
 *    tn->empty_children) >= inflate_threshold *
769
 *    child_length(tn)
770 771
 *
 */
772
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
773
{
774
	unsigned long used = child_length(tn);
775 776 777
	unsigned long threshold = used;

	/* Keep root node larger */
778
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
779 780
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
781

782 783 784
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
785 786
}

787
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
788
{
789
	unsigned long used = child_length(tn);
790 791 792
	unsigned long threshold = used;

	/* Keep root node larger */
793
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
794
	used -= tn_info(tn)->empty_children;
795

796 797 798 799 800
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

801
static inline bool should_collapse(struct key_vector *tn)
802
{
803
	unsigned long used = child_length(tn);
804

805
	used -= tn_info(tn)->empty_children;
806 807

	/* account for bits == KEYLENGTH case */
808
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
809 810 811 812
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
813 814
}

815
#define MAX_WORK 10
816
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
817
{
818 819 820
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
821
	struct key_vector *tp = node_parent(tn);
822
	unsigned long cindex = get_index(tn->key, tp);
823
	int max_work = MAX_WORK;
824 825 826 827

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

828 829 830 831
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
832
	BUG_ON(tn != get_child(tp, cindex));
833

834 835
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
836
	 */
837
	while (should_inflate(tp, tn) && max_work) {
838 839
		tp = inflate(t, tn);
		if (!tp) {
840
#ifdef CONFIG_IP_FIB_TRIE_STATS
841
			this_cpu_inc(stats->resize_node_skipped);
842 843 844
#endif
			break;
		}
845

846
		max_work--;
847
		tn = get_child(tp, cindex);
848 849
	}

850 851 852
	/* update parent in case inflate failed */
	tp = node_parent(tn);

853 854
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
855
		return tp;
856

857
	/* Halve as long as the number of empty children in this
858 859
	 * node is above threshold.
	 */
860
	while (should_halve(tp, tn) && max_work) {
861 862
		tp = halve(t, tn);
		if (!tp) {
863
#ifdef CONFIG_IP_FIB_TRIE_STATS
864
			this_cpu_inc(stats->resize_node_skipped);
865 866 867 868
#endif
			break;
		}

869
		max_work--;
870
		tn = get_child(tp, cindex);
871
	}
872 873

	/* Only one child remains */
874 875 876
	if (should_collapse(tn))
		return collapse(t, tn);

877
	/* update parent in case halve failed */
878
	tp = node_parent(tn);
879 880 881

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
882
		return tp;
883 884 885 886 887

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

888
		if (slen > tp->slen)
889
			tp->slen = slen;
890
	}
891

892
	return tp;
893 894
}

895
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
896
{
897
	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
898 899 900 901 902 903
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

904
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
905
{
906 907 908
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
909
	while (tn->slen < l->slen) {
910 911 912 913 914
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
915
/* rcu_read_lock needs to be hold by caller from readside */
916 917
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
918
{
919 920 921 922 923 924 925 926 927
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
928

929
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
930 931 932 933 934 935

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
936
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
937
		 *     we have a mismatch in skip bits and failed
938 939
		 *   else
		 *     we know the value is cindex
940 941 942 943
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
944
		 */
945 946 947 948
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
949

950 951
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
952

953
	*tp = pn;
954

A
Alexander Duyck 已提交
955
	return n;
956 957
}

958 959 960
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
961
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
962
					u8 tos, u32 prio, u32 tb_id)
963 964 965 966 967 968
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

969
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
970 971 972 973
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
974 975 976 977
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
978 979 980 981 982 983 984 985 986
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

987
static void trie_rebalance(struct trie *t, struct key_vector *tn)
988
{
989 990
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
991 992
}

993
static int fib_insert_node(struct trie *t, struct key_vector *tp,
994
			   struct fib_alias *new, t_key key)
995
{
996
	struct key_vector *n, *l;
997

998
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
999
	if (!l)
1000
		goto noleaf;
1001 1002

	/* retrieve child from parent node */
1003
	n = get_child(tp, get_index(key, tp));
1004

1005 1006 1007 1008 1009 1010 1011
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1012
		struct key_vector *tn;
1013

1014
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1015 1016
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1017

1018 1019 1020
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1021

1022
		/* start adding routes into the node */
1023
		put_child_root(tp, key, tn);
1024
		node_set_parent(n, tn);
1025

1026
		/* parent now has a NULL spot where the leaf can go */
1027
		tp = tn;
1028
	}
O
Olof Johansson 已提交
1029

1030
	/* Case 3: n is NULL, and will just insert a new leaf */
1031
	NODE_INIT_PARENT(l, tp);
1032
	put_child_root(tp, key, l);
1033 1034 1035
	trie_rebalance(t, tp);

	return 0;
1036 1037 1038 1039
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1040 1041
}

1042 1043
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1044 1045 1046 1047 1048 1049 1050
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1051
	} else {
1052 1053 1054 1055 1056
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1057 1058 1059
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1060 1061 1062 1063 1064 1065 1066
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1067
	}
R
Robert Olsson 已提交
1068

1069 1070 1071 1072 1073 1074 1075
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1076 1077
}

1078
/* Caller must hold RTNL. */
1079
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1080
{
1081
	struct trie *t = (struct trie *)tb->tb_data;
1082
	struct fib_alias *fa, *new_fa;
1083
	struct key_vector *l, *tp;
1084
	unsigned int nlflags = 0;
1085
	struct fib_info *fi;
A
Alexander Duyck 已提交
1086 1087
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1088
	u8 tos = cfg->fc_tos;
1089
	u32 key;
1090 1091
	int err;

1092
	if (plen > KEYLENGTH)
1093 1094
		return -EINVAL;

1095
	key = ntohl(cfg->fc_dst);
1096

1097
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1098

1099
	if ((plen < KEYLENGTH) && (key << plen))
1100 1101
		return -EINVAL;

1102 1103 1104
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1105
		goto err;
1106
	}
1107

1108
	l = fib_find_node(t, &tp, key);
1109 1110
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1111 1112 1113 1114 1115 1116

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1117 1118
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1119 1120
	 */

1121 1122 1123
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1124 1125

		err = -EEXIST;
1126
		if (cfg->fc_nlflags & NLM_F_EXCL)
1127 1128
			goto out;

1129 1130 1131 1132 1133 1134 1135
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1136
		hlist_for_each_entry_from(fa, fa_list) {
1137 1138 1139
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1150
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1151 1152 1153
			struct fib_info *fi_drop;
			u8 state;

1154 1155 1156 1157
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1158
				goto out;
1159
			}
R
Robert Olsson 已提交
1160
			err = -ENOBUFS;
1161
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1162
			if (!new_fa)
R
Robert Olsson 已提交
1163
				goto out;
1164 1165

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1166 1167
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1168
			new_fa->fa_type = cfg->fc_type;
1169
			state = fa->fa_state;
1170
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1171
			new_fa->fa_slen = fa->fa_slen;
1172
			new_fa->tb_id = tb->tb_id;
1173
			new_fa->fa_default = -1;
1174

1175 1176 1177 1178 1179
			err = switchdev_fib_ipv4_add(key, plen, fi,
						     new_fa->fa_tos,
						     cfg->fc_type,
						     cfg->fc_nlflags,
						     tb->tb_id);
1180
			if (err) {
1181
				switchdev_fib_ipv4_abort(fi);
1182 1183 1184 1185
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1186
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1187

R
Robert Olsson 已提交
1188
			alias_free_mem_rcu(fa);
1189 1190 1191

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1192
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1193 1194
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1195

O
Olof Johansson 已提交
1196
			goto succeeded;
1197 1198 1199 1200 1201
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1202 1203
		if (fa_match)
			goto out;
1204

1205 1206 1207
		if (cfg->fc_nlflags & NLM_F_APPEND)
			nlflags = NLM_F_APPEND;
		else
1208
			fa = fa_first;
1209 1210
	}
	err = -ENOENT;
1211
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1212 1213 1214
		goto out;

	err = -ENOBUFS;
1215
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1216
	if (!new_fa)
1217 1218 1219 1220
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1221
	new_fa->fa_type = cfg->fc_type;
1222
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1223
	new_fa->fa_slen = slen;
1224
	new_fa->tb_id = tb->tb_id;
1225
	new_fa->fa_default = -1;
1226

1227
	/* (Optionally) offload fib entry to switch hardware. */
1228 1229
	err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
				     cfg->fc_nlflags, tb->tb_id);
1230
	if (err) {
1231
		switchdev_fib_ipv4_abort(fi);
1232 1233 1234
		goto out_free_new_fa;
	}

1235
	/* Insert new entry to the list. */
1236 1237
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1238
		goto out_sw_fib_del;
1239

1240 1241 1242
	if (!plen)
		tb->tb_num_default++;

1243
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1244
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1245
		  &cfg->fc_nlinfo, nlflags);
1246 1247
succeeded:
	return 0;
1248

1249
out_sw_fib_del:
1250
	switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1251 1252
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1253 1254
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1255
err:
1256 1257 1258
	return err;
}

1259
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1260 1261 1262 1263 1264 1265
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1266
/* should be called with rcu_read_lock */
1267
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1268
		     struct fib_result *res, int fib_flags)
1269
{
1270
	struct trie *t = (struct trie *) tb->tb_data;
1271 1272 1273
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1274
	const t_key key = ntohl(flp->daddr);
1275
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1276
	struct fib_alias *fa;
1277
	unsigned long index;
1278
	t_key cindex;
O
Olof Johansson 已提交
1279

D
David Ahern 已提交
1280 1281
	trace_fib_table_lookup(tb->tb_id, flp);

1282 1283 1284 1285
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1286
	if (!n)
1287
		return -EAGAIN;
1288 1289

#ifdef CONFIG_IP_FIB_TRIE_STATS
1290
	this_cpu_inc(stats->gets);
1291 1292
#endif

1293 1294
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1295
		index = get_cindex(key, n);
1296 1297 1298 1299 1300 1301

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1302
		 *   if (index >= (1ul << bits))
1303
		 *     we have a mismatch in skip bits and failed
1304 1305
		 *   else
		 *     we know the value is cindex
1306 1307 1308 1309
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1310
		 */
1311
		if (index >= (1ul << n->bits))
1312
			break;
1313

1314 1315
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1316
			goto found;
1317

1318 1319
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1320
		 */
1321
		if (n->slen > n->pos) {
1322 1323
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1324
		}
1325

1326
		n = get_child_rcu(n, index);
1327 1328 1329
		if (unlikely(!n))
			goto backtrace;
	}
1330

1331 1332 1333
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1334
		struct key_vector __rcu **cptr = n->tnode;
1335

1336 1337 1338
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1339
		 */
1340
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1341
			goto backtrace;
O
Olof Johansson 已提交
1342

1343 1344 1345
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1346

1347 1348 1349
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1350 1351
		 */

1352
		while ((n = rcu_dereference(*cptr)) == NULL) {
1353 1354
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1355 1356
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1357
#endif
1358 1359 1360 1361 1362 1363 1364 1365
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1366 1367 1368 1369 1370
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1371
					return -EAGAIN;
1372 1373 1374 1375
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1376
				pn = node_parent_rcu(pn);
1377 1378 1379 1380 1381 1382 1383
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1384
			cptr = &pn->tnode[cindex];
1385
		}
1386
	}
1387

1388
found:
1389 1390 1391
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1392
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1393 1394 1395
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1396

1397 1398 1399 1400
		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
			if (index >= (1ul << fa->fa_slen))
				continue;
		}
A
Alexander Duyck 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1410
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1411
			this_cpu_inc(stats->semantic_match_passed);
1412
#endif
A
Alexander Duyck 已提交
1413 1414 1415 1416 1417 1418
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1419
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1420 1421 1422

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1423 1424 1425 1426 1427
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
1428
			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1429 1430 1431 1432
				if (flp->flowi4_oif &&
				    flp->flowi4_oif != nh->nh_oif)
					continue;
			}
A
Alexander Duyck 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1444
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1445
			this_cpu_inc(stats->semantic_match_passed);
1446
#endif
D
David Ahern 已提交
1447 1448
			trace_fib_table_lookup_nh(nh);

A
Alexander Duyck 已提交
1449
			return err;
1450
		}
1451
	}
1452
#ifdef CONFIG_IP_FIB_TRIE_STATS
1453
	this_cpu_inc(stats->semantic_match_miss);
1454 1455
#endif
	goto backtrace;
1456
}
1457
EXPORT_SYMBOL_GPL(fib_table_lookup);
1458

1459 1460
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1473
		put_child_root(tp, l->key, NULL);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1489
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1490 1491 1492
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1493
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1494 1495
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1496 1497
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1498

A
Alexander Duyck 已提交
1499
	if (plen > KEYLENGTH)
1500 1501
		return -EINVAL;

1502
	key = ntohl(cfg->fc_dst);
1503

1504
	if ((plen < KEYLENGTH) && (key << plen))
1505 1506
		return -EINVAL;

1507
	l = fib_find_node(t, &tp, key);
1508
	if (!l)
1509 1510
		return -ESRCH;

1511
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1512 1513 1514
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1515
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1516 1517

	fa_to_delete = NULL;
1518
	hlist_for_each_entry_from(fa, fa_list) {
1519 1520
		struct fib_info *fi = fa->fa_info;

1521 1522 1523
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1524 1525
			break;

1526 1527
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1528
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1529 1530
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1531 1532 1533
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1534 1535 1536 1537 1538
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1539 1540
	if (!fa_to_delete)
		return -ESRCH;
1541

1542 1543
	switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
			       cfg->fc_type, tb->tb_id);
1544

1545
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1546
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1547

1548 1549 1550
	if (!plen)
		tb->tb_num_default--;

1551
	fib_remove_alias(t, tp, l, fa_to_delete);
1552

1553
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1554
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1555

1556 1557
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1558
	return 0;
1559 1560
}

1561
/* Scan for the next leaf starting at the provided key value */
1562
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1563
{
1564
	struct key_vector *pn, *n = *tn;
1565
	unsigned long cindex;
1566

1567
	/* this loop is meant to try and find the key in the trie */
1568
	do {
1569 1570
		/* record parent and next child index */
		pn = n;
1571
		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1572 1573 1574

		if (cindex >> pn->bits)
			break;
1575

1576
		/* descend into the next child */
1577
		n = get_child_rcu(pn, cindex++);
1578 1579 1580 1581 1582 1583 1584
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1585

1586
	/* this loop will search for the next leaf with a greater key */
1587
	while (!IS_TRIE(pn)) {
1588 1589 1590
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1591

1592 1593 1594 1595
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1596

1597
		/* grab the next available node */
1598
		n = get_child_rcu(pn, cindex++);
1599 1600
		if (!n)
			continue;
1601

1602 1603 1604
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1605

1606 1607 1608 1609
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1610

1611 1612 1613 1614
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1615
	*tn = pn;
1616
	return n;
1617 1618
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
					     NULL, l->key))
				goto out;
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1733 1734 1735 1736
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
1737 1738 1739
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
1740 1741
	struct fib_alias *fa;

1742 1743
	/* walk trie in reverse order */
	for (;;) {
1744
		unsigned char slen = 0;
1745
		struct key_vector *n;
1746

1747 1748
		if (!(cindex--)) {
			t_key pkey = pn->key;
1749

1750 1751 1752
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1753

1754 1755
			/* resize completed node */
			pn = resize(t, pn);
1756
			cindex = get_index(pkey, pn);
1757

1758 1759
			continue;
		}
1760

1761 1762 1763 1764
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1765

1766 1767 1768 1769
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1770

1771
			continue;
1772
		}
1773

1774 1775 1776
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;

1789
			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1790
				continue;
1791

1792 1793 1794
			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
					       fi, fa->fa_tos, fa->fa_type,
					       tb->tb_id);
1795
		}
1796 1797 1798 1799 1800 1801 1802 1803

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1804
	}
1805 1806
}

1807
/* Caller must hold RTNL. */
1808
int fib_table_flush(struct fib_table *tb)
1809
{
1810
	struct trie *t = (struct trie *)tb->tb_data;
1811 1812
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1813 1814
	struct hlist_node *tmp;
	struct fib_alias *fa;
1815
	int found = 0;
1816

1817 1818 1819 1820
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1821

1822 1823
		if (!(cindex--)) {
			t_key pkey = pn->key;
1824

1825 1826 1827
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1828

1829 1830 1831
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1832

1833 1834
			continue;
		}
1835

1836 1837 1838 1839
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1840

1841 1842 1843 1844
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1845

1846 1847
			continue;
		}
1848

1849 1850
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1851

1852 1853 1854 1855
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
				slen = fa->fa_slen;
				continue;
			}
1856

1857 1858 1859
			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
					       fi, fa->fa_tos, fa->fa_type,
					       tb->tb_id);
1860 1861 1862 1863
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1864 1865
		}

1866 1867
		/* update leaf slen */
		n->slen = slen;
1868

1869 1870 1871 1872
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1873
	}
1874

S
Stephen Hemminger 已提交
1875
	pr_debug("trie_flush found=%d\n", found);
1876 1877 1878
	return found;
}

1879
static void __trie_free_rcu(struct rcu_head *head)
1880
{
1881
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1882 1883 1884
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1885 1886
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1887
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1888 1889 1890
	kfree(tb);
}

1891 1892 1893 1894 1895
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1896
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1897
			     struct sk_buff *skb, struct netlink_callback *cb)
1898
{
A
Alexander Duyck 已提交
1899
	__be32 xkey = htonl(l->key);
1900
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1901
	int i, s_i;
1902

A
Alexander Duyck 已提交
1903
	s_i = cb->args[4];
1904 1905
	i = 0;

R
Robert Olsson 已提交
1906
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1907
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1908 1909 1910 1911 1912
		if (i < s_i) {
			i++;
			continue;
		}

1913 1914 1915 1916 1917
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

1918
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1919 1920 1921 1922
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1923
				  xkey,
1924
				  KEYLENGTH - fa->fa_slen,
1925
				  fa->fa_tos,
1926
				  fa->fa_info, NLM_F_MULTI) < 0) {
1927
			cb->args[4] = i;
1928 1929
			return -1;
		}
1930
		i++;
1931
	}
1932

1933
	cb->args[4] = i;
1934 1935 1936
	return skb->len;
}

1937
/* rcu_read_lock needs to be hold by caller from readside */
1938 1939
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1940
{
1941
	struct trie *t = (struct trie *)tb->tb_data;
1942
	struct key_vector *l, *tp = t->kv;
1943 1944 1945
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1946 1947
	int count = cb->args[2];
	t_key key = cb->args[3];
1948

1949
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1950
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1951 1952
			cb->args[3] = key;
			cb->args[2] = count;
1953
			return -1;
1954
		}
1955

1956
		++count;
1957 1958
		key = l->key + 1;

1959 1960
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1961 1962 1963 1964

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1965
	}
1966 1967 1968 1969

	cb->args[3] = key;
	cb->args[2] = count;

1970 1971 1972
	return skb->len;
}

1973
void __init fib_trie_init(void)
1974
{
1975 1976
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1977 1978 1979
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1980
					   LEAF_SIZE,
1981
					   0, SLAB_PANIC, NULL);
1982
}
1983

1984
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1985 1986 1987
{
	struct fib_table *tb;
	struct trie *t;
1988 1989 1990 1991
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
1992

1993
	tb = kzalloc(sz, GFP_KERNEL);
1994
	if (!tb)
1995 1996 1997
		return NULL;

	tb->tb_id = id;
1998
	tb->tb_num_default = 0;
1999 2000 2001 2002
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
2003 2004

	t = (struct trie *) tb->tb_data;
2005 2006
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2007 2008 2009 2010 2011 2012 2013
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2014 2015 2016 2017

	return tb;
}

2018 2019 2020
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2021
	struct seq_net_private p;
2022
	struct fib_table *tb;
2023
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2024 2025
	unsigned int index;
	unsigned int depth;
2026
};
2027

2028
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2029
{
2030
	unsigned long cindex = iter->index;
2031 2032
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2033

2034 2035
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2036

2037 2038 2039 2040 2041 2042 2043
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2044
			if (IS_LEAF(n)) {
2045 2046
				iter->tnode = pn;
				iter->index = cindex;
2047 2048
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2049
				iter->tnode = n;
2050 2051 2052
				iter->index = 0;
				++iter->depth;
			}
2053

2054 2055
			return n;
		}
2056

2057 2058 2059 2060
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2061
		--iter->depth;
2062
	}
2063

2064 2065 2066 2067
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2068
	return NULL;
2069 2070
}

2071 2072
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2073
{
2074
	struct key_vector *n, *pn;
2075

S
Stephen Hemminger 已提交
2076
	if (!t)
2077 2078
		return NULL;

2079
	pn = t->kv;
2080
	n = rcu_dereference(pn->tnode[0]);
2081
	if (!n)
2082
		return NULL;
2083

2084
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2085
		iter->tnode = n;
2086 2087 2088
		iter->index = 0;
		iter->depth = 1;
	} else {
2089
		iter->tnode = pn;
2090 2091
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2092
	}
2093 2094

	return n;
2095
}
O
Olof Johansson 已提交
2096

2097 2098
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2099
	struct key_vector *n;
2100
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2101

2102
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2103

2104
	rcu_read_lock();
2105
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2106
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2107
			struct fib_alias *fa;
2108

2109 2110 2111 2112
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2113

A
Alexander Duyck 已提交
2114
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2115
				++s->prefixes;
2116 2117
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2118 2119
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2120
			s->nullpointers += tn_info(n)->empty_children;
2121 2122
		}
	}
R
Robert Olsson 已提交
2123
	rcu_read_unlock();
2124 2125
}

2126 2127 2128 2129
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2130
{
E
Eric Dumazet 已提交
2131
	unsigned int i, max, pointers, bytes, avdepth;
2132

2133 2134 2135 2136
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2137

2138 2139
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2140
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2141

2142
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2143
	bytes = LEAF_SIZE * stat->leaves;
2144 2145

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2146
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2147

2148
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2149
	bytes += TNODE_SIZE(0) * stat->tnodes;
2150

R
Robert Olsson 已提交
2151 2152
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2153
		max--;
2154

2155
	pointers = 0;
2156
	for (i = 1; i < max; i++)
2157
		if (stat->nodesizes[i] != 0) {
2158
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2159 2160 2161
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2162
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2163

2164
	bytes += sizeof(struct key_vector *) * pointers;
2165 2166
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2167
}
R
Robert Olsson 已提交
2168

2169
#ifdef CONFIG_IP_FIB_TRIE_STATS
2170
static void trie_show_usage(struct seq_file *seq,
2171
			    const struct trie_use_stats __percpu *stats)
2172
{
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2188
	seq_printf(seq, "\nCounters:\n---------\n");
2189 2190
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2191
	seq_printf(seq, "semantic match passed = %u\n",
2192 2193 2194 2195
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2196
}
2197 2198
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2199
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2200
{
2201 2202 2203 2204 2205 2206
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2207
}
2208

2209

2210 2211
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2212
	struct net *net = (struct net *)seq->private;
2213
	unsigned int h;
2214

2215
	seq_printf(seq,
2216 2217
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2218
		   LEAF_SIZE, TNODE_SIZE(0));
2219

2220 2221 2222 2223
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2224
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2225 2226
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2227

2228 2229 2230 2231 2232 2233 2234 2235
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2236
			trie_show_usage(seq, t->stats);
2237 2238 2239
#endif
		}
	}
2240

2241
	return 0;
2242 2243
}

2244
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2245
{
2246
	return single_open_net(inode, file, fib_triestat_seq_show);
2247 2248
}

2249
static const struct file_operations fib_triestat_fops = {
2250 2251 2252 2253
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2254
	.release = single_release_net,
2255 2256
};

2257
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2258
{
2259 2260
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2261
	loff_t idx = 0;
2262
	unsigned int h;
2263

2264 2265 2266
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2267

2268
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2269
			struct key_vector *n;
2270 2271 2272 2273 2274 2275 2276 2277 2278

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2279
	}
2280

2281 2282 2283
	return NULL;
}

2284
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2285
	__acquires(RCU)
2286
{
2287
	rcu_read_lock();
2288
	return fib_trie_get_idx(seq, *pos);
2289 2290
}

2291
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2292
{
2293
	struct fib_trie_iter *iter = seq->private;
2294
	struct net *net = seq_file_net(seq);
2295 2296 2297
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2298
	struct key_vector *n;
2299

2300
	++*pos;
2301 2302 2303 2304
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2305

2306 2307
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2308
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2309 2310 2311 2312 2313
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2314

2315 2316 2317
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2318
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2319 2320 2321 2322 2323
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2324
	return NULL;
2325 2326 2327 2328

found:
	iter->tb = tb;
	return n;
2329
}
2330

2331
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2332
	__releases(RCU)
2333
{
2334 2335
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2336

2337 2338
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2339 2340
	while (n-- > 0)
		seq_puts(seq, "   ");
2341
}
2342

2343
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2344
{
S
Stephen Hemminger 已提交
2345
	switch (s) {
2346 2347 2348 2349 2350 2351
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2352
		snprintf(buf, len, "scope=%d", s);
2353 2354 2355
		return buf;
	}
}
2356

2357
static const char *const rtn_type_names[__RTN_MAX] = {
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2371

E
Eric Dumazet 已提交
2372
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2373 2374 2375
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2376
	snprintf(buf, len, "type %u", t);
2377
	return buf;
2378 2379
}

2380 2381
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2382
{
2383
	const struct fib_trie_iter *iter = seq->private;
2384
	struct key_vector *n = v;
2385

2386
	if (IS_TRIE(node_parent_rcu(n)))
2387
		fib_table_print(seq, iter->tb);
2388

2389
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2390
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2391

2392 2393 2394
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2395 2396
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2397
	} else {
A
Alexander Duyck 已提交
2398
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2399
		struct fib_alias *fa;
2400 2401

		seq_indent(seq, iter->depth);
2402
		seq_printf(seq, "  |-- %pI4\n", &val);
2403

A
Alexander Duyck 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2417
		}
2418
	}
2419

2420 2421 2422
	return 0;
}

2423
static const struct seq_operations fib_trie_seq_ops = {
2424 2425 2426 2427
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2428 2429
};

2430
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2431
{
2432 2433
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2434 2435
}

2436
static const struct file_operations fib_trie_fops = {
2437 2438 2439 2440
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2441
	.release = seq_release_net,
2442 2443
};

2444 2445
struct fib_route_iter {
	struct seq_net_private p;
2446
	struct fib_table *main_tb;
2447
	struct key_vector *tnode;
2448 2449 2450 2451
	loff_t	pos;
	t_key	key;
};

2452 2453
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2454
{
2455
	struct key_vector *l, **tp = &iter->tnode;
2456
	t_key key;
2457

2458 2459
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2460
		pos -= iter->pos;
2461 2462
		key = iter->key;
	} else {
2463
		iter->pos = 0;
2464
		key = 0;
2465 2466
	}

2467 2468
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2469
		iter->pos++;
2470

2471
		if (--pos <= 0)
2472 2473 2474 2475 2476 2477 2478
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2479 2480 2481
	}

	if (l)
2482
		iter->key = key;	/* remember it */
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2494
	struct trie *t;
2495 2496

	rcu_read_lock();
2497

2498
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2499 2500 2501
	if (!tb)
		return NULL;

2502
	iter->main_tb = tb;
2503 2504
	t = (struct trie *)tb->tb_data;
	iter->tnode = t->kv;
2505 2506 2507 2508 2509 2510 2511 2512

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2513 2514 2515 2516 2517
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2518
	struct key_vector *l = NULL;
2519
	t_key key = iter->key;
2520 2521

	++*pos;
2522 2523 2524 2525 2526 2527 2528

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2529
		iter->pos++;
2530 2531
	} else {
		iter->pos = 0;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2543
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2544
{
E
Eric Dumazet 已提交
2545
	unsigned int flags = 0;
2546

E
Eric Dumazet 已提交
2547 2548
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2549 2550
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2551
	if (mask == htonl(0xFFFFFFFF))
2552 2553 2554
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2555 2556
}

2557 2558 2559
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2560
 *	and needs to be same as fib_hash output to avoid breaking
2561 2562 2563
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2564
{
2565 2566
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2567
	struct fib_alias *fa;
2568
	struct key_vector *l = v;
2569
	__be32 prefix;
2570

2571 2572 2573 2574 2575 2576
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2577

2578 2579
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2580 2581 2582 2583
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2584

A
Alexander Duyck 已提交
2585 2586 2587
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2588

2589 2590 2591
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2613

A
Alexander Duyck 已提交
2614
		seq_pad(seq, '\n');
2615 2616 2617 2618 2619
	}

	return 0;
}

2620
static const struct seq_operations fib_route_seq_ops = {
2621 2622 2623
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2624
	.show   = fib_route_seq_show,
2625 2626
};

2627
static int fib_route_seq_open(struct inode *inode, struct file *file)
2628
{
2629
	return seq_open_net(inode, file, &fib_route_seq_ops,
2630
			    sizeof(struct fib_route_iter));
2631 2632
}

2633
static const struct file_operations fib_route_fops = {
2634 2635 2636 2637
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2638
	.release = seq_release_net,
2639 2640
};

2641
int __net_init fib_proc_init(struct net *net)
2642
{
2643
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2644 2645
		goto out1;

2646 2647
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2648 2649
		goto out2;

2650
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2651 2652
		goto out3;

2653
	return 0;
2654 2655

out3:
2656
	remove_proc_entry("fib_triestat", net->proc_net);
2657
out2:
2658
	remove_proc_entry("fib_trie", net->proc_net);
2659 2660
out1:
	return -ENOMEM;
2661 2662
}

2663
void __net_exit fib_proc_exit(struct net *net)
2664
{
2665 2666 2667
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2668 2669 2670
}

#endif /* CONFIG_PROC_FS */