fib_trie.c 60.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
82
#include <net/switchdev.h>
83 84
#include "fib_lookup.h"

R
Robert Olsson 已提交
85
#define MAX_STAT_DEPTH 32
86

87 88
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
89 90 91

typedef unsigned int t_key;

92 93
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
94

95
#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
96

97
struct tnode {
98 99 100 101 102 103
	struct rcu_head rcu;

	t_key empty_children; /* KEYLENGTH bits needed */
	t_key full_children;  /* KEYLENGTH bits needed */
	struct tnode __rcu *parent;

104 105
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
106
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
107
	unsigned char slen;
A
Alexander Duyck 已提交
108
	union {
109
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
110
		struct hlist_head leaf;
111 112
		/* This array is valid if (pos | bits) > 0 (TNODE) */
		struct tnode __rcu *tnode[0];
A
Alexander Duyck 已提交
113
	};
114 115
};

116 117 118
#define TNODE_SIZE(n)	offsetof(struct tnode, tnode[n])
#define LEAF_SIZE	TNODE_SIZE(1)

119 120 121 122 123 124 125
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
126
	unsigned int resize_node_skipped;
127 128 129 130 131 132 133 134 135
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
136
	unsigned int prefixes;
R
Robert Olsson 已提交
137
	unsigned int nodesizes[MAX_STAT_DEPTH];
138
};
139 140

struct trie {
A
Alexander Duyck 已提交
141
	struct tnode __rcu *trie;
142
#ifdef CONFIG_IP_FIB_TRIE_STATS
143
	struct trie_use_stats __percpu *stats;
144 145 146
#endif
};

147
static struct tnode **resize(struct trie *t, struct tnode *tn);
148 149 150 151 152 153 154 155
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
156

157
static struct kmem_cache *fn_alias_kmem __read_mostly;
158
static struct kmem_cache *trie_leaf_kmem __read_mostly;
159

160 161
/* caller must hold RTNL */
#define node_parent(n) rtnl_dereference((n)->parent)
E
Eric Dumazet 已提交
162

163 164
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
E
Eric Dumazet 已提交
165

166
/* wrapper for rcu_assign_pointer */
A
Alexander Duyck 已提交
167
static inline void node_set_parent(struct tnode *n, struct tnode *tp)
168
{
A
Alexander Duyck 已提交
169 170
	if (n)
		rcu_assign_pointer(n->parent, tp);
S
Stephen Hemminger 已提交
171 172
}

173 174 175 176
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
177
 */
178
static inline unsigned long tnode_child_length(const struct tnode *tn)
S
Stephen Hemminger 已提交
179
{
180
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
181
}
R
Robert Olsson 已提交
182

183 184 185
/* caller must hold RTNL */
static inline struct tnode *tnode_get_child(const struct tnode *tn,
					    unsigned long i)
186
{
187
	return rtnl_dereference(tn->tnode[i]);
188 189
}

190 191 192
/* caller must hold RCU read lock or RTNL */
static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
						unsigned long i)
193
{
194
	return rcu_dereference_rtnl(tn->tnode[i]);
195 196
}

197 198 199 200 201 202 203
static inline struct fib_table *trie_get_table(struct trie *t)
{
	unsigned long *tb_data = (unsigned long *)t;

	return container_of(tb_data, struct fib_table, tb_data[0]);
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
262

263 264
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
265
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
266
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
267 268

static void __alias_free_mem(struct rcu_head *head)
269
{
R
Robert Olsson 已提交
270 271
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
272 273
}

R
Robert Olsson 已提交
274
static inline void alias_free_mem_rcu(struct fib_alias *fa)
275
{
R
Robert Olsson 已提交
276 277
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
278

279
#define TNODE_KMALLOC_MAX \
280
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct tnode *))
281 282
#define TNODE_VMALLOC_MAX \
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct tnode *))
O
Olof Johansson 已提交
283

284
static void __node_free_rcu(struct rcu_head *head)
285
{
A
Alexander Duyck 已提交
286
	struct tnode *n = container_of(head, struct tnode, rcu);
287 288 289 290 291 292 293

	if (IS_LEAF(n))
		kmem_cache_free(trie_leaf_kmem, n);
	else if (n->bits <= TNODE_KMALLOC_MAX)
		kfree(n);
	else
		vfree(n);
294 295
}

296 297
#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)

298
static struct tnode *tnode_alloc(int bits)
299
{
300 301 302 303 304 305 306 307 308
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
309
	if (size <= PAGE_SIZE)
310
		return kzalloc(size, GFP_KERNEL);
311
	else
312
		return vzalloc(size);
313
}
R
Robert Olsson 已提交
314

315 316 317 318 319 320 321 322 323 324
static inline void empty_child_inc(struct tnode *n)
{
	++n->empty_children ? : ++n->full_children;
}

static inline void empty_child_dec(struct tnode *n)
{
	n->empty_children-- ? : n->full_children--;
}

325
static struct tnode *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
326
{
A
Alexander Duyck 已提交
327
	struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
328
	if (l) {
329 330 331 332 333 334
		l->parent = NULL;
		/* set key and pos to reflect full key value
		 * any trailing zeros in the key should be ignored
		 * as the nodes are searched
		 */
		l->key = key;
335
		l->slen = fa->fa_slen;
336
		l->pos = 0;
337 338 339
		/* set bits to 0 indicating we are not a tnode */
		l->bits = 0;

340
		/* link leaf to fib alias */
A
Alexander Duyck 已提交
341
		INIT_HLIST_HEAD(&l->leaf);
342
		hlist_add_head(&fa->fa_list, &l->leaf);
R
Robert Olsson 已提交
343 344 345 346
	}
	return l;
}

347
static struct tnode *tnode_new(t_key key, int pos, int bits)
348
{
349
	struct tnode *tn = tnode_alloc(bits);
350 351 352 353
	unsigned int shift = pos + bits;

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
354

O
Olof Johansson 已提交
355
	if (tn) {
356
		tn->parent = NULL;
357
		tn->slen = pos;
358 359
		tn->pos = pos;
		tn->bits = bits;
360
		tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
361 362 363 364
		if (bits == KEYLENGTH)
			tn->full_children = 1;
		else
			tn->empty_children = 1ul << bits;
365
	}
366

367
	pr_debug("AT %p s=%zu %zu\n", tn, TNODE_SIZE(0),
A
Alexander Duyck 已提交
368
		 sizeof(struct tnode *) << bits);
369 370 371
	return tn;
}

372
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
373 374
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
A
Alexander Duyck 已提交
375
static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
376
{
377
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
378 379
}

380 381 382 383
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
384
{
385
	struct tnode *chi = tnode_get_child(tn, i);
386
	int isfull, wasfull;
387

388
	BUG_ON(i >= tnode_child_length(tn));
S
Stephen Hemminger 已提交
389

390
	/* update emptyChildren, overflow into fullChildren */
391
	if (n == NULL && chi != NULL)
392 393 394
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
395

396
	/* update fullChildren */
397
	wasfull = tnode_full(tn, chi);
398
	isfull = tnode_full(tn, n);
399

400
	if (wasfull && !isfull)
401
		tn->full_children--;
402
	else if (!wasfull && isfull)
403
		tn->full_children++;
O
Olof Johansson 已提交
404

405 406 407
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

408
	rcu_assign_pointer(tn->tnode[i], n);
409 410
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
static void update_children(struct tnode *tn)
{
	unsigned long i;

	/* update all of the child parent pointers */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

static inline void put_child_root(struct tnode *tp, struct trie *t,
				  t_key key, struct tnode *n)
435 436 437 438 439 440 441
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
		rcu_assign_pointer(t->trie, n);
}

442
static inline void tnode_free_init(struct tnode *tn)
E
Eric Dumazet 已提交
443
{
444 445 446 447 448 449 450 451
	tn->rcu.next = NULL;
}

static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
{
	n->rcu.next = tn->rcu.next;
	tn->rcu.next = &n->rcu;
}
E
Eric Dumazet 已提交
452

453 454 455 456 457 458
static void tnode_free(struct tnode *tn)
{
	struct callback_head *head = &tn->rcu;

	while (head) {
		head = head->next;
459
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
460 461 462 463 464 465 466 467
		node_free(tn);

		tn = container_of(head, struct tnode, rcu);
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
468 469 470
	}
}

471 472
static struct tnode __rcu **replace(struct trie *t, struct tnode *oldtnode,
				    struct tnode *tn)
473 474
{
	struct tnode *tp = node_parent(oldtnode);
475
	struct tnode **cptr;
476 477 478 479 480 481 482 483 484 485 486 487
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
	put_child_root(tp, t, tn->key, tn);

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

488 489 490
	/* record the pointer that is pointing to this node */
	cptr = tp ? tp->tnode : &t->trie;

491 492 493 494 495 496 497 498
	/* resize children now that oldtnode is freed */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		/* resize child node */
		if (tnode_full(tn, inode))
			resize(t, inode);
	}
499 500

	return cptr;
501 502
}

503
static struct tnode __rcu **inflate(struct trie *t, struct tnode *oldtnode)
504
{
505 506
	struct tnode *tn;
	unsigned long i;
507
	t_key m;
508

S
Stephen Hemminger 已提交
509
	pr_debug("In inflate\n");
510

511
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
512
	if (!tn)
513
		goto notnode;
514

515 516 517
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

518 519 520 521
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
522
	 */
523
	for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
524 525 526
		struct tnode *inode = tnode_get_child(oldtnode, --i);
		struct tnode *node0, *node1;
		unsigned long j, k;
527

528
		/* An empty child */
A
Alexander Duyck 已提交
529
		if (inode == NULL)
530 531 532
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
533
		if (!tnode_full(oldtnode, inode)) {
534
			put_child(tn, get_index(inode->key, tn), inode);
535 536 537
			continue;
		}

538 539 540
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

541 542
		/* An internal node with two children */
		if (inode->bits == 1) {
543 544
			put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
			put_child(tn, 2 * i, tnode_get_child(inode, 0));
O
Olof Johansson 已提交
545
			continue;
546 547
		}

O
Olof Johansson 已提交
548
		/* We will replace this node 'inode' with two new
549
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
550 551 552 553 554
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
555
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
556 557
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
558 559 560
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
561
		 */
562 563 564
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
565
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
566

567
		tnode_free_append(tn, node1);
568 569 570 571 572 573 574 575 576 577 578
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
		for (k = tnode_child_length(inode), j = k / 2; j;) {
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
		}
579

580 581 582
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
583

584 585 586 587
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
588

589
	/* setup the parent pointers into and out of this node */
590
	return replace(t, oldtnode, tn);
591
nomem:
592 593
	/* all pointers should be clean so we are done */
	tnode_free(tn);
594 595
notnode:
	return NULL;
596 597
}

598
static struct tnode __rcu **halve(struct trie *t, struct tnode *oldtnode)
599
{
600
	struct tnode *tn;
601
	unsigned long i;
602

S
Stephen Hemminger 已提交
603
	pr_debug("In halve\n");
604

605
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
606
	if (!tn)
607
		goto notnode;
608

609 610 611
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

612 613 614 615
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
616
	 */
617
	for (i = tnode_child_length(oldtnode); i;) {
618 619 620
		struct tnode *node1 = tnode_get_child(oldtnode, --i);
		struct tnode *node0 = tnode_get_child(oldtnode, --i);
		struct tnode *inode;
621

622 623 624 625 626
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
627

628
		/* Two nonempty children */
629
		inode = tnode_new(node0->key, oldtnode->pos, 1);
630 631
		if (!inode)
			goto nomem;
632
		tnode_free_append(tn, inode);
633

634 635 636 637 638 639 640
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
641
	}
642

643
	/* setup the parent pointers into and out of this node */
644 645 646 647 648 649
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
650 651
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static void collapse(struct trie *t, struct tnode *oldtnode)
{
	struct tnode *n, *tp;
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
	for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
		n = tnode_get_child(oldtnode, --i);

	/* compress one level */
	tp = node_parent(oldtnode);
	put_child_root(tp, t, oldtnode->key, n);
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
static unsigned char update_suffix(struct tnode *tn)
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
	for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
		struct tnode *n = tnode_get_child(tn, i);

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
 * tnode_child_length() and instead of multiplying by 2 (since the
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
 * The left-hand side may look a bit weird: tnode_child_length(tn)
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 *     tn->full_children;
 *
 * new_child_length = tnode_child_length(tn) * 2;
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >=
 *      inflate_threshold * tnode_child_length(tn) * 2
 *
 * shorten again:
 * 50 * (tn->full_children + tnode_child_length(tn) -
 *    tn->empty_children) >= inflate_threshold *
 *    tnode_child_length(tn)
 *
 */
762
static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
763 764 765 766 767
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
768
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
769
	used -= tn->empty_children;
770
	used += tn->full_children;
771

772 773 774
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
775 776
}

777
static bool should_halve(const struct tnode *tp, const struct tnode *tn)
778 779 780 781 782
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
783
	threshold *= tp ? halve_threshold : halve_threshold_root;
784 785
	used -= tn->empty_children;

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

static bool should_collapse(const struct tnode *tn)
{
	unsigned long used = tnode_child_length(tn);

	used -= tn->empty_children;

	/* account for bits == KEYLENGTH case */
	if ((tn->bits == KEYLENGTH) && tn->full_children)
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
803 804
}

805
#define MAX_WORK 10
806
static struct tnode __rcu **resize(struct trie *t, struct tnode *tn)
807
{
808 809 810
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
811
	struct tnode *tp = node_parent(tn);
812 813
	unsigned long cindex = tp ? get_index(tn->key, tp) : 0;
	struct tnode __rcu **cptr = tp ? tp->tnode : &t->trie;
814
	int max_work = MAX_WORK;
815 816 817 818

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

819 820 821 822
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
823
	BUG_ON(tn != rtnl_dereference(cptr[cindex]));
824

825 826
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
827
	 */
828
	while (should_inflate(tp, tn) && max_work) {
829 830 831
		struct tnode __rcu **tcptr = inflate(t, tn);

		if (!tcptr) {
832
#ifdef CONFIG_IP_FIB_TRIE_STATS
833
			this_cpu_inc(stats->resize_node_skipped);
834 835 836
#endif
			break;
		}
837

838
		max_work--;
839 840
		cptr = tcptr;
		tn = rtnl_dereference(cptr[cindex]);
841 842 843 844
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
845
		return cptr;
846

847
	/* Halve as long as the number of empty children in this
848 849
	 * node is above threshold.
	 */
850
	while (should_halve(tp, tn) && max_work) {
851 852 853
		struct tnode __rcu **tcptr = halve(t, tn);

		if (!tcptr) {
854
#ifdef CONFIG_IP_FIB_TRIE_STATS
855
			this_cpu_inc(stats->resize_node_skipped);
856 857 858 859
#endif
			break;
		}

860
		max_work--;
861 862
		cptr = tcptr;
		tn = rtnl_dereference(cptr[cindex]);
863
	}
864 865

	/* Only one child remains */
866 867
	if (should_collapse(tn)) {
		collapse(t, tn);
868
		return cptr;
869 870 871 872
	}

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
873
		return cptr;
874 875 876 877 878 879 880

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

		if (tp && (slen > tp->slen))
			tp->slen = slen;
881
	}
882 883

	return cptr;
884 885
}

886
static void leaf_pull_suffix(struct tnode *tp, struct tnode *l)
887 888 889 890 891 892 893 894
{
	while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

895
static void leaf_push_suffix(struct tnode *tn, struct tnode *l)
896
{
897 898 899 900 901 902 903 904 905
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	while (tn && (tn->slen < l->slen)) {
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
906
/* rcu_read_lock needs to be hold by caller from readside */
907
static struct tnode *fib_find_node(struct trie *t, struct tnode **tn, u32 key)
908
{
909
	struct tnode *pn = NULL, *n = rcu_dereference_rtnl(t->trie);
A
Alexander Duyck 已提交
910 911 912 913 914 915 916 917 918

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
919
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
920
		 *     we have a mismatch in skip bits and failed
921 922
		 *   else
		 *     we know the value is cindex
923 924 925 926
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
927
		 */
928 929 930 931
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
932 933 934

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
935 936
			break;

937
		pn = n;
938
		n = tnode_get_child_rcu(n, index);
A
Alexander Duyck 已提交
939
	}
O
Olof Johansson 已提交
940

941 942
	*tn = pn;

A
Alexander Duyck 已提交
943
	return n;
944 945
}

946 947 948
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
949 950
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
					u8 tos, u32 prio)
951 952 953 954 955 956
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

957
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
958 959 960 961
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
962 963 964 965 966 967 968 969 970
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

971
static void trie_rebalance(struct trie *t, struct tnode *tn)
972
{
973
	struct tnode __rcu **cptr = &t->trie;
974

975
	while (tn) {
976 977 978 979 980 981
		struct tnode *tp = node_parent(tn);

		cptr = resize(t, tn);
		if (!tp)
			break;
		tn = container_of(cptr, struct tnode, tnode[0]);
982 983 984
	}
}

985 986
static int fib_insert_node(struct trie *t, struct tnode *tp,
			   struct fib_alias *new, t_key key)
987
{
988
	struct tnode *n, *l;
989

990
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
991
	if (!l)
992
		goto noleaf;
993 994 995 996 997 998

	/* retrieve child from parent node */
	if (tp)
		n = tnode_get_child(tp, get_index(key, tp));
	else
		n = rcu_dereference_rtnl(t->trie);
999

1000 1001 1002 1003 1004 1005 1006 1007
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
		struct tnode *tn;
1008

1009
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1010 1011
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1012

1013 1014 1015
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1016

1017 1018 1019
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
1020

1021
		/* parent now has a NULL spot where the leaf can go */
1022
		tp = tn;
1023
	}
O
Olof Johansson 已提交
1024

1025
	/* Case 3: n is NULL, and will just insert a new leaf */
1026 1027 1028 1029 1030
	NODE_INIT_PARENT(l, tp);
	put_child_root(tp, t, key, l);
	trie_rebalance(t, tp);

	return 0;
1031 1032 1033 1034
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
}

static int fib_insert_alias(struct trie *t, struct tnode *tp,
			    struct tnode *l, struct fib_alias *new,
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1046
	} else {
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1059
	}
R
Robert Olsson 已提交
1060

1061 1062 1063 1064 1065 1066 1067
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1068 1069
}

1070
/* Caller must hold RTNL. */
1071
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1072
{
1073
	struct trie *t = (struct trie *)tb->tb_data;
1074
	struct fib_alias *fa, *new_fa;
1075
	struct tnode *l, *tp;
1076
	struct fib_info *fi;
A
Alexander Duyck 已提交
1077 1078
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1079
	u8 tos = cfg->fc_tos;
1080
	u32 key;
1081 1082
	int err;

1083
	if (plen > KEYLENGTH)
1084 1085
		return -EINVAL;

1086
	key = ntohl(cfg->fc_dst);
1087

1088
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1089

1090
	if ((plen < KEYLENGTH) && (key << plen))
1091 1092
		return -EINVAL;

1093 1094 1095
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1096
		goto err;
1097
	}
1098

1099
	l = fib_find_node(t, &tp, key);
A
Alexander Duyck 已提交
1100
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1101 1102 1103 1104 1105 1106

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1107 1108
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1109 1110
	 */

1111 1112 1113
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1114 1115

		err = -EEXIST;
1116
		if (cfg->fc_nlflags & NLM_F_EXCL)
1117 1118
			goto out;

1119 1120 1121 1122 1123 1124 1125
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1126
		hlist_for_each_entry_from(fa, fa_list) {
A
Alexander Duyck 已提交
1127
			if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1138
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1139 1140 1141
			struct fib_info *fi_drop;
			u8 state;

1142 1143 1144 1145
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1146
				goto out;
1147
			}
R
Robert Olsson 已提交
1148
			err = -ENOBUFS;
1149
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1150 1151
			if (new_fa == NULL)
				goto out;
1152 1153

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1154 1155
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1156
			new_fa->fa_type = cfg->fc_type;
1157
			state = fa->fa_state;
1158
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1159
			new_fa->fa_slen = fa->fa_slen;
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
			err = netdev_switch_fib_ipv4_add(key, plen, fi,
							 new_fa->fa_tos,
							 cfg->fc_type,
							 tb->tb_id);
			if (err) {
				netdev_switch_fib_ipv4_abort(fi);
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1171
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1172

R
Robert Olsson 已提交
1173
			alias_free_mem_rcu(fa);
1174 1175 1176

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1177
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1178 1179
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1180

O
Olof Johansson 已提交
1181
			goto succeeded;
1182 1183 1184 1185 1186
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1187 1188
		if (fa_match)
			goto out;
1189

1190
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1191
			fa = fa_first;
1192 1193
	}
	err = -ENOENT;
1194
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1195 1196 1197
		goto out;

	err = -ENOBUFS;
1198
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1199 1200 1201 1202 1203
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1204
	new_fa->fa_type = cfg->fc_type;
1205
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1206
	new_fa->fa_slen = slen;
1207

1208 1209 1210 1211 1212 1213 1214 1215
	/* (Optionally) offload fib entry to switch hardware. */
	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
					 cfg->fc_type, tb->tb_id);
	if (err) {
		netdev_switch_fib_ipv4_abort(fi);
		goto out_free_new_fa;
	}

1216
	/* Insert new entry to the list. */
1217 1218
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1219
		goto out_sw_fib_del;
1220

1221 1222 1223
	if (!plen)
		tb->tb_num_default++;

1224
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1225
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1226
		  &cfg->fc_nlinfo, 0);
1227 1228
succeeded:
	return 0;
1229

1230 1231
out_sw_fib_del:
	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1232 1233
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1234 1235
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1236
err:
1237 1238 1239
	return err;
}

1240 1241 1242 1243 1244 1245 1246
static inline t_key prefix_mismatch(t_key key, struct tnode *n)
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1247
/* should be called with rcu_read_lock */
1248
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1249
		     struct fib_result *res, int fib_flags)
1250
{
1251
	struct trie *t = (struct trie *)tb->tb_data;
1252 1253 1254
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1255 1256
	const t_key key = ntohl(flp->daddr);
	struct tnode *n, *pn;
A
Alexander Duyck 已提交
1257
	struct fib_alias *fa;
1258
	unsigned long index;
1259
	t_key cindex;
O
Olof Johansson 已提交
1260

R
Robert Olsson 已提交
1261
	n = rcu_dereference(t->trie);
1262
	if (!n)
1263
		return -EAGAIN;
1264 1265

#ifdef CONFIG_IP_FIB_TRIE_STATS
1266
	this_cpu_inc(stats->gets);
1267 1268
#endif

A
Alexander Duyck 已提交
1269
	pn = n;
1270 1271 1272 1273
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1274
		index = get_index(key, n);
1275 1276 1277 1278 1279 1280

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1281
		 *   if (index >= (1ul << bits))
1282
		 *     we have a mismatch in skip bits and failed
1283 1284
		 *   else
		 *     we know the value is cindex
1285 1286 1287 1288
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1289
		 */
1290
		if (index >= (1ul << n->bits))
1291
			break;
1292

1293 1294
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1295
			goto found;
1296

1297 1298
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1299
		 */
1300
		if (n->slen > n->pos) {
1301 1302
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1303
		}
1304

1305
		n = tnode_get_child_rcu(n, index);
1306 1307 1308
		if (unlikely(!n))
			goto backtrace;
	}
1309

1310 1311 1312
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1313
		struct tnode __rcu **cptr = n->tnode;
1314

1315 1316 1317
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1318
		 */
1319
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1320
			goto backtrace;
O
Olof Johansson 已提交
1321

1322 1323 1324
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1325

1326 1327 1328
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1329 1330
		 */

1331
		while ((n = rcu_dereference(*cptr)) == NULL) {
1332 1333
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1334 1335
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1336
#endif
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1347
					return -EAGAIN;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1359
			cptr = &pn->tnode[cindex];
1360
		}
1361
	}
1362

1363
found:
1364 1365 1366
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1367
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1368 1369 1370
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1371

1372
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1373
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1374
			continue;
A
Alexander Duyck 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1384
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1385
			this_cpu_inc(stats->semantic_match_passed);
1386
#endif
A
Alexander Duyck 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1397
				continue;
A
Alexander Duyck 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1409
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1410
			this_cpu_inc(stats->semantic_match_passed);
1411
#endif
A
Alexander Duyck 已提交
1412
			return err;
1413
		}
1414
	}
1415
#ifdef CONFIG_IP_FIB_TRIE_STATS
1416
	this_cpu_inc(stats->semantic_match_miss);
1417 1418
#endif
	goto backtrace;
1419
}
1420
EXPORT_SYMBOL_GPL(fib_table_lookup);
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static void fib_remove_alias(struct trie *t, struct tnode *tp,
			     struct tnode *l, struct fib_alias *old)
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
		put_child_root(tp, t, l->key, NULL);
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1452
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1453 1454 1455
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1456
	struct tnode *l, *tp;
A
Alexander Duyck 已提交
1457 1458
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1459 1460
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1461

A
Alexander Duyck 已提交
1462
	if (plen > KEYLENGTH)
1463 1464
		return -EINVAL;

1465
	key = ntohl(cfg->fc_dst);
1466

1467
	if ((plen < KEYLENGTH) && (key << plen))
1468 1469
		return -EINVAL;

1470
	l = fib_find_node(t, &tp, key);
1471
	if (!l)
1472 1473
		return -ESRCH;

A
Alexander Duyck 已提交
1474
	fa = fib_find_alias(&l->leaf, slen, tos, 0);
1475 1476 1477
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1478
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1479 1480

	fa_to_delete = NULL;
1481
	hlist_for_each_entry_from(fa, fa_list) {
1482 1483
		struct fib_info *fi = fa->fa_info;

A
Alexander Duyck 已提交
1484
		if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1485 1486
			break;

1487 1488
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1489
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1490 1491
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1492 1493 1494
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1495 1496 1497 1498 1499
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1500 1501
	if (!fa_to_delete)
		return -ESRCH;
1502

1503 1504 1505
	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
				   cfg->fc_type, tb->tb_id);

1506
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1507
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1508

1509 1510 1511
	if (!plen)
		tb->tb_num_default--;

1512
	fib_remove_alias(t, tp, l, fa_to_delete);
1513

1514
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1515
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1516

1517 1518
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1519
	return 0;
1520 1521
}

1522 1523
/* Scan for the next leaf starting at the provided key value */
static struct tnode *leaf_walk_rcu(struct tnode **tn, t_key key)
1524
{
1525 1526
	struct tnode *pn, *n = *tn;
	unsigned long cindex;
1527

1528 1529 1530
	/* record parent node for backtracing */
	pn = n;
	cindex = n ? get_index(key, n) : 0;
1531

1532 1533 1534
	/* this loop is meant to try and find the key in the trie */
	while (n) {
		unsigned long idx = get_index(key, n);
1535

1536 1537 1538 1539 1540
		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
		if (idx >= (1ul << n->bits))
			break;
1541

1542 1543 1544
		/* record parent and next child index */
		pn = n;
		cindex = idx;
1545

1546 1547 1548
		/* descend into the next child */
		n = tnode_get_child_rcu(pn, cindex++);
	}
1549

1550 1551 1552 1553 1554
	/* this loop will search for the next leaf with a greater key */
	while (pn) {
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1555

1556 1557 1558
			pn = node_parent_rcu(pn);
			if (!pn)
				break;
1559

1560 1561 1562
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1563

1564 1565 1566 1567
		/* grab the next available node */
		n = tnode_get_child_rcu(pn, cindex++);
		if (!n)
			continue;
1568

1569 1570 1571
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1572

1573 1574 1575 1576
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1577

1578 1579 1580 1581 1582 1583
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
	*tn = (n->key == KEY_MAX) ? NULL : pn;
	return n;
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct fib_alias *fa;
	struct tnode *n, *pn;
	unsigned long cindex;

	n = rcu_dereference(t->trie);
	if (!n)
		return;

	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
				t_key pkey = pn->key;

				/* if we got the root we are done */
1612
				pn = node_parent(pn);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
				if (!pn)
					return;

				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
			n = tnode_get_child(pn, cindex);
		} while (!n);
	}

	hlist_for_each_entry(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

1627 1628 1629 1630 1631 1632 1633
		if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
			continue;

		netdev_switch_fib_ipv4_del(n->key,
					   KEYLENGTH - fa->fa_slen,
					   fi, fa->fa_tos,
					   fa->fa_type, tb->tb_id);
1634 1635 1636 1637 1638 1639 1640
	}

	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
}

1641
/* Caller must hold RTNL. */
1642
int fib_table_flush(struct fib_table *tb)
1643
{
1644 1645 1646 1647 1648 1649
	struct trie *t = (struct trie *)tb->tb_data;
	struct hlist_node *tmp;
	struct fib_alias *fa;
	struct tnode *n, *pn;
	unsigned long cindex;
	unsigned char slen;
1650
	int found = 0;
1651

1652 1653 1654
	n = rcu_dereference(t->trie);
	if (!n)
		goto flush_complete;
1655

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
1667
				struct tnode __rcu **cptr;
1668 1669 1670 1671 1672 1673
				t_key pkey = pn->key;

				n = pn;
				pn = node_parent(n);

				/* resize completed node */
1674
				cptr = resize(t, n);
1675 1676 1677 1678 1679

				/* if we got the root we are done */
				if (!pn)
					goto flush_complete;

1680
				pn = container_of(cptr, struct tnode, tnode[0]);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
			n = tnode_get_child(pn, cindex);
		} while (!n);
	}

	/* track slen in case any prefixes survive */
	slen = 0;

	hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1696 1697 1698 1699
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
1700 1701 1702 1703 1704 1705
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;

			continue;
1706 1707
		}

1708
		slen = fa->fa_slen;
1709 1710
	}

1711 1712 1713 1714 1715 1716 1717
	/* update leaf slen */
	n->slen = slen;

	if (hlist_empty(&n->leaf)) {
		put_child_root(pn, t, n->key, NULL);
		node_free(n);
	} else {
1718
		leaf_pull_suffix(pn, n);
1719
	}
1720

1721 1722 1723 1724
	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
flush_complete:
S
Stephen Hemminger 已提交
1725
	pr_debug("trie_flush found=%d\n", found);
1726 1727 1728
	return found;
}

1729
static void __trie_free_rcu(struct rcu_head *head)
1730
{
1731
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1732 1733 1734 1735 1736
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1737 1738 1739
	kfree(tb);
}

1740 1741 1742 1743 1744
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

A
Alexander Duyck 已提交
1745 1746
static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
			     struct sk_buff *skb, struct netlink_callback *cb)
1747
{
A
Alexander Duyck 已提交
1748
	__be32 xkey = htonl(l->key);
1749
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1750
	int i, s_i;
1751

A
Alexander Duyck 已提交
1752
	s_i = cb->args[4];
1753 1754
	i = 0;

R
Robert Olsson 已提交
1755
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1756
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1757 1758 1759 1760 1761
		if (i < s_i) {
			i++;
			continue;
		}

1762
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1763 1764 1765 1766
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1767
				  xkey,
1768
				  KEYLENGTH - fa->fa_slen,
1769
				  fa->fa_tos,
1770
				  fa->fa_info, NLM_F_MULTI) < 0) {
1771
			cb->args[4] = i;
1772 1773
			return -1;
		}
1774
		i++;
1775
	}
1776

1777
	cb->args[4] = i;
1778 1779 1780
	return skb->len;
}

1781
/* rcu_read_lock needs to be hold by caller from readside */
1782 1783
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1784
{
1785 1786
	struct trie *t = (struct trie *)tb->tb_data;
	struct tnode *l, *tp;
1787 1788 1789
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1790 1791
	int count = cb->args[2];
	t_key key = cb->args[3];
1792

1793 1794 1795
	tp = rcu_dereference_rtnl(t->trie);

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1796
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1797 1798
			cb->args[3] = key;
			cb->args[2] = count;
1799
			return -1;
1800
		}
1801

1802
		++count;
1803 1804
		key = l->key + 1;

1805 1806
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1807 1808 1809 1810

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1811
	}
1812 1813 1814 1815

	cb->args[3] = key;
	cb->args[2] = count;

1816 1817 1818
	return skb->len;
}

1819
void __init fib_trie_init(void)
1820
{
1821 1822
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1823 1824 1825
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1826
					   LEAF_SIZE,
1827
					   0, SLAB_PANIC, NULL);
1828
}
1829

1830

1831
struct fib_table *fib_trie_table(u32 id)
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1842
	tb->tb_default = -1;
1843
	tb->tb_num_default = 0;
1844 1845

	t = (struct trie *) tb->tb_data;
1846 1847 1848 1849 1850 1851 1852 1853
	RCU_INIT_POINTER(t->trie, NULL);
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1854 1855 1856 1857

	return tb;
}

1858 1859 1860
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1861
	struct seq_net_private p;
1862
	struct fib_table *tb;
1863
	struct tnode *tnode;
E
Eric Dumazet 已提交
1864 1865
	unsigned int index;
	unsigned int depth;
1866
};
1867

A
Alexander Duyck 已提交
1868
static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1869
{
1870
	unsigned long cindex = iter->index;
1871 1872
	struct tnode *tn = iter->tnode;
	struct tnode *p;
1873

1874 1875 1876 1877
	/* A single entry routing table */
	if (!tn)
		return NULL;

1878 1879 1880
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1881
	while (cindex < tnode_child_length(tn)) {
A
Alexander Duyck 已提交
1882
		struct tnode *n = tnode_get_child_rcu(tn, cindex);
1883

1884 1885 1886 1887 1888 1889
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1890
				iter->tnode = n;
1891 1892 1893 1894 1895
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1896

1897 1898
		++cindex;
	}
O
Olof Johansson 已提交
1899

1900
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1901
	p = node_parent_rcu(tn);
1902
	if (p) {
1903
		cindex = get_index(tn->key, p) + 1;
1904 1905 1906
		tn = p;
		--iter->depth;
		goto rescan;
1907
	}
1908 1909 1910

	/* got root? */
	return NULL;
1911 1912
}

A
Alexander Duyck 已提交
1913
static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1914
				       struct trie *t)
1915
{
A
Alexander Duyck 已提交
1916
	struct tnode *n;
1917

S
Stephen Hemminger 已提交
1918
	if (!t)
1919 1920 1921
		return NULL;

	n = rcu_dereference(t->trie);
1922
	if (!n)
1923
		return NULL;
1924

1925
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1926
		iter->tnode = n;
1927 1928 1929 1930 1931 1932
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1933
	}
1934 1935

	return n;
1936
}
O
Olof Johansson 已提交
1937

1938 1939
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
A
Alexander Duyck 已提交
1940
	struct tnode *n;
1941
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1942

1943
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1944

1945
	rcu_read_lock();
1946
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1947
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
1948
			struct fib_alias *fa;
1949

1950 1951 1952 1953
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1954

A
Alexander Duyck 已提交
1955
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
1956
				++s->prefixes;
1957 1958
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
1959 1960
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
1961
			s->nullpointers += n->empty_children;
1962 1963
		}
	}
R
Robert Olsson 已提交
1964
	rcu_read_unlock();
1965 1966
}

1967 1968 1969 1970
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1971
{
E
Eric Dumazet 已提交
1972
	unsigned int i, max, pointers, bytes, avdepth;
1973

1974 1975 1976 1977
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
1978

1979 1980
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
1981
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
1982

1983
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
1984
	bytes = LEAF_SIZE * stat->leaves;
1985 1986

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
1987
	bytes += sizeof(struct fib_alias) * stat->prefixes;
1988

1989
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1990
	bytes += TNODE_SIZE(0) * stat->tnodes;
1991

R
Robert Olsson 已提交
1992 1993
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
1994
		max--;
1995

1996
	pointers = 0;
1997
	for (i = 1; i < max; i++)
1998
		if (stat->nodesizes[i] != 0) {
1999
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2000 2001 2002
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2003
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2004

A
Alexander Duyck 已提交
2005
	bytes += sizeof(struct tnode *) * pointers;
2006 2007
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2008
}
R
Robert Olsson 已提交
2009

2010
#ifdef CONFIG_IP_FIB_TRIE_STATS
2011
static void trie_show_usage(struct seq_file *seq,
2012
			    const struct trie_use_stats __percpu *stats)
2013
{
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2029
	seq_printf(seq, "\nCounters:\n---------\n");
2030 2031
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2032
	seq_printf(seq, "semantic match passed = %u\n",
2033 2034 2035 2036
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2037
}
2038 2039
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2040
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2041
{
2042 2043 2044 2045 2046 2047
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2048
}
2049

2050

2051 2052
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2053
	struct net *net = (struct net *)seq->private;
2054
	unsigned int h;
2055

2056
	seq_printf(seq,
2057 2058
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2059
		   LEAF_SIZE, TNODE_SIZE(0));
2060

2061 2062 2063 2064
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2065
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2066 2067
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2068

2069 2070 2071 2072 2073 2074 2075 2076
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2077
			trie_show_usage(seq, t->stats);
2078 2079 2080
#endif
		}
	}
2081

2082
	return 0;
2083 2084
}

2085
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2086
{
2087
	return single_open_net(inode, file, fib_triestat_seq_show);
2088 2089
}

2090
static const struct file_operations fib_triestat_fops = {
2091 2092 2093 2094
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2095
	.release = single_release_net,
2096 2097
};

A
Alexander Duyck 已提交
2098
static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2099
{
2100 2101
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2102
	loff_t idx = 0;
2103
	unsigned int h;
2104

2105 2106 2107
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2108

2109
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
A
Alexander Duyck 已提交
2110
			struct tnode *n;
2111 2112 2113 2114 2115 2116 2117 2118 2119

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2120
	}
2121

2122 2123 2124
	return NULL;
}

2125
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2126
	__acquires(RCU)
2127
{
2128
	rcu_read_lock();
2129
	return fib_trie_get_idx(seq, *pos);
2130 2131
}

2132
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2133
{
2134
	struct fib_trie_iter *iter = seq->private;
2135
	struct net *net = seq_file_net(seq);
2136 2137 2138
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
A
Alexander Duyck 已提交
2139
	struct tnode *n;
2140

2141
	++*pos;
2142 2143 2144 2145
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2146

2147 2148
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2149
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2150 2151 2152 2153 2154
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2155

2156 2157 2158
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2159
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2160 2161 2162 2163 2164
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2165
	return NULL;
2166 2167 2168 2169

found:
	iter->tb = tb;
	return n;
2170
}
2171

2172
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2173
	__releases(RCU)
2174
{
2175 2176
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2177

2178 2179
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2180 2181
	while (n-- > 0)
		seq_puts(seq, "   ");
2182
}
2183

2184
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2185
{
S
Stephen Hemminger 已提交
2186
	switch (s) {
2187 2188 2189 2190 2191 2192
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2193
		snprintf(buf, len, "scope=%d", s);
2194 2195 2196
		return buf;
	}
}
2197

2198
static const char *const rtn_type_names[__RTN_MAX] = {
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2212

E
Eric Dumazet 已提交
2213
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2214 2215 2216
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2217
	snprintf(buf, len, "type %u", t);
2218
	return buf;
2219 2220
}

2221 2222
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2223
{
2224
	const struct fib_trie_iter *iter = seq->private;
A
Alexander Duyck 已提交
2225
	struct tnode *n = v;
2226

2227 2228
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2229

2230
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2231
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2232

2233 2234 2235 2236
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
			   n->full_children, n->empty_children);
2237
	} else {
A
Alexander Duyck 已提交
2238
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2239
		struct fib_alias *fa;
2240 2241

		seq_indent(seq, iter->depth);
2242
		seq_printf(seq, "  |-- %pI4\n", &val);
2243

A
Alexander Duyck 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2257
		}
2258
	}
2259

2260 2261 2262
	return 0;
}

2263
static const struct seq_operations fib_trie_seq_ops = {
2264 2265 2266 2267
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2268 2269
};

2270
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2271
{
2272 2273
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2274 2275
}

2276
static const struct file_operations fib_trie_fops = {
2277 2278 2279 2280
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2281
	.release = seq_release_net,
2282 2283
};

2284 2285
struct fib_route_iter {
	struct seq_net_private p;
2286 2287
	struct fib_table *main_tb;
	struct tnode *tnode;
2288 2289 2290 2291
	loff_t	pos;
	t_key	key;
};

A
Alexander Duyck 已提交
2292
static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2293
{
2294 2295 2296 2297
	struct fib_table *tb = iter->main_tb;
	struct tnode *l, **tp = &iter->tnode;
	struct trie *t;
	t_key key;
2298

2299 2300
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2301
		pos -= iter->pos;
2302 2303 2304 2305
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
		iter->tnode = rcu_dereference_rtnl(t->trie);
2306
		iter->pos = 0;
2307
		key = 0;
2308 2309
	}

2310 2311
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2312
		iter->pos++;
2313 2314 2315 2316 2317 2318 2319 2320 2321

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2322 2323 2324
	}

	if (l)
2325
		iter->key = key;	/* remember it */
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2337
	struct trie *t;
2338 2339

	rcu_read_lock();
2340

2341
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2342 2343 2344
	if (!tb)
		return NULL;

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
	iter->tnode = rcu_dereference_rtnl(t->trie);
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2356 2357 2358 2359 2360
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2361 2362
	struct tnode *l = NULL;
	t_key key = iter->key;
2363 2364

	++*pos;
2365 2366 2367 2368 2369 2370 2371

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2372
		iter->pos++;
2373 2374
	} else {
		iter->pos = 0;
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2386
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2387
{
E
Eric Dumazet 已提交
2388
	unsigned int flags = 0;
2389

E
Eric Dumazet 已提交
2390 2391
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2392 2393
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2394
	if (mask == htonl(0xFFFFFFFF))
2395 2396 2397
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2398 2399
}

2400 2401 2402
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2403
 *	and needs to be same as fib_hash output to avoid breaking
2404 2405 2406
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2407
{
A
Alexander Duyck 已提交
2408
	struct fib_alias *fa;
A
Alexander Duyck 已提交
2409
	struct tnode *l = v;
2410
	__be32 prefix;
2411

2412 2413 2414 2415 2416 2417
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2418

2419 2420
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2421 2422 2423 2424
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2425

A
Alexander Duyck 已提交
2426 2427 2428
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2429

A
Alexander Duyck 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2451

A
Alexander Duyck 已提交
2452
		seq_pad(seq, '\n');
2453 2454 2455 2456 2457
	}

	return 0;
}

2458
static const struct seq_operations fib_route_seq_ops = {
2459 2460 2461
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2462
	.show   = fib_route_seq_show,
2463 2464
};

2465
static int fib_route_seq_open(struct inode *inode, struct file *file)
2466
{
2467
	return seq_open_net(inode, file, &fib_route_seq_ops,
2468
			    sizeof(struct fib_route_iter));
2469 2470
}

2471
static const struct file_operations fib_route_fops = {
2472 2473 2474 2475
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2476
	.release = seq_release_net,
2477 2478
};

2479
int __net_init fib_proc_init(struct net *net)
2480
{
2481
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2482 2483
		goto out1;

2484 2485
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2486 2487
		goto out2;

2488
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2489 2490
		goto out3;

2491
	return 0;
2492 2493

out3:
2494
	remove_proc_entry("fib_triestat", net->proc_net);
2495
out2:
2496
	remove_proc_entry("fib_trie", net->proc_net);
2497 2498
out1:
	return -ENOMEM;
2499 2500
}

2501
void __net_exit fib_proc_exit(struct net *net)
2502
{
2503 2504 2505
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2506 2507 2508
}

#endif /* CONFIG_PROC_FS */