fib_trie.c 63.4 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
82
#include <net/switchdev.h>
83 84
#include "fib_lookup.h"

R
Robert Olsson 已提交
85
#define MAX_STAT_DEPTH 32
86

87 88
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
89 90 91

typedef unsigned int t_key;

92 93 94
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
95

96
struct key_vector {
97 98
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
99
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
100
	unsigned char slen;
A
Alexander Duyck 已提交
101
	union {
102
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
103
		struct hlist_head leaf;
104
		/* This array is valid if (pos | bits) > 0 (TNODE) */
105
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
106
	};
107 108
};

109
struct tnode {
110
	struct rcu_head rcu;
111 112
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
113
	struct key_vector __rcu *parent;
114
	struct key_vector kv[1];
115
#define tn_bits kv[0].bits
116 117 118
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
119 120
#define LEAF_SIZE	TNODE_SIZE(1)

121 122 123 124 125 126 127
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
128
	unsigned int resize_node_skipped;
129 130 131 132 133 134 135 136 137
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
138
	unsigned int prefixes;
R
Robert Olsson 已提交
139
	unsigned int nodesizes[MAX_STAT_DEPTH];
140
};
141 142

struct trie {
143
	struct key_vector kv[1];
144
#ifdef CONFIG_IP_FIB_TRIE_STATS
145
	struct trie_use_stats __percpu *stats;
146 147 148
#endif
};

149
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
150 151 152 153 154 155 156 157
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
158

159
static struct kmem_cache *fn_alias_kmem __read_mostly;
160
static struct kmem_cache *trie_leaf_kmem __read_mostly;
161

162 163 164 165 166
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

167
/* caller must hold RTNL */
168
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
169
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
170

171
/* caller must hold RCU read lock or RTNL */
172
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
173
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
174

175
/* wrapper for rcu_assign_pointer */
176
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
177
{
A
Alexander Duyck 已提交
178
	if (n)
179
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
180 181
}

182
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
183 184 185

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
186
 */
187
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
188
{
189
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
190
}
R
Robert Olsson 已提交
191

192 193
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

194 195 196 197
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

198 199 200
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

201 202 203
	return index >> kv->pos;
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
262

263 264
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
265
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
266
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
267 268

static void __alias_free_mem(struct rcu_head *head)
269
{
R
Robert Olsson 已提交
270 271
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
272 273
}

R
Robert Olsson 已提交
274
static inline void alias_free_mem_rcu(struct fib_alias *fa)
275
{
R
Robert Olsson 已提交
276 277
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
278

279
#define TNODE_KMALLOC_MAX \
280
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
281
#define TNODE_VMALLOC_MAX \
282
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
283

284
static void __node_free_rcu(struct rcu_head *head)
285
{
286
	struct tnode *n = container_of(head, struct tnode, rcu);
287

288
	if (!n->tn_bits)
289
		kmem_cache_free(trie_leaf_kmem, n);
290
	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
291 292 293
		kfree(n);
	else
		vfree(n);
294 295
}

296
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297

298
static struct tnode *tnode_alloc(int bits)
299
{
300 301 302 303 304 305 306 307 308
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
309
	if (size <= PAGE_SIZE)
310
		return kzalloc(size, GFP_KERNEL);
311
	else
312
		return vzalloc(size);
313
}
R
Robert Olsson 已提交
314

315
static inline void empty_child_inc(struct key_vector *n)
316
{
317
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 319
}

320
static inline void empty_child_dec(struct key_vector *n)
321
{
322
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 324
}

325
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
326
{
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
	struct key_vector *l = kv->kv;

	if (!kv)
		return NULL;

	/* initialize key vector */
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
343 344 345
	return l;
}

346
static struct key_vector *tnode_new(t_key key, int pos, int bits)
347
{
348
	struct tnode *tnode = tnode_alloc(bits);
349
	unsigned int shift = pos + bits;
350
	struct key_vector *tn = tnode->kv;
351 352 353

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
354

355
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
356
		 sizeof(struct key_vector *) << bits);
357 358 359 360 361

	if (!tnode)
		return NULL;

	if (bits == KEYLENGTH)
362
		tnode->full_children = 1;
363
	else
364
		tnode->empty_children = 1ul << bits;
365 366 367 368 369 370

	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

371 372 373
	return tn;
}

374
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
375 376
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
377
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
378
{
379
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
380 381
}

382 383 384
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
385 386
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
387
{
388
	struct key_vector *chi = get_child(tn, i);
389
	int isfull, wasfull;
390

391
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
392

393
	/* update emptyChildren, overflow into fullChildren */
394
	if (n == NULL && chi != NULL)
395 396 397
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
398

399
	/* update fullChildren */
400
	wasfull = tnode_full(tn, chi);
401
	isfull = tnode_full(tn, n);
402

403
	if (wasfull && !isfull)
404
		tn_info(tn)->full_children--;
405
	else if (!wasfull && isfull)
406
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
407

408 409 410
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

411
	rcu_assign_pointer(tn->tnode[i], n);
412 413
}

414
static void update_children(struct key_vector *tn)
415 416 417 418
{
	unsigned long i;

	/* update all of the child parent pointers */
419
	for (i = child_length(tn); i;) {
420
		struct key_vector *inode = get_child(tn, --i);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

436 437
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
438
{
439 440
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
441
	else
442
		put_child(tp, get_index(key, tp), n);
443 444
}

445
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
446
{
447
	tn_info(tn)->rcu.next = NULL;
448 449
}

450 451
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
452
{
453 454
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
455
}
E
Eric Dumazet 已提交
456

457
static void tnode_free(struct key_vector *tn)
458
{
459
	struct callback_head *head = &tn_info(tn)->rcu;
460 461 462

	while (head) {
		head = head->next;
463
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
464 465
		node_free(tn);

466
		tn = container_of(head, struct tnode, rcu)->kv;
467 468 469 470 471
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
472 473 474
	}
}

475 476 477
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
478
{
479
	struct key_vector *tp = node_parent(oldtnode);
480 481 482 483
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
484
	put_child_root(tp, tn->key, tn);
485 486 487 488 489 490 491 492

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
493
	for (i = child_length(tn); i;) {
494
		struct key_vector *inode = get_child(tn, --i);
495 496 497

		/* resize child node */
		if (tnode_full(tn, inode))
498
			tn = resize(t, inode);
499
	}
500

501
	return tp;
502 503
}

504 505
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
506
{
507
	struct key_vector *tn;
508
	unsigned long i;
509
	t_key m;
510

S
Stephen Hemminger 已提交
511
	pr_debug("In inflate\n");
512

513
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
514
	if (!tn)
515
		goto notnode;
516

517 518 519
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

520 521 522 523
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
524
	 */
525
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
526
		struct key_vector *inode = get_child(oldtnode, --i);
527
		struct key_vector *node0, *node1;
528
		unsigned long j, k;
529

530
		/* An empty child */
A
Alexander Duyck 已提交
531
		if (inode == NULL)
532 533 534
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
535
		if (!tnode_full(oldtnode, inode)) {
536
			put_child(tn, get_index(inode->key, tn), inode);
537 538 539
			continue;
		}

540 541 542
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

543 544
		/* An internal node with two children */
		if (inode->bits == 1) {
545 546
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
547
			continue;
548 549
		}

O
Olof Johansson 已提交
550
		/* We will replace this node 'inode' with two new
551
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
552 553 554 555 556
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
557
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
558 559
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
560 561 562
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
563
		 */
564 565 566
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
567
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
568

569
		tnode_free_append(tn, node1);
570 571 572 573 574
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
575
		for (k = child_length(inode), j = k / 2; j;) {
576 577 578 579
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
580
		}
581

582 583 584
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
585

586 587 588 589
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
590

591
	/* setup the parent pointers into and out of this node */
592
	return replace(t, oldtnode, tn);
593
nomem:
594 595
	/* all pointers should be clean so we are done */
	tnode_free(tn);
596 597
notnode:
	return NULL;
598 599
}

600 601
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
602
{
603
	struct key_vector *tn;
604
	unsigned long i;
605

S
Stephen Hemminger 已提交
606
	pr_debug("In halve\n");
607

608
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
609
	if (!tn)
610
		goto notnode;
611

612 613 614
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

615 616 617 618
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
619
	 */
620
	for (i = child_length(oldtnode); i;) {
621 622
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
623
		struct key_vector *inode;
624

625 626 627 628 629
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
630

631
		/* Two nonempty children */
632
		inode = tnode_new(node0->key, oldtnode->pos, 1);
633 634
		if (!inode)
			goto nomem;
635
		tnode_free_append(tn, inode);
636

637 638 639 640 641 642 643
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
644
	}
645

646
	/* setup the parent pointers into and out of this node */
647 648 649 650 651 652
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
653 654
}

655 656
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
657
{
658
	struct key_vector *n, *tp;
659 660 661
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
662
	for (n = NULL, i = child_length(oldtnode); !n && i;)
663
		n = get_child(oldtnode, --i);
664 665 666

	/* compress one level */
	tp = node_parent(oldtnode);
667
	put_child_root(tp, oldtnode->key, n);
668 669 670 671
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
672 673

	return tp;
674 675
}

676
static unsigned char update_suffix(struct key_vector *tn)
677 678 679 680 681 682 683 684 685
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
686
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
687
		struct key_vector *n = get_child(tn, i);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

711 712 713 714 715 716 717 718
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
719
 * child_length() and instead of multiplying by 2 (since the
720 721 722 723
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
724
 * The left-hand side may look a bit weird: child_length(tn)
725 726 727 728 729 730 731 732 733
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
734
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
735 736
 *     tn->full_children;
 *
737
 * new_child_length = child_length(tn) * 2;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
754
 * 100 * (child_length(tn) - tn->empty_children +
755 756 757
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
758
 * 100 * (child_length(tn) - tn->empty_children +
759
 *    tn->full_children) >=
760
 *      inflate_threshold * child_length(tn) * 2
761 762
 *
 * shorten again:
763
 * 50 * (tn->full_children + child_length(tn) -
764
 *    tn->empty_children) >= inflate_threshold *
765
 *    child_length(tn)
766 767
 *
 */
768
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
769
{
770
	unsigned long used = child_length(tn);
771 772 773
	unsigned long threshold = used;

	/* Keep root node larger */
774
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
775 776
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
777

778 779 780
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
781 782
}

783
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
784
{
785
	unsigned long used = child_length(tn);
786 787 788
	unsigned long threshold = used;

	/* Keep root node larger */
789
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
790
	used -= tn_info(tn)->empty_children;
791

792 793 794 795 796
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

797
static inline bool should_collapse(struct key_vector *tn)
798
{
799
	unsigned long used = child_length(tn);
800

801
	used -= tn_info(tn)->empty_children;
802 803

	/* account for bits == KEYLENGTH case */
804
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
805 806 807 808
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
809 810
}

811
#define MAX_WORK 10
812
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
813
{
814 815 816
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
817
	struct key_vector *tp = node_parent(tn);
818
	unsigned long cindex = get_index(tn->key, tp);
819
	int max_work = MAX_WORK;
820 821 822 823

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

824 825 826 827
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
828
	BUG_ON(tn != get_child(tp, cindex));
829

830 831
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
832
	 */
833
	while (should_inflate(tp, tn) && max_work--) {
834 835
		tp = inflate(t, tn);
		if (!tp) {
836
#ifdef CONFIG_IP_FIB_TRIE_STATS
837
			this_cpu_inc(stats->resize_node_skipped);
838 839 840
#endif
			break;
		}
841

842
		tn = get_child(tp, cindex);
843 844 845 846
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
847
		return node_parent(tn);
848

849
	/* Halve as long as the number of empty children in this
850 851
	 * node is above threshold.
	 */
852
	while (should_halve(tp, tn) && max_work--) {
853 854
		tp = halve(t, tn);
		if (!tp) {
855
#ifdef CONFIG_IP_FIB_TRIE_STATS
856
			this_cpu_inc(stats->resize_node_skipped);
857 858 859 860
#endif
			break;
		}

861
		tn = get_child(tp, cindex);
862
	}
863 864

	/* Only one child remains */
865 866 867 868 869
	if (should_collapse(tn))
		return collapse(t, tn);

	/* update parent in case inflate or halve failed */
	tp = node_parent(tn);
870 871 872

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
873
		return tp;
874 875 876 877 878

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

879
		if (slen > tp->slen)
880
			tp->slen = slen;
881
	}
882

883
	return tp;
884 885
}

886
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
887
{
888
	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
889 890 891 892 893 894
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

895
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
896
{
897 898 899
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
900
	while (tn->slen < l->slen) {
901 902 903 904 905
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
906
/* rcu_read_lock needs to be hold by caller from readside */
907 908
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
909
{
910 911 912 913 914 915 916 917 918
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
919

920
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
921 922 923 924 925 926

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
927
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
928
		 *     we have a mismatch in skip bits and failed
929 930
		 *   else
		 *     we know the value is cindex
931 932 933 934
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
935
		 */
936 937 938 939
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
940

941 942
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
943

944
	*tp = pn;
945

A
Alexander Duyck 已提交
946
	return n;
947 948
}

949 950 951
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
952 953
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
					u8 tos, u32 prio)
954 955 956 957 958 959
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

960
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
961 962 963 964
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
965 966 967 968 969 970 971 972 973
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

974
static void trie_rebalance(struct trie *t, struct key_vector *tn)
975
{
976 977
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
978 979
}

980
static int fib_insert_node(struct trie *t, struct key_vector *tp,
981
			   struct fib_alias *new, t_key key)
982
{
983
	struct key_vector *n, *l;
984

985
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
986
	if (!l)
987
		goto noleaf;
988 989

	/* retrieve child from parent node */
990
	n = get_child(tp, get_index(key, tp));
991

992 993 994 995 996 997 998
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
999
		struct key_vector *tn;
1000

1001
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1002 1003
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1004

1005 1006 1007
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1008

1009
		/* start adding routes into the node */
1010
		put_child_root(tp, key, tn);
1011
		node_set_parent(n, tn);
1012

1013
		/* parent now has a NULL spot where the leaf can go */
1014
		tp = tn;
1015
	}
O
Olof Johansson 已提交
1016

1017
	/* Case 3: n is NULL, and will just insert a new leaf */
1018
	NODE_INIT_PARENT(l, tp);
1019
	put_child_root(tp, key, l);
1020 1021 1022
	trie_rebalance(t, tp);

	return 0;
1023 1024 1025 1026
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1027 1028
}

1029 1030
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1031 1032 1033 1034 1035 1036 1037
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1038
	} else {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1051
	}
R
Robert Olsson 已提交
1052

1053 1054 1055 1056 1057 1058 1059
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1060 1061
}

1062
/* Caller must hold RTNL. */
1063
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1064
{
1065
	struct trie *t = (struct trie *)tb->tb_data;
1066
	struct fib_alias *fa, *new_fa;
1067
	struct key_vector *l, *tp;
1068
	struct fib_info *fi;
A
Alexander Duyck 已提交
1069 1070
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1071
	u8 tos = cfg->fc_tos;
1072
	u32 key;
1073 1074
	int err;

1075
	if (plen > KEYLENGTH)
1076 1077
		return -EINVAL;

1078
	key = ntohl(cfg->fc_dst);
1079

1080
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1081

1082
	if ((plen < KEYLENGTH) && (key << plen))
1083 1084
		return -EINVAL;

1085 1086 1087
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1088
		goto err;
1089
	}
1090

1091
	l = fib_find_node(t, &tp, key);
A
Alexander Duyck 已提交
1092
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1093 1094 1095 1096 1097 1098

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1099 1100
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1101 1102
	 */

1103 1104 1105
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1106 1107

		err = -EEXIST;
1108
		if (cfg->fc_nlflags & NLM_F_EXCL)
1109 1110
			goto out;

1111 1112 1113 1114 1115 1116 1117
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1118
		hlist_for_each_entry_from(fa, fa_list) {
A
Alexander Duyck 已提交
1119
			if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1120 1121 1122
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
1123 1124 1125
			/* duplicate entry from another table */
			if (WARN_ON(fa->tb_id != tb->tb_id))
				continue;
1126 1127 1128 1129 1130 1131 1132
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1133
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1134 1135 1136
			struct fib_info *fi_drop;
			u8 state;

1137 1138 1139 1140
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1141
				goto out;
1142
			}
R
Robert Olsson 已提交
1143
			err = -ENOBUFS;
1144
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1145 1146
			if (new_fa == NULL)
				goto out;
1147 1148

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1149 1150
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1151
			new_fa->fa_type = cfg->fc_type;
1152
			state = fa->fa_state;
1153
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1154
			new_fa->fa_slen = fa->fa_slen;
1155

1156 1157 1158
			err = netdev_switch_fib_ipv4_add(key, plen, fi,
							 new_fa->fa_tos,
							 cfg->fc_type,
1159
							 cfg->fc_nlflags,
1160 1161 1162 1163 1164 1165 1166
							 tb->tb_id);
			if (err) {
				netdev_switch_fib_ipv4_abort(fi);
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1167
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1168

R
Robert Olsson 已提交
1169
			alias_free_mem_rcu(fa);
1170 1171 1172

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1173
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1174 1175
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1176

O
Olof Johansson 已提交
1177
			goto succeeded;
1178 1179 1180 1181 1182
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1183 1184
		if (fa_match)
			goto out;
1185

1186
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1187
			fa = fa_first;
1188 1189
	}
	err = -ENOENT;
1190
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1191 1192 1193
		goto out;

	err = -ENOBUFS;
1194
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1195 1196 1197 1198 1199
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1200
	new_fa->fa_type = cfg->fc_type;
1201
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1202
	new_fa->fa_slen = slen;
1203
	new_fa->tb_id = tb->tb_id;
1204

1205 1206
	/* (Optionally) offload fib entry to switch hardware. */
	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1207 1208 1209
					 cfg->fc_type,
					 cfg->fc_nlflags,
					 tb->tb_id);
1210 1211 1212 1213 1214
	if (err) {
		netdev_switch_fib_ipv4_abort(fi);
		goto out_free_new_fa;
	}

1215
	/* Insert new entry to the list. */
1216 1217
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1218
		goto out_sw_fib_del;
1219

1220 1221 1222
	if (!plen)
		tb->tb_num_default++;

1223
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1224
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1225
		  &cfg->fc_nlinfo, 0);
1226 1227
succeeded:
	return 0;
1228

1229 1230
out_sw_fib_del:
	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1231 1232
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1233 1234
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1235
err:
1236 1237 1238
	return err;
}

1239
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1240 1241 1242 1243 1244 1245
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1246
/* should be called with rcu_read_lock */
1247
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1248
		     struct fib_result *res, int fib_flags)
1249
{
1250
	struct trie *t = (struct trie *) tb->tb_data;
1251 1252 1253
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1254
	const t_key key = ntohl(flp->daddr);
1255
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1256
	struct fib_alias *fa;
1257
	unsigned long index;
1258
	t_key cindex;
O
Olof Johansson 已提交
1259

1260 1261 1262 1263
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1264
	if (!n)
1265
		return -EAGAIN;
1266 1267

#ifdef CONFIG_IP_FIB_TRIE_STATS
1268
	this_cpu_inc(stats->gets);
1269 1270
#endif

1271 1272
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1273
		index = get_cindex(key, n);
1274 1275 1276 1277 1278 1279

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1280
		 *   if (index >= (1ul << bits))
1281
		 *     we have a mismatch in skip bits and failed
1282 1283
		 *   else
		 *     we know the value is cindex
1284 1285 1286 1287
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1288
		 */
1289
		if (index >= (1ul << n->bits))
1290
			break;
1291

1292 1293
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1294
			goto found;
1295

1296 1297
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1298
		 */
1299
		if (n->slen > n->pos) {
1300 1301
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1302
		}
1303

1304
		n = get_child_rcu(n, index);
1305 1306 1307
		if (unlikely(!n))
			goto backtrace;
	}
1308

1309 1310 1311
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1312
		struct key_vector __rcu **cptr = n->tnode;
1313

1314 1315 1316
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1317
		 */
1318
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1319
			goto backtrace;
O
Olof Johansson 已提交
1320

1321 1322 1323
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1324

1325 1326 1327
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1328 1329
		 */

1330
		while ((n = rcu_dereference(*cptr)) == NULL) {
1331 1332
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1333 1334
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1335
#endif
1336 1337 1338 1339 1340 1341 1342 1343
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1344 1345 1346 1347 1348
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1349
					return -EAGAIN;
1350 1351 1352 1353
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1354
				pn = node_parent_rcu(pn);
1355 1356 1357 1358 1359 1360 1361
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1362
			cptr = &pn->tnode[cindex];
1363
		}
1364
	}
1365

1366
found:
1367 1368 1369
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1370
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1371 1372 1373
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1374

1375
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1376
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1377
			continue;
A
Alexander Duyck 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1387
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1388
			this_cpu_inc(stats->semantic_match_passed);
1389
#endif
A
Alexander Duyck 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1400
				continue;
A
Alexander Duyck 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1412
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1413
			this_cpu_inc(stats->semantic_match_passed);
1414
#endif
A
Alexander Duyck 已提交
1415
			return err;
1416
		}
1417
	}
1418
#ifdef CONFIG_IP_FIB_TRIE_STATS
1419
	this_cpu_inc(stats->semantic_match_miss);
1420 1421
#endif
	goto backtrace;
1422
}
1423
EXPORT_SYMBOL_GPL(fib_table_lookup);
1424

1425 1426
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1439
		put_child_root(tp, l->key, NULL);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1455
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1456 1457 1458
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1459
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1460 1461
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1462 1463
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1464

A
Alexander Duyck 已提交
1465
	if (plen > KEYLENGTH)
1466 1467
		return -EINVAL;

1468
	key = ntohl(cfg->fc_dst);
1469

1470
	if ((plen < KEYLENGTH) && (key << plen))
1471 1472
		return -EINVAL;

1473
	l = fib_find_node(t, &tp, key);
1474
	if (!l)
1475 1476
		return -ESRCH;

A
Alexander Duyck 已提交
1477
	fa = fib_find_alias(&l->leaf, slen, tos, 0);
1478 1479 1480
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1481
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1482 1483

	fa_to_delete = NULL;
1484
	hlist_for_each_entry_from(fa, fa_list) {
1485 1486
		struct fib_info *fi = fa->fa_info;

A
Alexander Duyck 已提交
1487
		if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1488 1489
			break;

1490 1491 1492
		if (fa->tb_id != tb->tb_id)
			continue;

1493 1494
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1495
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1496 1497
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1498 1499 1500
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1501 1502 1503 1504 1505
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1506 1507
	if (!fa_to_delete)
		return -ESRCH;
1508

1509 1510 1511
	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
				   cfg->fc_type, tb->tb_id);

1512
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1513
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1514

1515 1516 1517
	if (!plen)
		tb->tb_num_default--;

1518
	fib_remove_alias(t, tp, l, fa_to_delete);
1519

1520
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1521
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1522

1523 1524
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1525
	return 0;
1526 1527
}

1528
/* Scan for the next leaf starting at the provided key value */
1529
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1530
{
1531
	struct key_vector *pn, *n = *tn;
1532
	unsigned long cindex;
1533

1534
	/* this loop is meant to try and find the key in the trie */
1535
	do {
1536 1537
		/* record parent and next child index */
		pn = n;
1538
		cindex = key ? get_index(key, pn) : 0;
1539 1540 1541

		if (cindex >> pn->bits)
			break;
1542

1543
		/* descend into the next child */
1544
		n = get_child_rcu(pn, cindex++);
1545 1546 1547 1548 1549 1550 1551
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1552

1553
	/* this loop will search for the next leaf with a greater key */
1554
	while (!IS_TRIE(pn)) {
1555 1556 1557
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1558

1559 1560 1561 1562
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1563

1564
		/* grab the next available node */
1565
		n = get_child_rcu(pn, cindex++);
1566 1567
		if (!n)
			continue;
1568

1569 1570 1571
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1572

1573 1574 1575 1576
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1577

1578 1579 1580 1581
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1582
	*tn = pn;
1583
	return n;
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
					     NULL, l->key))
				goto out;
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1700 1701 1702 1703
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
1704 1705 1706
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
1707 1708
	struct fib_alias *fa;

1709 1710
	/* walk trie in reverse order */
	for (;;) {
1711
		unsigned char slen = 0;
1712
		struct key_vector *n;
1713

1714 1715
		if (!(cindex--)) {
			t_key pkey = pn->key;
1716

1717 1718 1719
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1720

1721 1722
			/* resize completed node */
			pn = resize(t, pn);
1723
			cindex = get_index(pkey, pn);
1724

1725 1726
			continue;
		}
1727

1728 1729 1730 1731
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1732

1733 1734 1735 1736
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1737

1738
			continue;
1739
		}
1740

1741 1742 1743
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;

1756 1757
			if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
				continue;
1758

1759 1760 1761 1762 1763
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
		}
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		} else {
			leaf_pull_suffix(pn, n);
		}
1774
	}
1775 1776
}

1777
/* Caller must hold RTNL. */
1778
int fib_table_flush(struct fib_table *tb)
1779
{
1780
	struct trie *t = (struct trie *)tb->tb_data;
1781 1782
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1783 1784
	struct hlist_node *tmp;
	struct fib_alias *fa;
1785
	int found = 0;
1786

1787 1788 1789 1790
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1791

1792 1793
		if (!(cindex--)) {
			t_key pkey = pn->key;
1794

1795 1796 1797
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1798

1799 1800 1801
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1802

1803 1804
			continue;
		}
1805

1806 1807 1808 1809
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1810

1811 1812 1813 1814
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1815

1816 1817
			continue;
		}
1818

1819 1820
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1821

1822 1823 1824 1825
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
				slen = fa->fa_slen;
				continue;
			}
1826

1827 1828 1829 1830
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
1831 1832 1833 1834
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1835 1836
		}

1837 1838
		/* update leaf slen */
		n->slen = slen;
1839

1840 1841 1842 1843 1844 1845
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		} else {
			leaf_pull_suffix(pn, n);
		}
1846
	}
1847

S
Stephen Hemminger 已提交
1848
	pr_debug("trie_flush found=%d\n", found);
1849 1850 1851
	return found;
}

1852
static void __trie_free_rcu(struct rcu_head *head)
1853
{
1854
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1855 1856 1857
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1858 1859
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1860
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1861 1862 1863
	kfree(tb);
}

1864 1865 1866 1867 1868
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1869
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1870
			     struct sk_buff *skb, struct netlink_callback *cb)
1871
{
A
Alexander Duyck 已提交
1872
	__be32 xkey = htonl(l->key);
1873
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1874
	int i, s_i;
1875

A
Alexander Duyck 已提交
1876
	s_i = cb->args[4];
1877 1878
	i = 0;

R
Robert Olsson 已提交
1879
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1880
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1881 1882 1883 1884 1885
		if (i < s_i) {
			i++;
			continue;
		}

1886 1887 1888 1889 1890
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

1891
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1892 1893 1894 1895
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1896
				  xkey,
1897
				  KEYLENGTH - fa->fa_slen,
1898
				  fa->fa_tos,
1899
				  fa->fa_info, NLM_F_MULTI) < 0) {
1900
			cb->args[4] = i;
1901 1902
			return -1;
		}
1903
		i++;
1904
	}
1905

1906
	cb->args[4] = i;
1907 1908 1909
	return skb->len;
}

1910
/* rcu_read_lock needs to be hold by caller from readside */
1911 1912
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1913
{
1914
	struct trie *t = (struct trie *)tb->tb_data;
1915
	struct key_vector *l, *tp = t->kv;
1916 1917 1918
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1919 1920
	int count = cb->args[2];
	t_key key = cb->args[3];
1921

1922
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1923
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1924 1925
			cb->args[3] = key;
			cb->args[2] = count;
1926
			return -1;
1927
		}
1928

1929
		++count;
1930 1931
		key = l->key + 1;

1932 1933
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1934 1935 1936 1937

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1938
	}
1939 1940 1941 1942

	cb->args[3] = key;
	cb->args[2] = count;

1943 1944 1945
	return skb->len;
}

1946
void __init fib_trie_init(void)
1947
{
1948 1949
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1950 1951 1952
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1953
					   LEAF_SIZE,
1954
					   0, SLAB_PANIC, NULL);
1955
}
1956

1957
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1958 1959 1960
{
	struct fib_table *tb;
	struct trie *t;
1961 1962 1963 1964
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
1965

1966
	tb = kzalloc(sz, GFP_KERNEL);
1967 1968 1969 1970
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1971
	tb->tb_default = -1;
1972
	tb->tb_num_default = 0;
1973 1974 1975 1976
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
1977 1978

	t = (struct trie *) tb->tb_data;
1979 1980
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
1981 1982 1983 1984 1985 1986 1987
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1988 1989 1990 1991

	return tb;
}

1992 1993 1994
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1995
	struct seq_net_private p;
1996
	struct fib_table *tb;
1997
	struct key_vector *tnode;
E
Eric Dumazet 已提交
1998 1999
	unsigned int index;
	unsigned int depth;
2000
};
2001

2002
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2003
{
2004
	unsigned long cindex = iter->index;
2005 2006
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2007

2008 2009
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2010

2011 2012 2013 2014 2015 2016 2017
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2018
			if (IS_LEAF(n)) {
2019 2020
				iter->tnode = pn;
				iter->index = cindex;
2021 2022
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2023
				iter->tnode = n;
2024 2025 2026
				iter->index = 0;
				++iter->depth;
			}
2027

2028 2029
			return n;
		}
2030

2031 2032 2033 2034
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2035
		--iter->depth;
2036
	}
2037

2038 2039 2040 2041
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2042
	return NULL;
2043 2044
}

2045 2046
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2047
{
2048
	struct key_vector *n, *pn = t->kv;
2049

S
Stephen Hemminger 已提交
2050
	if (!t)
2051 2052
		return NULL;

2053
	n = rcu_dereference(pn->tnode[0]);
2054
	if (!n)
2055
		return NULL;
2056

2057
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2058
		iter->tnode = n;
2059 2060 2061
		iter->index = 0;
		iter->depth = 1;
	} else {
2062
		iter->tnode = pn;
2063 2064
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2065
	}
2066 2067

	return n;
2068
}
O
Olof Johansson 已提交
2069

2070 2071
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2072
	struct key_vector *n;
2073
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2074

2075
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2076

2077
	rcu_read_lock();
2078
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2079
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2080
			struct fib_alias *fa;
2081

2082 2083 2084 2085
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2086

A
Alexander Duyck 已提交
2087
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2088
				++s->prefixes;
2089 2090
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2091 2092
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2093
			s->nullpointers += tn_info(n)->empty_children;
2094 2095
		}
	}
R
Robert Olsson 已提交
2096
	rcu_read_unlock();
2097 2098
}

2099 2100 2101 2102
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2103
{
E
Eric Dumazet 已提交
2104
	unsigned int i, max, pointers, bytes, avdepth;
2105

2106 2107 2108 2109
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2110

2111 2112
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2113
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2114

2115
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2116
	bytes = LEAF_SIZE * stat->leaves;
2117 2118

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2119
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2120

2121
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2122
	bytes += TNODE_SIZE(0) * stat->tnodes;
2123

R
Robert Olsson 已提交
2124 2125
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2126
		max--;
2127

2128
	pointers = 0;
2129
	for (i = 1; i < max; i++)
2130
		if (stat->nodesizes[i] != 0) {
2131
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2132 2133 2134
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2135
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2136

2137
	bytes += sizeof(struct key_vector *) * pointers;
2138 2139
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2140
}
R
Robert Olsson 已提交
2141

2142
#ifdef CONFIG_IP_FIB_TRIE_STATS
2143
static void trie_show_usage(struct seq_file *seq,
2144
			    const struct trie_use_stats __percpu *stats)
2145
{
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2161
	seq_printf(seq, "\nCounters:\n---------\n");
2162 2163
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2164
	seq_printf(seq, "semantic match passed = %u\n",
2165 2166 2167 2168
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2169
}
2170 2171
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2172
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2173
{
2174 2175 2176 2177 2178 2179
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2180
}
2181

2182

2183 2184
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2185
	struct net *net = (struct net *)seq->private;
2186
	unsigned int h;
2187

2188
	seq_printf(seq,
2189 2190
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2191
		   LEAF_SIZE, TNODE_SIZE(0));
2192

2193 2194 2195 2196
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2197
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2198 2199
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2200

2201 2202 2203 2204 2205 2206 2207 2208
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2209
			trie_show_usage(seq, t->stats);
2210 2211 2212
#endif
		}
	}
2213

2214
	return 0;
2215 2216
}

2217
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2218
{
2219
	return single_open_net(inode, file, fib_triestat_seq_show);
2220 2221
}

2222
static const struct file_operations fib_triestat_fops = {
2223 2224 2225 2226
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2227
	.release = single_release_net,
2228 2229
};

2230
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2231
{
2232 2233
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2234
	loff_t idx = 0;
2235
	unsigned int h;
2236

2237 2238 2239
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2240

2241
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2242
			struct key_vector *n;
2243 2244 2245 2246 2247 2248 2249 2250 2251

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2252
	}
2253

2254 2255 2256
	return NULL;
}

2257
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2258
	__acquires(RCU)
2259
{
2260
	rcu_read_lock();
2261
	return fib_trie_get_idx(seq, *pos);
2262 2263
}

2264
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2265
{
2266
	struct fib_trie_iter *iter = seq->private;
2267
	struct net *net = seq_file_net(seq);
2268 2269 2270
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2271
	struct key_vector *n;
2272

2273
	++*pos;
2274 2275 2276 2277
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2278

2279 2280
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2281
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2282 2283 2284 2285 2286
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2287

2288 2289 2290
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2291
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2292 2293 2294 2295 2296
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2297
	return NULL;
2298 2299 2300 2301

found:
	iter->tb = tb;
	return n;
2302
}
2303

2304
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2305
	__releases(RCU)
2306
{
2307 2308
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2309

2310 2311
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2312 2313
	while (n-- > 0)
		seq_puts(seq, "   ");
2314
}
2315

2316
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2317
{
S
Stephen Hemminger 已提交
2318
	switch (s) {
2319 2320 2321 2322 2323 2324
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2325
		snprintf(buf, len, "scope=%d", s);
2326 2327 2328
		return buf;
	}
}
2329

2330
static const char *const rtn_type_names[__RTN_MAX] = {
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2344

E
Eric Dumazet 已提交
2345
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2346 2347 2348
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2349
	snprintf(buf, len, "type %u", t);
2350
	return buf;
2351 2352
}

2353 2354
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2355
{
2356
	const struct fib_trie_iter *iter = seq->private;
2357
	struct key_vector *n = v;
2358

2359
	if (IS_TRIE(node_parent_rcu(n)))
2360
		fib_table_print(seq, iter->tb);
2361

2362
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2363
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2364

2365 2366 2367
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2368 2369
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2370
	} else {
A
Alexander Duyck 已提交
2371
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2372
		struct fib_alias *fa;
2373 2374

		seq_indent(seq, iter->depth);
2375
		seq_printf(seq, "  |-- %pI4\n", &val);
2376

A
Alexander Duyck 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2390
		}
2391
	}
2392

2393 2394 2395
	return 0;
}

2396
static const struct seq_operations fib_trie_seq_ops = {
2397 2398 2399 2400
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2401 2402
};

2403
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2404
{
2405 2406
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2407 2408
}

2409
static const struct file_operations fib_trie_fops = {
2410 2411 2412 2413
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2414
	.release = seq_release_net,
2415 2416
};

2417 2418
struct fib_route_iter {
	struct seq_net_private p;
2419
	struct fib_table *main_tb;
2420
	struct key_vector *tnode;
2421 2422 2423 2424
	loff_t	pos;
	t_key	key;
};

2425 2426
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2427
{
2428
	struct fib_table *tb = iter->main_tb;
2429
	struct key_vector *l, **tp = &iter->tnode;
2430 2431
	struct trie *t;
	t_key key;
2432

2433 2434
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2435
		pos -= iter->pos;
2436 2437 2438
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
2439
		iter->tnode = t->kv;
2440
		iter->pos = 0;
2441
		key = 0;
2442 2443
	}

2444 2445
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2446
		iter->pos++;
2447 2448 2449 2450 2451 2452 2453 2454 2455

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2456 2457 2458
	}

	if (l)
2459
		iter->key = key;	/* remember it */
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2471
	struct trie *t;
2472 2473

	rcu_read_lock();
2474

2475
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2476 2477 2478
	if (!tb)
		return NULL;

2479 2480 2481 2482 2483 2484
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
2485
	iter->tnode = t->kv;
2486 2487 2488 2489
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2490 2491 2492 2493 2494
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2495
	struct key_vector *l = NULL;
2496
	t_key key = iter->key;
2497 2498

	++*pos;
2499 2500 2501 2502 2503 2504 2505

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2506
		iter->pos++;
2507 2508
	} else {
		iter->pos = 0;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2520
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2521
{
E
Eric Dumazet 已提交
2522
	unsigned int flags = 0;
2523

E
Eric Dumazet 已提交
2524 2525
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2526 2527
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2528
	if (mask == htonl(0xFFFFFFFF))
2529 2530 2531
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2532 2533
}

2534 2535 2536
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2537
 *	and needs to be same as fib_hash output to avoid breaking
2538 2539 2540
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2541
{
2542 2543
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2544
	struct fib_alias *fa;
2545
	struct key_vector *l = v;
2546
	__be32 prefix;
2547

2548 2549 2550 2551 2552 2553
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2554

2555 2556
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2557 2558 2559 2560
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2561

A
Alexander Duyck 已提交
2562 2563 2564
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2565

2566 2567 2568
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2590

A
Alexander Duyck 已提交
2591
		seq_pad(seq, '\n');
2592 2593 2594 2595 2596
	}

	return 0;
}

2597
static const struct seq_operations fib_route_seq_ops = {
2598 2599 2600
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2601
	.show   = fib_route_seq_show,
2602 2603
};

2604
static int fib_route_seq_open(struct inode *inode, struct file *file)
2605
{
2606
	return seq_open_net(inode, file, &fib_route_seq_ops,
2607
			    sizeof(struct fib_route_iter));
2608 2609
}

2610
static const struct file_operations fib_route_fops = {
2611 2612 2613 2614
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2615
	.release = seq_release_net,
2616 2617
};

2618
int __net_init fib_proc_init(struct net *net)
2619
{
2620
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2621 2622
		goto out1;

2623 2624
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2625 2626
		goto out2;

2627
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2628 2629
		goto out3;

2630
	return 0;
2631 2632

out3:
2633
	remove_proc_entry("fib_triestat", net->proc_net);
2634
out2:
2635
	remove_proc_entry("fib_trie", net->proc_net);
2636 2637
out1:
	return -ENOMEM;
2638 2639
}

2640
void __net_exit fib_proc_exit(struct net *net)
2641
{
2642 2643 2644
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2645 2646 2647
}

#endif /* CONFIG_PROC_FS */