fib_trie.c 59.2 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
#include "fib_lookup.h"

R
Robert Olsson 已提交
84
#define MAX_STAT_DEPTH 32
85

86 87
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
88 89 90

typedef unsigned int t_key;

91 92
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
93

94
#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
95

96
struct tnode {
97 98 99 100 101 102
	struct rcu_head rcu;

	t_key empty_children; /* KEYLENGTH bits needed */
	t_key full_children;  /* KEYLENGTH bits needed */
	struct tnode __rcu *parent;

103 104
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
105
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
106
	unsigned char slen;
A
Alexander Duyck 已提交
107
	union {
108
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
109
		struct hlist_head leaf;
110 111
		/* This array is valid if (pos | bits) > 0 (TNODE) */
		struct tnode __rcu *tnode[0];
A
Alexander Duyck 已提交
112
	};
113 114
};

115 116 117
#define TNODE_SIZE(n)	offsetof(struct tnode, tnode[n])
#define LEAF_SIZE	TNODE_SIZE(1)

118 119 120 121 122 123 124
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
125
	unsigned int resize_node_skipped;
126 127 128 129 130 131 132 133 134
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
135
	unsigned int prefixes;
R
Robert Olsson 已提交
136
	unsigned int nodesizes[MAX_STAT_DEPTH];
137
};
138 139

struct trie {
A
Alexander Duyck 已提交
140
	struct tnode __rcu *trie;
141
#ifdef CONFIG_IP_FIB_TRIE_STATS
142
	struct trie_use_stats __percpu *stats;
143 144 145
#endif
};

146
static void resize(struct trie *t, struct tnode *tn);
147 148 149 150 151 152 153 154
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
155

156
static struct kmem_cache *fn_alias_kmem __read_mostly;
157
static struct kmem_cache *trie_leaf_kmem __read_mostly;
158

159 160
/* caller must hold RTNL */
#define node_parent(n) rtnl_dereference((n)->parent)
E
Eric Dumazet 已提交
161

162 163
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
E
Eric Dumazet 已提交
164

165
/* wrapper for rcu_assign_pointer */
A
Alexander Duyck 已提交
166
static inline void node_set_parent(struct tnode *n, struct tnode *tp)
167
{
A
Alexander Duyck 已提交
168 169
	if (n)
		rcu_assign_pointer(n->parent, tp);
S
Stephen Hemminger 已提交
170 171
}

172 173 174 175
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
176
 */
177
static inline unsigned long tnode_child_length(const struct tnode *tn)
S
Stephen Hemminger 已提交
178
{
179
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
180
}
R
Robert Olsson 已提交
181

182 183 184
/* caller must hold RTNL */
static inline struct tnode *tnode_get_child(const struct tnode *tn,
					    unsigned long i)
185
{
186
	return rtnl_dereference(tn->tnode[i]);
187 188
}

189 190 191
/* caller must hold RCU read lock or RTNL */
static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
						unsigned long i)
192
{
193
	return rcu_dereference_rtnl(tn->tnode[i]);
194 195
}

196 197 198 199 200 201 202
static inline struct fib_table *trie_get_table(struct trie *t)
{
	unsigned long *tb_data = (unsigned long *)t;

	return container_of(tb_data, struct fib_table, tb_data[0]);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
261

262 263
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
264
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
265
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
266 267

static void __alias_free_mem(struct rcu_head *head)
268
{
R
Robert Olsson 已提交
269 270
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
271 272
}

R
Robert Olsson 已提交
273
static inline void alias_free_mem_rcu(struct fib_alias *fa)
274
{
R
Robert Olsson 已提交
275 276
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
277

278
#define TNODE_KMALLOC_MAX \
279
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct tnode *))
280 281
#define TNODE_VMALLOC_MAX \
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct tnode *))
O
Olof Johansson 已提交
282

283
static void __node_free_rcu(struct rcu_head *head)
284
{
A
Alexander Duyck 已提交
285
	struct tnode *n = container_of(head, struct tnode, rcu);
286 287 288 289 290 291 292

	if (IS_LEAF(n))
		kmem_cache_free(trie_leaf_kmem, n);
	else if (n->bits <= TNODE_KMALLOC_MAX)
		kfree(n);
	else
		vfree(n);
293 294
}

295 296
#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)

297
static struct tnode *tnode_alloc(int bits)
298
{
299 300 301 302 303 304 305 306 307
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
308
	if (size <= PAGE_SIZE)
309
		return kzalloc(size, GFP_KERNEL);
310
	else
311
		return vzalloc(size);
312
}
R
Robert Olsson 已提交
313

314 315 316 317 318 319 320 321 322 323
static inline void empty_child_inc(struct tnode *n)
{
	++n->empty_children ? : ++n->full_children;
}

static inline void empty_child_dec(struct tnode *n)
{
	n->empty_children-- ? : n->full_children--;
}

324
static struct tnode *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
325
{
A
Alexander Duyck 已提交
326
	struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
327
	if (l) {
328 329 330 331 332 333
		l->parent = NULL;
		/* set key and pos to reflect full key value
		 * any trailing zeros in the key should be ignored
		 * as the nodes are searched
		 */
		l->key = key;
334
		l->slen = fa->fa_slen;
335
		l->pos = 0;
336 337 338
		/* set bits to 0 indicating we are not a tnode */
		l->bits = 0;

339
		/* link leaf to fib alias */
A
Alexander Duyck 已提交
340
		INIT_HLIST_HEAD(&l->leaf);
341
		hlist_add_head(&fa->fa_list, &l->leaf);
R
Robert Olsson 已提交
342 343 344 345
	}
	return l;
}

346
static struct tnode *tnode_new(t_key key, int pos, int bits)
347
{
348
	struct tnode *tn = tnode_alloc(bits);
349 350 351 352
	unsigned int shift = pos + bits;

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
353

O
Olof Johansson 已提交
354
	if (tn) {
355
		tn->parent = NULL;
356
		tn->slen = pos;
357 358
		tn->pos = pos;
		tn->bits = bits;
359
		tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
360 361 362 363
		if (bits == KEYLENGTH)
			tn->full_children = 1;
		else
			tn->empty_children = 1ul << bits;
364
	}
365

366
	pr_debug("AT %p s=%zu %zu\n", tn, TNODE_SIZE(0),
A
Alexander Duyck 已提交
367
		 sizeof(struct tnode *) << bits);
368 369 370
	return tn;
}

371
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
372 373
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
A
Alexander Duyck 已提交
374
static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
375
{
376
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
377 378
}

379 380 381 382
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
383
{
384
	struct tnode *chi = tnode_get_child(tn, i);
385
	int isfull, wasfull;
386

387
	BUG_ON(i >= tnode_child_length(tn));
S
Stephen Hemminger 已提交
388

389
	/* update emptyChildren, overflow into fullChildren */
390
	if (n == NULL && chi != NULL)
391 392 393
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
394

395
	/* update fullChildren */
396
	wasfull = tnode_full(tn, chi);
397
	isfull = tnode_full(tn, n);
398

399
	if (wasfull && !isfull)
400
		tn->full_children--;
401
	else if (!wasfull && isfull)
402
		tn->full_children++;
O
Olof Johansson 已提交
403

404 405 406
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

407
	rcu_assign_pointer(tn->tnode[i], n);
408 409
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static void update_children(struct tnode *tn)
{
	unsigned long i;

	/* update all of the child parent pointers */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

static inline void put_child_root(struct tnode *tp, struct trie *t,
				  t_key key, struct tnode *n)
434 435 436 437 438 439 440
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
		rcu_assign_pointer(t->trie, n);
}

441
static inline void tnode_free_init(struct tnode *tn)
E
Eric Dumazet 已提交
442
{
443 444 445 446 447 448 449 450
	tn->rcu.next = NULL;
}

static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
{
	n->rcu.next = tn->rcu.next;
	tn->rcu.next = &n->rcu;
}
E
Eric Dumazet 已提交
451

452 453 454 455 456 457
static void tnode_free(struct tnode *tn)
{
	struct callback_head *head = &tn->rcu;

	while (head) {
		head = head->next;
458
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
459 460 461 462 463 464 465 466
		node_free(tn);

		tn = container_of(head, struct tnode, rcu);
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
467 468 469
	}
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
{
	struct tnode *tp = node_parent(oldtnode);
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
	put_child_root(tp, t, tn->key, tn);

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		/* resize child node */
		if (tnode_full(tn, inode))
			resize(t, inode);
	}
}

495
static int inflate(struct trie *t, struct tnode *oldtnode)
496
{
497 498
	struct tnode *tn;
	unsigned long i;
499
	t_key m;
500

S
Stephen Hemminger 已提交
501
	pr_debug("In inflate\n");
502

503
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
504
	if (!tn)
505
		return -ENOMEM;
506

507 508 509
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

510 511 512 513
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
514
	 */
515
	for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
516 517 518
		struct tnode *inode = tnode_get_child(oldtnode, --i);
		struct tnode *node0, *node1;
		unsigned long j, k;
519

520
		/* An empty child */
A
Alexander Duyck 已提交
521
		if (inode == NULL)
522 523 524
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
525
		if (!tnode_full(oldtnode, inode)) {
526
			put_child(tn, get_index(inode->key, tn), inode);
527 528 529
			continue;
		}

530 531 532
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

533 534
		/* An internal node with two children */
		if (inode->bits == 1) {
535 536
			put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
			put_child(tn, 2 * i, tnode_get_child(inode, 0));
O
Olof Johansson 已提交
537
			continue;
538 539
		}

O
Olof Johansson 已提交
540
		/* We will replace this node 'inode' with two new
541
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
542 543 544 545 546
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
547
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
548 549
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
550 551 552
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
553
		 */
554 555 556
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
557
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
558

559
		tnode_free_append(tn, node1);
560 561 562 563 564 565 566 567 568 569 570
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
		for (k = tnode_child_length(inode), j = k / 2; j;) {
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
		}
571

572 573 574
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
575

576 577 578 579
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
580

581 582
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
583

584
	return 0;
585
nomem:
586 587
	/* all pointers should be clean so we are done */
	tnode_free(tn);
588
	return -ENOMEM;
589 590
}

591
static int halve(struct trie *t, struct tnode *oldtnode)
592
{
593
	struct tnode *tn;
594
	unsigned long i;
595

S
Stephen Hemminger 已提交
596
	pr_debug("In halve\n");
597

598
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
599
	if (!tn)
600
		return -ENOMEM;
601

602 603 604
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

605 606 607 608
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
609
	 */
610
	for (i = tnode_child_length(oldtnode); i;) {
611 612 613
		struct tnode *node1 = tnode_get_child(oldtnode, --i);
		struct tnode *node0 = tnode_get_child(oldtnode, --i);
		struct tnode *inode;
614

615 616 617 618 619
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
620

621
		/* Two nonempty children */
622 623 624 625
		inode = tnode_new(node0->key, oldtnode->pos, 1);
		if (!inode) {
			tnode_free(tn);
			return -ENOMEM;
626
		}
627
		tnode_free_append(tn, inode);
628

629 630 631 632 633 634 635
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
636
	}
637

638 639
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
640 641

	return 0;
642 643
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static void collapse(struct trie *t, struct tnode *oldtnode)
{
	struct tnode *n, *tp;
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
	for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
		n = tnode_get_child(oldtnode, --i);

	/* compress one level */
	tp = node_parent(oldtnode);
	put_child_root(tp, t, oldtnode->key, n);
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static unsigned char update_suffix(struct tnode *tn)
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
	for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
		struct tnode *n = tnode_get_child(tn, i);

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
 * tnode_child_length() and instead of multiplying by 2 (since the
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
 * The left-hand side may look a bit weird: tnode_child_length(tn)
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 *     tn->full_children;
 *
 * new_child_length = tnode_child_length(tn) * 2;
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >=
 *      inflate_threshold * tnode_child_length(tn) * 2
 *
 * shorten again:
 * 50 * (tn->full_children + tnode_child_length(tn) -
 *    tn->empty_children) >= inflate_threshold *
 *    tnode_child_length(tn)
 *
 */
754
static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
755 756 757 758 759
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
760
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
761
	used -= tn->empty_children;
762
	used += tn->full_children;
763

764 765 766
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
767 768
}

769
static bool should_halve(const struct tnode *tp, const struct tnode *tn)
770 771 772 773 774
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
775
	threshold *= tp ? halve_threshold : halve_threshold_root;
776 777
	used -= tn->empty_children;

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

static bool should_collapse(const struct tnode *tn)
{
	unsigned long used = tnode_child_length(tn);

	used -= tn->empty_children;

	/* account for bits == KEYLENGTH case */
	if ((tn->bits == KEYLENGTH) && tn->full_children)
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
795 796
}

797
#define MAX_WORK 10
798
static void resize(struct trie *t, struct tnode *tn)
799
{
800
	struct tnode *tp = node_parent(tn);
801
	struct tnode __rcu **cptr;
802
	int max_work = MAX_WORK;
803 804 805 806

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

807 808 809 810
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
811
	cptr = tp ? &tp->tnode[get_index(tn->key, tp)] : &t->trie;
812 813
	BUG_ON(tn != rtnl_dereference(*cptr));

814 815
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
816
	 */
817
	while (should_inflate(tp, tn) && max_work) {
818
		if (inflate(t, tn)) {
819 820 821 822 823
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}
824

825
		max_work--;
826
		tn = rtnl_dereference(*cptr);
827 828 829 830
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
831
		return;
832

833
	/* Halve as long as the number of empty children in this
834 835
	 * node is above threshold.
	 */
836
	while (should_halve(tp, tn) && max_work) {
837
		if (halve(t, tn)) {
838 839 840 841 842 843
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}

844
		max_work--;
845 846
		tn = rtnl_dereference(*cptr);
	}
847 848

	/* Only one child remains */
849 850
	if (should_collapse(tn)) {
		collapse(t, tn);
851 852 853 854 855 856 857 858 859 860 861 862 863
		return;
	}

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
		return;

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

		if (tp && (slen > tp->slen))
			tp->slen = slen;
864 865 866
	}
}

867
static void leaf_pull_suffix(struct tnode *tp, struct tnode *l)
868 869 870 871 872 873 874 875
{
	while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

876
static void leaf_push_suffix(struct tnode *tn, struct tnode *l)
877
{
878 879 880 881 882 883 884 885 886
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	while (tn && (tn->slen < l->slen)) {
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
887
/* rcu_read_lock needs to be hold by caller from readside */
888
static struct tnode *fib_find_node(struct trie *t, struct tnode **tn, u32 key)
889
{
890
	struct tnode *pn = NULL, *n = rcu_dereference_rtnl(t->trie);
A
Alexander Duyck 已提交
891 892 893 894 895 896 897 898 899

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
900
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
901
		 *     we have a mismatch in skip bits and failed
902 903
		 *   else
		 *     we know the value is cindex
904 905 906 907
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
908
		 */
909 910 911 912
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
913 914 915

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
916 917
			break;

918
		pn = n;
919
		n = tnode_get_child_rcu(n, index);
A
Alexander Duyck 已提交
920
	}
O
Olof Johansson 已提交
921

922 923
	*tn = pn;

A
Alexander Duyck 已提交
924
	return n;
925 926
}

927 928 929
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
930 931
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
					u8 tos, u32 prio)
932 933 934 935 936 937
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

938
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
939 940 941 942
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
943 944 945 946 947 948 949 950 951
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

952
static void trie_rebalance(struct trie *t, struct tnode *tn)
953
{
S
Stephen Hemminger 已提交
954
	struct tnode *tp;
955

956 957
	while (tn) {
		tp = node_parent(tn);
958
		resize(t, tn);
S
Stephen Hemminger 已提交
959
		tn = tp;
960 961 962
	}
}

R
Robert Olsson 已提交
963
/* only used from updater-side */
964 965
static int fib_insert_node(struct trie *t, struct tnode *tp,
			   struct fib_alias *new, t_key key)
966
{
967
	struct tnode *n, *l;
968

969
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
970
	if (!l)
971 972 973 974 975 976 977
		return -ENOMEM;

	/* retrieve child from parent node */
	if (tp)
		n = tnode_get_child(tp, get_index(key, tp));
	else
		n = rcu_dereference_rtnl(t->trie);
978

979 980 981 982 983 984 985 986
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
		struct tnode *tn;
987

988
		tn = tnode_new(key, __fls(key ^ n->key), 1);
989
		if (!tn) {
990
			node_free(l);
991
			return -ENOMEM;
O
Olof Johansson 已提交
992 993
		}

994 995 996
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
997

998 999 1000
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
1001

1002
		/* parent now has a NULL spot where the leaf can go */
1003
		tp = tn;
1004
	}
O
Olof Johansson 已提交
1005

1006
	/* Case 3: n is NULL, and will just insert a new leaf */
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	NODE_INIT_PARENT(l, tp);
	put_child_root(tp, t, key, l);
	trie_rebalance(t, tp);

	return 0;
}

static int fib_insert_alias(struct trie *t, struct tnode *tp,
			    struct tnode *l, struct fib_alias *new,
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1023
	} else {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1036
	}
R
Robert Olsson 已提交
1037

1038 1039 1040 1041 1042 1043 1044
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1045 1046
}

1047
/* Caller must hold RTNL. */
1048
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1049
{
1050
	struct trie *t = (struct trie *)tb->tb_data;
1051
	struct fib_alias *fa, *new_fa;
1052
	struct tnode *l, *tp;
1053
	struct fib_info *fi;
A
Alexander Duyck 已提交
1054 1055
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1056
	u8 tos = cfg->fc_tos;
1057
	u32 key;
1058 1059
	int err;

1060
	if (plen > KEYLENGTH)
1061 1062
		return -EINVAL;

1063
	key = ntohl(cfg->fc_dst);
1064

1065
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1066

1067
	if ((plen < KEYLENGTH) && (key << plen))
1068 1069
		return -EINVAL;

1070 1071 1072
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1073
		goto err;
1074
	}
1075

1076
	l = fib_find_node(t, &tp, key);
A
Alexander Duyck 已提交
1077
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1078 1079 1080 1081 1082 1083

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1084 1085
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1086 1087
	 */

1088 1089 1090
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1091 1092

		err = -EEXIST;
1093
		if (cfg->fc_nlflags & NLM_F_EXCL)
1094 1095
			goto out;

1096 1097 1098 1099 1100 1101 1102
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1103
		hlist_for_each_entry_from(fa, fa_list) {
A
Alexander Duyck 已提交
1104
			if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1115
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1116 1117 1118
			struct fib_info *fi_drop;
			u8 state;

1119 1120 1121 1122
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1123
				goto out;
1124
			}
R
Robert Olsson 已提交
1125
			err = -ENOBUFS;
1126
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1127 1128
			if (new_fa == NULL)
				goto out;
1129 1130

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1131 1132
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1133
			new_fa->fa_type = cfg->fc_type;
1134
			state = fa->fa_state;
1135
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1136
			new_fa->fa_slen = fa->fa_slen;
1137

1138
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
R
Robert Olsson 已提交
1139
			alias_free_mem_rcu(fa);
1140 1141 1142

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1143
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1144 1145
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1146

O
Olof Johansson 已提交
1147
			goto succeeded;
1148 1149 1150 1151 1152
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1153 1154
		if (fa_match)
			goto out;
1155

1156
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1157
			fa = fa_first;
1158 1159
	}
	err = -ENOENT;
1160
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1161 1162 1163
		goto out;

	err = -ENOBUFS;
1164
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1165 1166 1167 1168 1169
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1170
	new_fa->fa_type = cfg->fc_type;
1171
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1172
	new_fa->fa_slen = slen;
1173

1174
	/* Insert new entry to the list. */
1175 1176 1177
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
		goto out_free_new_fa;
1178

1179 1180 1181
	if (!plen)
		tb->tb_num_default++;

1182
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1183
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1184
		  &cfg->fc_nlinfo, 0);
1185 1186
succeeded:
	return 0;
1187 1188 1189

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1190 1191
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1192
err:
1193 1194 1195
	return err;
}

1196 1197 1198 1199 1200 1201 1202
static inline t_key prefix_mismatch(t_key key, struct tnode *n)
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1203
/* should be called with rcu_read_lock */
1204
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1205
		     struct fib_result *res, int fib_flags)
1206
{
1207
	struct trie *t = (struct trie *)tb->tb_data;
1208 1209 1210
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1211 1212
	const t_key key = ntohl(flp->daddr);
	struct tnode *n, *pn;
A
Alexander Duyck 已提交
1213
	struct fib_alias *fa;
1214
	unsigned long index;
1215
	t_key cindex;
O
Olof Johansson 已提交
1216

R
Robert Olsson 已提交
1217
	n = rcu_dereference(t->trie);
1218
	if (!n)
1219
		return -EAGAIN;
1220 1221

#ifdef CONFIG_IP_FIB_TRIE_STATS
1222
	this_cpu_inc(stats->gets);
1223 1224
#endif

A
Alexander Duyck 已提交
1225
	pn = n;
1226 1227 1228 1229
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1230
		index = get_index(key, n);
1231 1232 1233 1234 1235 1236

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1237
		 *   if (index >= (1ul << bits))
1238
		 *     we have a mismatch in skip bits and failed
1239 1240
		 *   else
		 *     we know the value is cindex
1241 1242 1243 1244
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1245
		 */
1246
		if (index >= (1ul << n->bits))
1247
			break;
1248

1249 1250
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1251
			goto found;
1252

1253 1254
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1255
		 */
1256
		if (n->slen > n->pos) {
1257 1258
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1259
		}
1260

1261
		n = tnode_get_child_rcu(n, index);
1262 1263 1264
		if (unlikely(!n))
			goto backtrace;
	}
1265

1266 1267 1268
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1269
		struct tnode __rcu **cptr = n->tnode;
1270

1271 1272 1273
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1274
		 */
1275
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1276
			goto backtrace;
O
Olof Johansson 已提交
1277

1278 1279 1280
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1281

1282 1283 1284
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1285 1286
		 */

1287
		while ((n = rcu_dereference(*cptr)) == NULL) {
1288 1289
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1290 1291
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1292
#endif
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1303
					return -EAGAIN;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1315
			cptr = &pn->tnode[cindex];
1316
		}
1317
	}
1318

1319
found:
1320 1321 1322
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1323
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1324 1325 1326
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1327

1328
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1329
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1330
			continue;
A
Alexander Duyck 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1340
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1341
			this_cpu_inc(stats->semantic_match_passed);
1342
#endif
A
Alexander Duyck 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1353
				continue;
A
Alexander Duyck 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1365
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1366
			this_cpu_inc(stats->semantic_match_passed);
1367
#endif
A
Alexander Duyck 已提交
1368
			return err;
1369
		}
1370
	}
1371
#ifdef CONFIG_IP_FIB_TRIE_STATS
1372
	this_cpu_inc(stats->semantic_match_miss);
1373 1374
#endif
	goto backtrace;
1375
}
1376
EXPORT_SYMBOL_GPL(fib_table_lookup);
1377

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static void fib_remove_alias(struct trie *t, struct tnode *tp,
			     struct tnode *l, struct fib_alias *old)
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
		put_child_root(tp, t, l->key, NULL);
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1408
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1409 1410 1411
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1412
	struct tnode *l, *tp;
A
Alexander Duyck 已提交
1413 1414
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1415 1416
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1417

A
Alexander Duyck 已提交
1418
	if (plen > KEYLENGTH)
1419 1420
		return -EINVAL;

1421
	key = ntohl(cfg->fc_dst);
1422

1423
	if ((plen < KEYLENGTH) && (key << plen))
1424 1425
		return -EINVAL;

1426
	l = fib_find_node(t, &tp, key);
1427
	if (!l)
1428 1429
		return -ESRCH;

A
Alexander Duyck 已提交
1430
	fa = fib_find_alias(&l->leaf, slen, tos, 0);
1431 1432 1433
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1434
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1435 1436

	fa_to_delete = NULL;
1437
	hlist_for_each_entry_from(fa, fa_list) {
1438 1439
		struct fib_info *fi = fa->fa_info;

A
Alexander Duyck 已提交
1440
		if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1441 1442
			break;

1443 1444
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1445
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1446 1447
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1448 1449 1450
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1451 1452 1453 1454 1455
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1456 1457
	if (!fa_to_delete)
		return -ESRCH;
1458

1459
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1460
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1461

1462 1463 1464
	if (!plen)
		tb->tb_num_default--;

1465
	fib_remove_alias(t, tp, l, fa_to_delete);
1466

1467
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1468
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1469

1470 1471
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1472
	return 0;
1473 1474
}

1475 1476
/* Scan for the next leaf starting at the provided key value */
static struct tnode *leaf_walk_rcu(struct tnode **tn, t_key key)
1477
{
1478 1479
	struct tnode *pn, *n = *tn;
	unsigned long cindex;
1480

1481 1482 1483
	/* record parent node for backtracing */
	pn = n;
	cindex = n ? get_index(key, n) : 0;
1484

1485 1486 1487
	/* this loop is meant to try and find the key in the trie */
	while (n) {
		unsigned long idx = get_index(key, n);
1488

1489 1490 1491 1492 1493
		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
		if (idx >= (1ul << n->bits))
			break;
1494

1495 1496 1497
		/* record parent and next child index */
		pn = n;
		cindex = idx;
1498

1499 1500 1501
		/* descend into the next child */
		n = tnode_get_child_rcu(pn, cindex++);
	}
1502

1503 1504 1505 1506 1507
	/* this loop will search for the next leaf with a greater key */
	while (pn) {
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1508

1509 1510 1511
			pn = node_parent_rcu(pn);
			if (!pn)
				break;
1512

1513 1514 1515
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1516

1517 1518 1519 1520
		/* grab the next available node */
		n = tnode_get_child_rcu(pn, cindex++);
		if (!n)
			continue;
1521

1522 1523 1524
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1525

1526 1527 1528 1529
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1530

1531 1532 1533 1534 1535 1536
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
	*tn = (n->key == KEY_MAX) ? NULL : pn;
	return n;
1537 1538
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct fib_alias *fa;
	struct tnode *n, *pn;
	unsigned long cindex;
	unsigned char slen;
	int found = 0;

	n = rcu_dereference(t->trie);
	if (!n)
		return;

	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
				t_key pkey = pn->key;

				n = pn;
				pn = node_parent(n);

				/* resize completed node */
				resize(t, n);

				/* if we got the root we are done */
				if (!pn)
					return;

				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
			n = tnode_get_child(pn, cindex);
		} while (!n);
	}

	hlist_for_each_entry(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fi && (fi->fib_flags & RTNH_F_EXTERNAL)) {
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
		}
	}

	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
}

1600
/* Caller must hold RTNL. */
1601
int fib_table_flush(struct fib_table *tb)
1602
{
1603 1604 1605 1606 1607 1608
	struct trie *t = (struct trie *)tb->tb_data;
	struct hlist_node *tmp;
	struct fib_alias *fa;
	struct tnode *n, *pn;
	unsigned long cindex;
	unsigned char slen;
1609
	int found = 0;
1610

1611 1612 1613
	n = rcu_dereference(t->trie);
	if (!n)
		goto flush_complete;
1614

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
				t_key pkey = pn->key;

				n = pn;
				pn = node_parent(n);

				/* resize completed node */
				resize(t, n);

				/* if we got the root we are done */
				if (!pn)
					goto flush_complete;

				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
			n = tnode_get_child(pn, cindex);
		} while (!n);
	}

	/* track slen in case any prefixes survive */
	slen = 0;

	hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;

			continue;
1659 1660
		}

1661
		slen = fa->fa_slen;
1662 1663
	}

1664 1665 1666 1667 1668 1669 1670
	/* update leaf slen */
	n->slen = slen;

	if (hlist_empty(&n->leaf)) {
		put_child_root(pn, t, n->key, NULL);
		node_free(n);
	} else {
1671
		leaf_pull_suffix(pn, n);
1672
	}
1673

1674 1675 1676 1677
	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
flush_complete:
S
Stephen Hemminger 已提交
1678
	pr_debug("trie_flush found=%d\n", found);
1679 1680 1681
	return found;
}

1682
static void __trie_free_rcu(struct rcu_head *head)
1683
{
1684
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1685 1686 1687 1688 1689
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1690 1691 1692
	kfree(tb);
}

1693 1694 1695 1696 1697
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

A
Alexander Duyck 已提交
1698 1699
static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
			     struct sk_buff *skb, struct netlink_callback *cb)
1700
{
A
Alexander Duyck 已提交
1701
	__be32 xkey = htonl(l->key);
1702
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1703
	int i, s_i;
1704

A
Alexander Duyck 已提交
1705
	s_i = cb->args[4];
1706 1707
	i = 0;

R
Robert Olsson 已提交
1708
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1709
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1710 1711 1712 1713 1714
		if (i < s_i) {
			i++;
			continue;
		}

1715
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1716 1717 1718 1719
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1720
				  xkey,
1721
				  KEYLENGTH - fa->fa_slen,
1722
				  fa->fa_tos,
1723
				  fa->fa_info, NLM_F_MULTI) < 0) {
1724
			cb->args[4] = i;
1725 1726
			return -1;
		}
1727
		i++;
1728
	}
1729

1730
	cb->args[4] = i;
1731 1732 1733
	return skb->len;
}

1734
/* rcu_read_lock needs to be hold by caller from readside */
1735 1736
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1737
{
1738 1739
	struct trie *t = (struct trie *)tb->tb_data;
	struct tnode *l, *tp;
1740 1741 1742
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1743 1744
	int count = cb->args[2];
	t_key key = cb->args[3];
1745

1746 1747 1748
	tp = rcu_dereference_rtnl(t->trie);

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1749
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1750 1751
			cb->args[3] = key;
			cb->args[2] = count;
1752
			return -1;
1753
		}
1754

1755
		++count;
1756 1757
		key = l->key + 1;

1758 1759
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1760 1761 1762 1763

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1764
	}
1765 1766 1767 1768

	cb->args[3] = key;
	cb->args[2] = count;

1769 1770 1771
	return skb->len;
}

1772
void __init fib_trie_init(void)
1773
{
1774 1775
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1776 1777 1778
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1779
					   LEAF_SIZE,
1780
					   0, SLAB_PANIC, NULL);
1781
}
1782

1783

1784
struct fib_table *fib_trie_table(u32 id)
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1795
	tb->tb_default = -1;
1796
	tb->tb_num_default = 0;
1797 1798

	t = (struct trie *) tb->tb_data;
1799 1800 1801 1802 1803 1804 1805 1806
	RCU_INIT_POINTER(t->trie, NULL);
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1807 1808 1809 1810

	return tb;
}

1811 1812 1813
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1814
	struct seq_net_private p;
1815
	struct fib_table *tb;
1816
	struct tnode *tnode;
E
Eric Dumazet 已提交
1817 1818
	unsigned int index;
	unsigned int depth;
1819
};
1820

A
Alexander Duyck 已提交
1821
static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1822
{
1823
	unsigned long cindex = iter->index;
1824 1825
	struct tnode *tn = iter->tnode;
	struct tnode *p;
1826

1827 1828 1829 1830
	/* A single entry routing table */
	if (!tn)
		return NULL;

1831 1832 1833
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1834
	while (cindex < tnode_child_length(tn)) {
A
Alexander Duyck 已提交
1835
		struct tnode *n = tnode_get_child_rcu(tn, cindex);
1836

1837 1838 1839 1840 1841 1842
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1843
				iter->tnode = n;
1844 1845 1846 1847 1848
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1849

1850 1851
		++cindex;
	}
O
Olof Johansson 已提交
1852

1853
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1854
	p = node_parent_rcu(tn);
1855
	if (p) {
1856
		cindex = get_index(tn->key, p) + 1;
1857 1858 1859
		tn = p;
		--iter->depth;
		goto rescan;
1860
	}
1861 1862 1863

	/* got root? */
	return NULL;
1864 1865
}

A
Alexander Duyck 已提交
1866
static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1867
				       struct trie *t)
1868
{
A
Alexander Duyck 已提交
1869
	struct tnode *n;
1870

S
Stephen Hemminger 已提交
1871
	if (!t)
1872 1873 1874
		return NULL;

	n = rcu_dereference(t->trie);
1875
	if (!n)
1876
		return NULL;
1877

1878
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1879
		iter->tnode = n;
1880 1881 1882 1883 1884 1885
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1886
	}
1887 1888

	return n;
1889
}
O
Olof Johansson 已提交
1890

1891 1892
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
A
Alexander Duyck 已提交
1893
	struct tnode *n;
1894
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1895

1896
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1897

1898
	rcu_read_lock();
1899
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1900
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
1901
			struct fib_alias *fa;
1902

1903 1904 1905 1906
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1907

A
Alexander Duyck 已提交
1908
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
1909
				++s->prefixes;
1910 1911
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
1912 1913
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
1914
			s->nullpointers += n->empty_children;
1915 1916
		}
	}
R
Robert Olsson 已提交
1917
	rcu_read_unlock();
1918 1919
}

1920 1921 1922 1923
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1924
{
E
Eric Dumazet 已提交
1925
	unsigned int i, max, pointers, bytes, avdepth;
1926

1927 1928 1929 1930
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
1931

1932 1933
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
1934
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
1935

1936
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
1937
	bytes = LEAF_SIZE * stat->leaves;
1938 1939

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
1940
	bytes += sizeof(struct fib_alias) * stat->prefixes;
1941

1942
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1943
	bytes += TNODE_SIZE(0) * stat->tnodes;
1944

R
Robert Olsson 已提交
1945 1946
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
1947
		max--;
1948

1949
	pointers = 0;
1950
	for (i = 1; i < max; i++)
1951
		if (stat->nodesizes[i] != 0) {
1952
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
1953 1954 1955
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
1956
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
1957

A
Alexander Duyck 已提交
1958
	bytes += sizeof(struct tnode *) * pointers;
1959 1960
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
1961
}
R
Robert Olsson 已提交
1962

1963
#ifdef CONFIG_IP_FIB_TRIE_STATS
1964
static void trie_show_usage(struct seq_file *seq,
1965
			    const struct trie_use_stats __percpu *stats)
1966
{
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

1982
	seq_printf(seq, "\nCounters:\n---------\n");
1983 1984
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
1985
	seq_printf(seq, "semantic match passed = %u\n",
1986 1987 1988 1989
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
1990
}
1991 1992
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

1993
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
1994
{
1995 1996 1997 1998 1999 2000
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2001
}
2002

2003

2004 2005
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2006
	struct net *net = (struct net *)seq->private;
2007
	unsigned int h;
2008

2009
	seq_printf(seq,
2010 2011
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2012
		   LEAF_SIZE, TNODE_SIZE(0));
2013

2014 2015 2016 2017
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2018
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2019 2020
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2021

2022 2023 2024 2025 2026 2027 2028 2029
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2030
			trie_show_usage(seq, t->stats);
2031 2032 2033
#endif
		}
	}
2034

2035
	return 0;
2036 2037
}

2038
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2039
{
2040
	return single_open_net(inode, file, fib_triestat_seq_show);
2041 2042
}

2043
static const struct file_operations fib_triestat_fops = {
2044 2045 2046 2047
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2048
	.release = single_release_net,
2049 2050
};

A
Alexander Duyck 已提交
2051
static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2052
{
2053 2054
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2055
	loff_t idx = 0;
2056
	unsigned int h;
2057

2058 2059 2060
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2061

2062
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
A
Alexander Duyck 已提交
2063
			struct tnode *n;
2064 2065 2066 2067 2068 2069 2070 2071 2072

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2073
	}
2074

2075 2076 2077
	return NULL;
}

2078
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2079
	__acquires(RCU)
2080
{
2081
	rcu_read_lock();
2082
	return fib_trie_get_idx(seq, *pos);
2083 2084
}

2085
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2086
{
2087
	struct fib_trie_iter *iter = seq->private;
2088
	struct net *net = seq_file_net(seq);
2089 2090 2091
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
A
Alexander Duyck 已提交
2092
	struct tnode *n;
2093

2094
	++*pos;
2095 2096 2097 2098
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2099

2100 2101
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2102
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2103 2104 2105 2106 2107
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2108

2109 2110 2111
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2112
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2113 2114 2115 2116 2117
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2118
	return NULL;
2119 2120 2121 2122

found:
	iter->tb = tb;
	return n;
2123
}
2124

2125
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2126
	__releases(RCU)
2127
{
2128 2129
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2130

2131 2132
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2133 2134
	while (n-- > 0)
		seq_puts(seq, "   ");
2135
}
2136

2137
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2138
{
S
Stephen Hemminger 已提交
2139
	switch (s) {
2140 2141 2142 2143 2144 2145
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2146
		snprintf(buf, len, "scope=%d", s);
2147 2148 2149
		return buf;
	}
}
2150

2151
static const char *const rtn_type_names[__RTN_MAX] = {
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2165

E
Eric Dumazet 已提交
2166
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2167 2168 2169
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2170
	snprintf(buf, len, "type %u", t);
2171
	return buf;
2172 2173
}

2174 2175
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2176
{
2177
	const struct fib_trie_iter *iter = seq->private;
A
Alexander Duyck 已提交
2178
	struct tnode *n = v;
2179

2180 2181
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2182

2183
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2184
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2185

2186 2187 2188 2189
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
			   n->full_children, n->empty_children);
2190
	} else {
A
Alexander Duyck 已提交
2191
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2192
		struct fib_alias *fa;
2193 2194

		seq_indent(seq, iter->depth);
2195
		seq_printf(seq, "  |-- %pI4\n", &val);
2196

A
Alexander Duyck 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2210
		}
2211
	}
2212

2213 2214 2215
	return 0;
}

2216
static const struct seq_operations fib_trie_seq_ops = {
2217 2218 2219 2220
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2221 2222
};

2223
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2224
{
2225 2226
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2227 2228
}

2229
static const struct file_operations fib_trie_fops = {
2230 2231 2232 2233
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2234
	.release = seq_release_net,
2235 2236
};

2237 2238
struct fib_route_iter {
	struct seq_net_private p;
2239 2240
	struct fib_table *main_tb;
	struct tnode *tnode;
2241 2242 2243 2244
	loff_t	pos;
	t_key	key;
};

A
Alexander Duyck 已提交
2245
static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2246
{
2247 2248 2249 2250
	struct fib_table *tb = iter->main_tb;
	struct tnode *l, **tp = &iter->tnode;
	struct trie *t;
	t_key key;
2251

2252 2253
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2254
		pos -= iter->pos;
2255 2256 2257 2258
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
		iter->tnode = rcu_dereference_rtnl(t->trie);
2259
		iter->pos = 0;
2260
		key = 0;
2261 2262
	}

2263 2264
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2265
		iter->pos++;
2266 2267 2268 2269 2270 2271 2272 2273 2274

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2275 2276 2277
	}

	if (l)
2278
		iter->key = key;	/* remember it */
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2290
	struct trie *t;
2291 2292

	rcu_read_lock();
2293

2294
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2295 2296 2297
	if (!tb)
		return NULL;

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
	iter->tnode = rcu_dereference_rtnl(t->trie);
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2309 2310 2311 2312 2313
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2314 2315
	struct tnode *l = NULL;
	t_key key = iter->key;
2316 2317

	++*pos;
2318 2319 2320 2321 2322 2323 2324

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2325
		iter->pos++;
2326 2327
	} else {
		iter->pos = 0;
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2339
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2340
{
E
Eric Dumazet 已提交
2341
	unsigned int flags = 0;
2342

E
Eric Dumazet 已提交
2343 2344
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2345 2346
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2347
	if (mask == htonl(0xFFFFFFFF))
2348 2349 2350
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2351 2352
}

2353 2354 2355
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2356
 *	and needs to be same as fib_hash output to avoid breaking
2357 2358 2359
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2360
{
A
Alexander Duyck 已提交
2361
	struct fib_alias *fa;
A
Alexander Duyck 已提交
2362
	struct tnode *l = v;
2363
	__be32 prefix;
2364

2365 2366 2367 2368 2369 2370
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2371

2372 2373
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2374 2375 2376 2377
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2378

A
Alexander Duyck 已提交
2379 2380 2381
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2382

A
Alexander Duyck 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2404

A
Alexander Duyck 已提交
2405
		seq_pad(seq, '\n');
2406 2407 2408 2409 2410
	}

	return 0;
}

2411
static const struct seq_operations fib_route_seq_ops = {
2412 2413 2414
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2415
	.show   = fib_route_seq_show,
2416 2417
};

2418
static int fib_route_seq_open(struct inode *inode, struct file *file)
2419
{
2420
	return seq_open_net(inode, file, &fib_route_seq_ops,
2421
			    sizeof(struct fib_route_iter));
2422 2423
}

2424
static const struct file_operations fib_route_fops = {
2425 2426 2427 2428
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2429
	.release = seq_release_net,
2430 2431
};

2432
int __net_init fib_proc_init(struct net *net)
2433
{
2434
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2435 2436
		goto out1;

2437 2438
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2439 2440
		goto out2;

2441
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2442 2443
		goto out3;

2444
	return 0;
2445 2446

out3:
2447
	remove_proc_entry("fib_triestat", net->proc_net);
2448
out2:
2449
	remove_proc_entry("fib_trie", net->proc_net);
2450 2451
out1:
	return -ENOMEM;
2452 2453
}

2454
void __net_exit fib_proc_exit(struct net *net)
2455
{
2456 2457 2458
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2459 2460 2461
}

#endif /* CONFIG_PROC_FS */