fib_trie.c 65.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52

53
#include <linux/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <linux/vmalloc.h>
76
#include <linux/notifier.h>
77
#include <net/net_namespace.h>
78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
D
David Ahern 已提交
84
#include <trace/events/fib.h>
85 86
#include "fib_lookup.h"

87 88 89
static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
				   enum fib_event_type event_type, u32 dst,
				   int dst_len, struct fib_info *fi,
90
				   u8 tos, u8 type, u32 tb_id)
91 92 93 94 95 96 97 98 99 100 101 102
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
		.fi = fi,
		.tos = tos,
		.type = type,
		.tb_id = tb_id,
	};
	return call_fib_notifier(nb, net, event_type, &info.info);
}

103 104 105
static int call_fib_entry_notifiers(struct net *net,
				    enum fib_event_type event_type, u32 dst,
				    int dst_len, struct fib_info *fi,
106
				    u8 tos, u8 type, u32 tb_id)
107 108 109 110 111 112 113 114 115 116 117 118
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
		.fi = fi,
		.tos = tos,
		.type = type,
		.tb_id = tb_id,
	};
	return call_fib_notifiers(net, event_type, &info.info);
}

R
Robert Olsson 已提交
119
#define MAX_STAT_DEPTH 32
120

121 122
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
123 124 125

typedef unsigned int t_key;

126 127 128
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
129

130
struct key_vector {
131 132
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
133
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
134
	unsigned char slen;
A
Alexander Duyck 已提交
135
	union {
136
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
137
		struct hlist_head leaf;
138
		/* This array is valid if (pos | bits) > 0 (TNODE) */
139
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
140
	};
141 142
};

143
struct tnode {
144
	struct rcu_head rcu;
145 146
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
147
	struct key_vector __rcu *parent;
148
	struct key_vector kv[1];
149
#define tn_bits kv[0].bits
150 151 152
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
153 154
#define LEAF_SIZE	TNODE_SIZE(1)

155 156 157 158 159 160 161
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
162
	unsigned int resize_node_skipped;
163 164 165 166 167 168 169 170 171
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
172
	unsigned int prefixes;
R
Robert Olsson 已提交
173
	unsigned int nodesizes[MAX_STAT_DEPTH];
174
};
175 176

struct trie {
177
	struct key_vector kv[1];
178
#ifdef CONFIG_IP_FIB_TRIE_STATS
179
	struct trie_use_stats __percpu *stats;
180 181 182
#endif
};

183
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
184 185 186 187 188 189 190 191
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
192

193
static struct kmem_cache *fn_alias_kmem __read_mostly;
194
static struct kmem_cache *trie_leaf_kmem __read_mostly;
195

196 197 198 199 200
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

201
/* caller must hold RTNL */
202
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
203
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
204

205
/* caller must hold RCU read lock or RTNL */
206
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
207
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
208

209
/* wrapper for rcu_assign_pointer */
210
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
211
{
A
Alexander Duyck 已提交
212
	if (n)
213
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
214 215
}

216
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
217 218 219

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
220
 */
221
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
222
{
223
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
224
}
R
Robert Olsson 已提交
225

226 227
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

228 229 230 231
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

232 233 234
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

235 236 237
	return index >> kv->pos;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
284
 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
285 286 287 288 289 290 291 292
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
293
 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
294 295
 * at this point.
 */
296

297 298
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
299
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
300
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
301 302

static void __alias_free_mem(struct rcu_head *head)
303
{
R
Robert Olsson 已提交
304 305
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
306 307
}

R
Robert Olsson 已提交
308
static inline void alias_free_mem_rcu(struct fib_alias *fa)
309
{
R
Robert Olsson 已提交
310 311
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
312

313
#define TNODE_KMALLOC_MAX \
314
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
315
#define TNODE_VMALLOC_MAX \
316
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
317

318
static void __node_free_rcu(struct rcu_head *head)
319
{
320
	struct tnode *n = container_of(head, struct tnode, rcu);
321

322
	if (!n->tn_bits)
323 324
		kmem_cache_free(trie_leaf_kmem, n);
	else
325
		kvfree(n);
326 327
}

328
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
329

330
static struct tnode *tnode_alloc(int bits)
331
{
332 333 334 335 336 337 338 339 340
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
341
	if (size <= PAGE_SIZE)
342
		return kzalloc(size, GFP_KERNEL);
343
	else
344
		return vzalloc(size);
345
}
R
Robert Olsson 已提交
346

347
static inline void empty_child_inc(struct key_vector *n)
348
{
349
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
350 351
}

352
static inline void empty_child_dec(struct key_vector *n)
353
{
354
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
355 356
}

357
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
358
{
359 360
	struct key_vector *l;
	struct tnode *kv;
361

362
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
363 364 365 366
	if (!kv)
		return NULL;

	/* initialize key vector */
367
	l = kv->kv;
368 369 370 371 372 373 374 375 376
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
377 378 379
	return l;
}

380
static struct key_vector *tnode_new(t_key key, int pos, int bits)
381
{
382
	unsigned int shift = pos + bits;
383 384
	struct key_vector *tn;
	struct tnode *tnode;
385 386 387

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
388

389
	tnode = tnode_alloc(bits);
390 391 392
	if (!tnode)
		return NULL;

393 394 395
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

396
	if (bits == KEYLENGTH)
397
		tnode->full_children = 1;
398
	else
399
		tnode->empty_children = 1ul << bits;
400

401
	tn = tnode->kv;
402 403 404 405 406
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

407 408 409
	return tn;
}

410
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
411 412
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
413
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
414
{
415
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
416 417
}

418 419 420
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
421 422
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
423
{
424
	struct key_vector *chi = get_child(tn, i);
425
	int isfull, wasfull;
426

427
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
428

429
	/* update emptyChildren, overflow into fullChildren */
430
	if (!n && chi)
431
		empty_child_inc(tn);
432
	if (n && !chi)
433
		empty_child_dec(tn);
434

435
	/* update fullChildren */
436
	wasfull = tnode_full(tn, chi);
437
	isfull = tnode_full(tn, n);
438

439
	if (wasfull && !isfull)
440
		tn_info(tn)->full_children--;
441
	else if (!wasfull && isfull)
442
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
443

444 445 446
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

447
	rcu_assign_pointer(tn->tnode[i], n);
448 449
}

450
static void update_children(struct key_vector *tn)
451 452 453 454
{
	unsigned long i;

	/* update all of the child parent pointers */
455
	for (i = child_length(tn); i;) {
456
		struct key_vector *inode = get_child(tn, --i);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

472 473
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
474
{
475 476
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
477
	else
478
		put_child(tp, get_index(key, tp), n);
479 480
}

481
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
482
{
483
	tn_info(tn)->rcu.next = NULL;
484 485
}

486 487
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
488
{
489 490
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
491
}
E
Eric Dumazet 已提交
492

493
static void tnode_free(struct key_vector *tn)
494
{
495
	struct callback_head *head = &tn_info(tn)->rcu;
496 497 498

	while (head) {
		head = head->next;
499
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
500 501
		node_free(tn);

502
		tn = container_of(head, struct tnode, rcu)->kv;
503 504 505 506 507
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
508 509 510
	}
}

511 512 513
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
514
{
515
	struct key_vector *tp = node_parent(oldtnode);
516 517 518 519
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
520
	put_child_root(tp, tn->key, tn);
521 522 523 524 525 526 527 528

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
529
	for (i = child_length(tn); i;) {
530
		struct key_vector *inode = get_child(tn, --i);
531 532 533

		/* resize child node */
		if (tnode_full(tn, inode))
534
			tn = resize(t, inode);
535
	}
536

537
	return tp;
538 539
}

540 541
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
542
{
543
	struct key_vector *tn;
544
	unsigned long i;
545
	t_key m;
546

S
Stephen Hemminger 已提交
547
	pr_debug("In inflate\n");
548

549
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
550
	if (!tn)
551
		goto notnode;
552

553 554 555
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

556 557 558 559
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
560
	 */
561
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
562
		struct key_vector *inode = get_child(oldtnode, --i);
563
		struct key_vector *node0, *node1;
564
		unsigned long j, k;
565

566
		/* An empty child */
567
		if (!inode)
568 569 570
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
571
		if (!tnode_full(oldtnode, inode)) {
572
			put_child(tn, get_index(inode->key, tn), inode);
573 574 575
			continue;
		}

576 577 578
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

579 580
		/* An internal node with two children */
		if (inode->bits == 1) {
581 582
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
583
			continue;
584 585
		}

O
Olof Johansson 已提交
586
		/* We will replace this node 'inode' with two new
587
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
588 589 590 591 592
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
593
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
594 595
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
596 597 598
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
599
		 */
600 601 602
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
603
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
604

605
		tnode_free_append(tn, node1);
606 607 608 609 610
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
611
		for (k = child_length(inode), j = k / 2; j;) {
612 613 614 615
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
616
		}
617

618 619 620
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
621

622 623 624 625
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
626

627
	/* setup the parent pointers into and out of this node */
628
	return replace(t, oldtnode, tn);
629
nomem:
630 631
	/* all pointers should be clean so we are done */
	tnode_free(tn);
632 633
notnode:
	return NULL;
634 635
}

636 637
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
638
{
639
	struct key_vector *tn;
640
	unsigned long i;
641

S
Stephen Hemminger 已提交
642
	pr_debug("In halve\n");
643

644
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
645
	if (!tn)
646
		goto notnode;
647

648 649 650
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

651 652 653 654
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
655
	 */
656
	for (i = child_length(oldtnode); i;) {
657 658
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
659
		struct key_vector *inode;
660

661 662 663 664 665
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
666

667
		/* Two nonempty children */
668
		inode = tnode_new(node0->key, oldtnode->pos, 1);
669 670
		if (!inode)
			goto nomem;
671
		tnode_free_append(tn, inode);
672

673 674 675 676 677 678 679
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
680
	}
681

682
	/* setup the parent pointers into and out of this node */
683 684 685 686 687 688
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
689 690
}

691 692
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
693
{
694
	struct key_vector *n, *tp;
695 696 697
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
698
	for (n = NULL, i = child_length(oldtnode); !n && i;)
699
		n = get_child(oldtnode, --i);
700 701 702

	/* compress one level */
	tp = node_parent(oldtnode);
703
	put_child_root(tp, oldtnode->key, n);
704 705 706 707
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
708 709

	return tp;
710 711
}

712
static unsigned char update_suffix(struct key_vector *tn)
713 714 715
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;
716 717 718 719 720 721 722
	unsigned char slen_max;

	/* only vector 0 can have a suffix length greater than or equal to
	 * tn->pos + tn->bits, the second highest node will have a suffix
	 * length at most of tn->pos + tn->bits - 1
	 */
	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
723 724 725 726 727 728

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
729
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
730
		struct key_vector *n = get_child(tn, i);
731 732 733 734 735 736 737 738 739

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

740 741
		/* stop searching if we have hit the maximum possible value */
		if (slen >= slen_max)
742 743 744 745 746 747 748 749
			break;
	}

	tn->slen = slen;

	return slen;
}

750 751 752 753 754 755 756 757
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
758
 * child_length() and instead of multiplying by 2 (since the
759 760 761 762
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
763
 * The left-hand side may look a bit weird: child_length(tn)
764 765 766 767 768 769 770 771 772
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
773
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
774 775
 *     tn->full_children;
 *
776
 * new_child_length = child_length(tn) * 2;
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
793
 * 100 * (child_length(tn) - tn->empty_children +
794 795 796
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
797
 * 100 * (child_length(tn) - tn->empty_children +
798
 *    tn->full_children) >=
799
 *      inflate_threshold * child_length(tn) * 2
800 801
 *
 * shorten again:
802
 * 50 * (tn->full_children + child_length(tn) -
803
 *    tn->empty_children) >= inflate_threshold *
804
 *    child_length(tn)
805 806
 *
 */
807
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
808
{
809
	unsigned long used = child_length(tn);
810 811 812
	unsigned long threshold = used;

	/* Keep root node larger */
813
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
814 815
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
816

817 818 819
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
820 821
}

822
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
823
{
824
	unsigned long used = child_length(tn);
825 826 827
	unsigned long threshold = used;

	/* Keep root node larger */
828
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
829
	used -= tn_info(tn)->empty_children;
830

831 832 833 834 835
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

836
static inline bool should_collapse(struct key_vector *tn)
837
{
838
	unsigned long used = child_length(tn);
839

840
	used -= tn_info(tn)->empty_children;
841 842

	/* account for bits == KEYLENGTH case */
843
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
844 845 846 847
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
848 849
}

850
#define MAX_WORK 10
851
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
852
{
853 854 855
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
856
	struct key_vector *tp = node_parent(tn);
857
	unsigned long cindex = get_index(tn->key, tp);
858
	int max_work = MAX_WORK;
859 860 861 862

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

863 864 865 866
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
867
	BUG_ON(tn != get_child(tp, cindex));
868

869 870
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
871
	 */
872
	while (should_inflate(tp, tn) && max_work) {
873 874
		tp = inflate(t, tn);
		if (!tp) {
875
#ifdef CONFIG_IP_FIB_TRIE_STATS
876
			this_cpu_inc(stats->resize_node_skipped);
877 878 879
#endif
			break;
		}
880

881
		max_work--;
882
		tn = get_child(tp, cindex);
883 884
	}

885 886 887
	/* update parent in case inflate failed */
	tp = node_parent(tn);

888 889
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
890
		return tp;
891

892
	/* Halve as long as the number of empty children in this
893 894
	 * node is above threshold.
	 */
895
	while (should_halve(tp, tn) && max_work) {
896 897
		tp = halve(t, tn);
		if (!tp) {
898
#ifdef CONFIG_IP_FIB_TRIE_STATS
899
			this_cpu_inc(stats->resize_node_skipped);
900 901 902 903
#endif
			break;
		}

904
		max_work--;
905
		tn = get_child(tp, cindex);
906
	}
907 908

	/* Only one child remains */
909 910 911
	if (should_collapse(tn))
		return collapse(t, tn);

912
	/* update parent in case halve failed */
913
	return node_parent(tn);
914 915
}

916
static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
917
{
918 919 920 921 922
	unsigned char node_slen = tn->slen;

	while ((node_slen > tn->pos) && (node_slen > slen)) {
		slen = update_suffix(tn);
		if (node_slen == slen)
923
			break;
924 925 926

		tn = node_parent(tn);
		node_slen = tn->slen;
927 928 929
	}
}

930
static void node_push_suffix(struct key_vector *tn, unsigned char slen)
931
{
932 933
	while (tn->slen < slen) {
		tn->slen = slen;
934 935 936 937
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
938
/* rcu_read_lock needs to be hold by caller from readside */
939 940
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
941
{
942 943 944 945 946 947 948 949 950
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
951

952
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
953 954 955 956 957 958

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
959
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
960
		 *     we have a mismatch in skip bits and failed
961 962
		 *   else
		 *     we know the value is cindex
963 964 965 966
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
967
		 */
968 969 970 971
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
972

973 974
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
975

976
	*tp = pn;
977

A
Alexander Duyck 已提交
978
	return n;
979 980
}

981 982 983
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
984
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
985
					u8 tos, u32 prio, u32 tb_id)
986 987 988 989 990 991
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

992
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
993 994 995 996
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
997 998 999 1000
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
1001 1002 1003 1004 1005 1006 1007 1008 1009
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

1010
static void trie_rebalance(struct trie *t, struct key_vector *tn)
1011
{
1012 1013
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
1014 1015
}

1016
static int fib_insert_node(struct trie *t, struct key_vector *tp,
1017
			   struct fib_alias *new, t_key key)
1018
{
1019
	struct key_vector *n, *l;
1020

1021
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
1022
	if (!l)
1023
		goto noleaf;
1024 1025

	/* retrieve child from parent node */
1026
	n = get_child(tp, get_index(key, tp));
1027

1028 1029 1030 1031 1032 1033 1034
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1035
		struct key_vector *tn;
1036

1037
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1038 1039
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1040

1041 1042 1043
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1044

1045
		/* start adding routes into the node */
1046
		put_child_root(tp, key, tn);
1047
		node_set_parent(n, tn);
1048

1049
		/* parent now has a NULL spot where the leaf can go */
1050
		tp = tn;
1051
	}
O
Olof Johansson 已提交
1052

1053
	/* Case 3: n is NULL, and will just insert a new leaf */
1054
	node_push_suffix(tp, new->fa_slen);
1055
	NODE_INIT_PARENT(l, tp);
1056
	put_child_root(tp, key, l);
1057 1058 1059
	trie_rebalance(t, tp);

	return 0;
1060 1061 1062 1063
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1064 1065
}

1066 1067
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1068 1069 1070 1071 1072 1073 1074
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1075
	} else {
1076 1077 1078 1079 1080
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1081 1082 1083
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1084 1085 1086 1087 1088 1089 1090
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1091
	}
R
Robert Olsson 已提交
1092

1093 1094 1095
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
1096
		node_push_suffix(tp, new->fa_slen);
1097 1098 1099
	}

	return 0;
1100 1101
}

1102
/* Caller must hold RTNL. */
1103
int fib_table_insert(struct net *net, struct fib_table *tb,
1104
		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1105
{
1106
	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1107
	struct trie *t = (struct trie *)tb->tb_data;
1108
	struct fib_alias *fa, *new_fa;
1109
	struct key_vector *l, *tp;
1110
	u16 nlflags = NLM_F_EXCL;
1111
	struct fib_info *fi;
A
Alexander Duyck 已提交
1112 1113
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1114
	u8 tos = cfg->fc_tos;
1115
	u32 key;
1116 1117
	int err;

1118
	if (plen > KEYLENGTH)
1119 1120
		return -EINVAL;

1121
	key = ntohl(cfg->fc_dst);
1122

1123
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1124

1125
	if ((plen < KEYLENGTH) && (key << plen))
1126 1127
		return -EINVAL;

1128
	fi = fib_create_info(cfg, extack);
1129 1130
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1131
		goto err;
1132
	}
1133

1134
	l = fib_find_node(t, &tp, key);
1135 1136
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1137 1138 1139 1140 1141 1142

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1143 1144
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1145 1146
	 */

1147 1148 1149
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1150 1151

		err = -EEXIST;
1152
		if (cfg->fc_nlflags & NLM_F_EXCL)
1153 1154
			goto out;

1155 1156
		nlflags &= ~NLM_F_EXCL;

1157 1158 1159 1160 1161 1162 1163
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1164
		hlist_for_each_entry_from(fa, fa_list) {
1165 1166 1167
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1178
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1179 1180 1181
			struct fib_info *fi_drop;
			u8 state;

1182
			nlflags |= NLM_F_REPLACE;
1183 1184 1185 1186
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1187
				goto out;
1188
			}
R
Robert Olsson 已提交
1189
			err = -ENOBUFS;
1190
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1191
			if (!new_fa)
R
Robert Olsson 已提交
1192
				goto out;
1193 1194

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1195 1196
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1197
			new_fa->fa_type = cfg->fc_type;
1198
			state = fa->fa_state;
1199
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1200
			new_fa->fa_slen = fa->fa_slen;
1201
			new_fa->tb_id = tb->tb_id;
1202
			new_fa->fa_default = -1;
1203

1204
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1205 1206
						 key, plen, fi,
						 new_fa->fa_tos, cfg->fc_type,
1207
						 tb->tb_id);
1208 1209 1210
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				  tb->tb_id, &cfg->fc_nlinfo, nlflags);

1211
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1212

R
Robert Olsson 已提交
1213
			alias_free_mem_rcu(fa);
1214 1215 1216

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1217
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1218

O
Olof Johansson 已提交
1219
			goto succeeded;
1220 1221 1222 1223 1224
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1225 1226
		if (fa_match)
			goto out;
1227

1228 1229
		if (cfg->fc_nlflags & NLM_F_APPEND) {
			event = FIB_EVENT_ENTRY_APPEND;
1230
			nlflags |= NLM_F_APPEND;
1231
		} else {
1232
			fa = fa_first;
1233
		}
1234 1235
	}
	err = -ENOENT;
1236
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1237 1238
		goto out;

1239
	nlflags |= NLM_F_CREATE;
1240
	err = -ENOBUFS;
1241
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1242
	if (!new_fa)
1243 1244 1245 1246
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1247
	new_fa->fa_type = cfg->fc_type;
1248
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1249
	new_fa->fa_slen = slen;
1250
	new_fa->tb_id = tb->tb_id;
1251
	new_fa->fa_default = -1;
1252

1253
	/* Insert new entry to the list. */
1254 1255
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1256
		goto out_free_new_fa;
1257

1258 1259 1260
	if (!plen)
		tb->tb_num_default++;

1261
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1262 1263
	call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
				 tb->tb_id);
1264
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1265
		  &cfg->fc_nlinfo, nlflags);
1266 1267
succeeded:
	return 0;
1268 1269 1270

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1271 1272
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1273
err:
1274 1275 1276
	return err;
}

1277
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1278 1279 1280 1281 1282 1283
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1284
/* should be called with rcu_read_lock */
1285
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1286
		     struct fib_result *res, int fib_flags)
1287
{
1288
	struct trie *t = (struct trie *) tb->tb_data;
1289 1290 1291
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1292
	const t_key key = ntohl(flp->daddr);
1293
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1294
	struct fib_alias *fa;
1295
	unsigned long index;
1296
	t_key cindex;
O
Olof Johansson 已提交
1297

D
David Ahern 已提交
1298 1299
	trace_fib_table_lookup(tb->tb_id, flp);

1300 1301 1302 1303
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1304
	if (!n)
1305
		return -EAGAIN;
1306 1307

#ifdef CONFIG_IP_FIB_TRIE_STATS
1308
	this_cpu_inc(stats->gets);
1309 1310
#endif

1311 1312
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1313
		index = get_cindex(key, n);
1314 1315 1316 1317 1318 1319

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1320
		 *   if (index >= (1ul << bits))
1321
		 *     we have a mismatch in skip bits and failed
1322 1323
		 *   else
		 *     we know the value is cindex
1324 1325 1326 1327
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1328
		 */
1329
		if (index >= (1ul << n->bits))
1330
			break;
1331

1332 1333
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1334
			goto found;
1335

1336 1337
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1338
		 */
1339
		if (n->slen > n->pos) {
1340 1341
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1342
		}
1343

1344
		n = get_child_rcu(n, index);
1345 1346 1347
		if (unlikely(!n))
			goto backtrace;
	}
1348

1349 1350 1351
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1352
		struct key_vector __rcu **cptr = n->tnode;
1353

1354 1355 1356
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1357
		 */
1358
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1359
			goto backtrace;
O
Olof Johansson 已提交
1360

1361 1362 1363
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1364

1365 1366 1367
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1368 1369
		 */

1370
		while ((n = rcu_dereference(*cptr)) == NULL) {
1371 1372
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1373 1374
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1375
#endif
1376 1377 1378 1379 1380 1381 1382 1383
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1384 1385 1386 1387 1388
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1389
					return -EAGAIN;
1390 1391 1392 1393
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1394
				pn = node_parent_rcu(pn);
1395 1396 1397 1398 1399 1400 1401
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1402
			cptr = &pn->tnode[cindex];
1403
		}
1404
	}
1405

1406
found:
1407 1408 1409
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1410
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1411 1412 1413
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1414

1415 1416 1417 1418
		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
			if (index >= (1ul << fa->fa_slen))
				continue;
		}
A
Alexander Duyck 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1428
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1429
			this_cpu_inc(stats->semantic_match_passed);
1430
#endif
A
Alexander Duyck 已提交
1431 1432 1433 1434 1435 1436
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1437
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1438 1439 1440

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1441 1442 1443 1444 1445
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
1446
			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1447 1448 1449 1450
				if (flp->flowi4_oif &&
				    flp->flowi4_oif != nh->nh_oif)
					continue;
			}
A
Alexander Duyck 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1462
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1463
			this_cpu_inc(stats->semantic_match_passed);
1464
#endif
D
David Ahern 已提交
1465 1466
			trace_fib_table_lookup_nh(nh);

A
Alexander Duyck 已提交
1467
			return err;
1468
		}
1469
	}
1470
#ifdef CONFIG_IP_FIB_TRIE_STATS
1471
	this_cpu_inc(stats->semantic_match_miss);
1472 1473
#endif
	goto backtrace;
1474
}
1475
EXPORT_SYMBOL_GPL(fib_table_lookup);
1476

1477 1478
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1491 1492
		if (tp->slen == l->slen)
			node_pull_suffix(tp, tp->pos);
1493
		put_child_root(tp, l->key, NULL);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
1505
	node_pull_suffix(tp, fa->fa_slen);
1506 1507 1508
}

/* Caller must hold RTNL. */
1509 1510
int fib_table_delete(struct net *net, struct fib_table *tb,
		     struct fib_config *cfg)
1511 1512 1513
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1514
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1515 1516
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1517 1518
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1519

A
Alexander Duyck 已提交
1520
	if (plen > KEYLENGTH)
1521 1522
		return -EINVAL;

1523
	key = ntohl(cfg->fc_dst);
1524

1525
	if ((plen < KEYLENGTH) && (key << plen))
1526 1527
		return -EINVAL;

1528
	l = fib_find_node(t, &tp, key);
1529
	if (!l)
1530 1531
		return -ESRCH;

1532
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1533 1534 1535
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1536
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1537 1538

	fa_to_delete = NULL;
1539
	hlist_for_each_entry_from(fa, fa_list) {
1540 1541
		struct fib_info *fi = fa->fa_info;

1542 1543 1544
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1545 1546
			break;

1547 1548
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1549
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1550 1551
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1552 1553 1554
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1555 1556 1557 1558 1559
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1560 1561
	if (!fa_to_delete)
		return -ESRCH;
1562

1563
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1564
				 fa_to_delete->fa_info, tos,
1565
				 fa_to_delete->fa_type, tb->tb_id);
1566
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1567
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1568

1569 1570 1571
	if (!plen)
		tb->tb_num_default--;

1572
	fib_remove_alias(t, tp, l, fa_to_delete);
1573

1574
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1575
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1576

1577 1578
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1579
	return 0;
1580 1581
}

1582
/* Scan for the next leaf starting at the provided key value */
1583
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1584
{
1585
	struct key_vector *pn, *n = *tn;
1586
	unsigned long cindex;
1587

1588
	/* this loop is meant to try and find the key in the trie */
1589
	do {
1590 1591
		/* record parent and next child index */
		pn = n;
1592
		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1593 1594 1595

		if (cindex >> pn->bits)
			break;
1596

1597
		/* descend into the next child */
1598
		n = get_child_rcu(pn, cindex++);
1599 1600 1601 1602 1603 1604 1605
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1606

1607
	/* this loop will search for the next leaf with a greater key */
1608
	while (!IS_TRIE(pn)) {
1609 1610 1611
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1612

1613 1614 1615 1616
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1617

1618
		/* grab the next available node */
1619
		n = get_child_rcu(pn, cindex++);
1620 1621
		if (!n)
			continue;
1622

1623 1624 1625
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1626

1627 1628 1629 1630
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1631

1632 1633 1634 1635
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1636
	*tn = pn;
1637
	return n;
1638 1639
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1737 1738
					     NULL, l->key)) {
				kmem_cache_free(fn_alias_kmem, new_fa);
1739
				goto out;
1740
			}
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;

1777 1778 1779 1780
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;
		}

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
	}
}

1825
/* Caller must hold RTNL. */
1826
int fib_table_flush(struct net *net, struct fib_table *tb)
1827
{
1828
	struct trie *t = (struct trie *)tb->tb_data;
1829 1830
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1831 1832
	struct hlist_node *tmp;
	struct fib_alias *fa;
1833
	int found = 0;
1834

1835 1836 1837 1838
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1839

1840 1841
		if (!(cindex--)) {
			t_key pkey = pn->key;
1842

1843 1844 1845
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1846

1847 1848 1849 1850
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1851 1852 1853
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1854

1855 1856
			continue;
		}
1857

1858 1859 1860 1861
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1862

1863 1864 1865 1866
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1867

1868 1869
			continue;
		}
1870

1871 1872
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1873

1874 1875
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
			    tb->tb_id != fa->tb_id) {
1876 1877 1878
				slen = fa->fa_slen;
				continue;
			}
1879

1880 1881 1882 1883
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
						 n->key,
						 KEYLENGTH - fa->fa_slen,
						 fi, fa->fa_tos, fa->fa_type,
1884
						 tb->tb_id);
1885 1886 1887 1888
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1889 1890
		}

1891 1892
		/* update leaf slen */
		n->slen = slen;
1893

1894 1895 1896 1897
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1898
	}
1899

S
Stephen Hemminger 已提交
1900
	pr_debug("trie_flush found=%d\n", found);
1901 1902 1903
	return found;
}

1904
static void fib_leaf_notify(struct net *net, struct key_vector *l,
1905
			    struct fib_table *tb, struct notifier_block *nb)
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
{
	struct fib_alias *fa;

	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (!fi)
			continue;

		/* local and main table can share the same trie,
		 * so don't notify twice for the same entry.
		 */
		if (tb->tb_id != fa->tb_id)
			continue;

1921
		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1922
					KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
1923
					fa->fa_type, fa->tb_id);
1924 1925 1926 1927
	}
}

static void fib_table_notify(struct net *net, struct fib_table *tb,
1928
			     struct notifier_block *nb)
1929 1930 1931 1932 1933 1934
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *l, *tp = t->kv;
	t_key key = 0;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1935
		fib_leaf_notify(net, l, tb, nb);
1936 1937 1938 1939 1940 1941 1942 1943

		key = l->key + 1;
		/* stop in case of wrap around */
		if (key < l->key)
			break;
	}
}

1944
void fib_notify(struct net *net, struct notifier_block *nb)
1945 1946 1947 1948 1949 1950 1951 1952
{
	unsigned int h;

	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1953
			fib_table_notify(net, tb, nb);
1954 1955 1956
	}
}

1957
static void __trie_free_rcu(struct rcu_head *head)
1958
{
1959
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1960 1961 1962
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1963 1964
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1965
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1966 1967 1968
	kfree(tb);
}

1969 1970 1971 1972 1973
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1974
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1975
			     struct sk_buff *skb, struct netlink_callback *cb)
1976
{
A
Alexander Duyck 已提交
1977
	__be32 xkey = htonl(l->key);
1978
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1979
	int i, s_i;
1980

A
Alexander Duyck 已提交
1981
	s_i = cb->args[4];
1982 1983
	i = 0;

R
Robert Olsson 已提交
1984
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1985
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1986 1987
		int err;

1988 1989 1990 1991 1992
		if (i < s_i) {
			i++;
			continue;
		}

1993 1994 1995 1996 1997
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

1998 1999 2000 2001 2002 2003
		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
				    tb->tb_id, fa->fa_type,
				    xkey, KEYLENGTH - fa->fa_slen,
				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
		if (err < 0) {
2004
			cb->args[4] = i;
2005
			return err;
2006
		}
2007
		i++;
2008
	}
2009

2010
	cb->args[4] = i;
2011 2012 2013
	return skb->len;
}

2014
/* rcu_read_lock needs to be hold by caller from readside */
2015 2016
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
2017
{
2018
	struct trie *t = (struct trie *)tb->tb_data;
2019
	struct key_vector *l, *tp = t->kv;
2020 2021 2022
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
2023 2024
	int count = cb->args[2];
	t_key key = cb->args[3];
2025

2026
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2027 2028 2029 2030
		int err;

		err = fn_trie_dump_leaf(l, tb, skb, cb);
		if (err < 0) {
2031 2032
			cb->args[3] = key;
			cb->args[2] = count;
2033
			return err;
2034
		}
2035

2036
		++count;
2037 2038
		key = l->key + 1;

2039 2040
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2041 2042 2043 2044

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
2045
	}
2046 2047 2048 2049

	cb->args[3] = key;
	cb->args[2] = count;

2050 2051 2052
	return skb->len;
}

2053
void __init fib_trie_init(void)
2054
{
2055 2056
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
2057 2058 2059
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2060
					   LEAF_SIZE,
2061
					   0, SLAB_PANIC, NULL);
2062
}
2063

2064
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2065 2066 2067
{
	struct fib_table *tb;
	struct trie *t;
2068 2069 2070 2071
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
2072

2073
	tb = kzalloc(sz, GFP_KERNEL);
2074
	if (!tb)
2075 2076 2077
		return NULL;

	tb->tb_id = id;
2078
	tb->tb_num_default = 0;
2079 2080 2081 2082
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
2083 2084

	t = (struct trie *) tb->tb_data;
2085 2086
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2087 2088 2089 2090 2091 2092 2093
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2094 2095 2096 2097

	return tb;
}

2098 2099 2100
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2101
	struct seq_net_private p;
2102
	struct fib_table *tb;
2103
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2104 2105
	unsigned int index;
	unsigned int depth;
2106
};
2107

2108
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2109
{
2110
	unsigned long cindex = iter->index;
2111 2112
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2113

2114 2115
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2116

2117 2118 2119 2120 2121 2122 2123
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2124
			if (IS_LEAF(n)) {
2125 2126
				iter->tnode = pn;
				iter->index = cindex;
2127 2128
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2129
				iter->tnode = n;
2130 2131 2132
				iter->index = 0;
				++iter->depth;
			}
2133

2134 2135
			return n;
		}
2136

2137 2138 2139 2140
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2141
		--iter->depth;
2142
	}
2143

2144 2145 2146 2147
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2148
	return NULL;
2149 2150
}

2151 2152
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2153
{
2154
	struct key_vector *n, *pn;
2155

S
Stephen Hemminger 已提交
2156
	if (!t)
2157 2158
		return NULL;

2159
	pn = t->kv;
2160
	n = rcu_dereference(pn->tnode[0]);
2161
	if (!n)
2162
		return NULL;
2163

2164
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2165
		iter->tnode = n;
2166 2167 2168
		iter->index = 0;
		iter->depth = 1;
	} else {
2169
		iter->tnode = pn;
2170 2171
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2172
	}
2173 2174

	return n;
2175
}
O
Olof Johansson 已提交
2176

2177 2178
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2179
	struct key_vector *n;
2180
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2181

2182
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2183

2184
	rcu_read_lock();
2185
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2186
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2187
			struct fib_alias *fa;
2188

2189 2190 2191 2192
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2193

A
Alexander Duyck 已提交
2194
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2195
				++s->prefixes;
2196 2197
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2198 2199
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2200
			s->nullpointers += tn_info(n)->empty_children;
2201 2202
		}
	}
R
Robert Olsson 已提交
2203
	rcu_read_unlock();
2204 2205
}

2206 2207 2208 2209
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2210
{
E
Eric Dumazet 已提交
2211
	unsigned int i, max, pointers, bytes, avdepth;
2212

2213 2214 2215 2216
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2217

2218 2219
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2220
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2221

2222
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2223
	bytes = LEAF_SIZE * stat->leaves;
2224 2225

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2226
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2227

2228
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2229
	bytes += TNODE_SIZE(0) * stat->tnodes;
2230

R
Robert Olsson 已提交
2231 2232
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2233
		max--;
2234

2235
	pointers = 0;
2236
	for (i = 1; i < max; i++)
2237
		if (stat->nodesizes[i] != 0) {
2238
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2239 2240 2241
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2242
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2243

2244
	bytes += sizeof(struct key_vector *) * pointers;
2245 2246
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2247
}
R
Robert Olsson 已提交
2248

2249
#ifdef CONFIG_IP_FIB_TRIE_STATS
2250
static void trie_show_usage(struct seq_file *seq,
2251
			    const struct trie_use_stats __percpu *stats)
2252
{
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2268
	seq_printf(seq, "\nCounters:\n---------\n");
2269 2270
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2271
	seq_printf(seq, "semantic match passed = %u\n",
2272 2273 2274 2275
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2276
}
2277 2278
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2279
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2280
{
2281 2282 2283 2284 2285 2286
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2287
}
2288

2289

2290 2291
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2292
	struct net *net = (struct net *)seq->private;
2293
	unsigned int h;
2294

2295
	seq_printf(seq,
2296
		   "Basic info: size of leaf:"
2297
		   " %zd bytes, size of tnode: %zd bytes.\n",
2298
		   LEAF_SIZE, TNODE_SIZE(0));
2299

2300 2301 2302 2303
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2304
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2305 2306
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2307

2308 2309 2310 2311 2312 2313 2314 2315
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2316
			trie_show_usage(seq, t->stats);
2317 2318 2319
#endif
		}
	}
2320

2321
	return 0;
2322 2323
}

2324
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2325
{
2326
	return single_open_net(inode, file, fib_triestat_seq_show);
2327 2328
}

2329
static const struct file_operations fib_triestat_fops = {
2330 2331 2332 2333
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2334
	.release = single_release_net,
2335 2336
};

2337
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2338
{
2339 2340
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2341
	loff_t idx = 0;
2342
	unsigned int h;
2343

2344 2345 2346
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2347

2348
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2349
			struct key_vector *n;
2350 2351 2352 2353 2354 2355 2356 2357 2358

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2359
	}
2360

2361 2362 2363
	return NULL;
}

2364
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2365
	__acquires(RCU)
2366
{
2367
	rcu_read_lock();
2368
	return fib_trie_get_idx(seq, *pos);
2369 2370
}

2371
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2372
{
2373
	struct fib_trie_iter *iter = seq->private;
2374
	struct net *net = seq_file_net(seq);
2375 2376 2377
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2378
	struct key_vector *n;
2379

2380
	++*pos;
2381 2382 2383 2384
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2385

2386 2387
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2388
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2389 2390 2391 2392 2393
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2394

2395 2396 2397
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2398
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2399 2400 2401 2402 2403
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2404
	return NULL;
2405 2406 2407 2408

found:
	iter->tb = tb;
	return n;
2409
}
2410

2411
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2412
	__releases(RCU)
2413
{
2414 2415
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2416

2417 2418
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2419 2420
	while (n-- > 0)
		seq_puts(seq, "   ");
2421
}
2422

2423
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2424
{
S
Stephen Hemminger 已提交
2425
	switch (s) {
2426 2427 2428 2429 2430 2431
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2432
		snprintf(buf, len, "scope=%d", s);
2433 2434 2435
		return buf;
	}
}
2436

2437
static const char *const rtn_type_names[__RTN_MAX] = {
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2451

E
Eric Dumazet 已提交
2452
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2453 2454 2455
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2456
	snprintf(buf, len, "type %u", t);
2457
	return buf;
2458 2459
}

2460 2461
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2462
{
2463
	const struct fib_trie_iter *iter = seq->private;
2464
	struct key_vector *n = v;
2465

2466
	if (IS_TRIE(node_parent_rcu(n)))
2467
		fib_table_print(seq, iter->tb);
2468

2469
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2470
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2471

2472 2473 2474
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2475 2476
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2477
	} else {
A
Alexander Duyck 已提交
2478
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2479
		struct fib_alias *fa;
2480 2481

		seq_indent(seq, iter->depth);
2482
		seq_printf(seq, "  |-- %pI4\n", &val);
2483

A
Alexander Duyck 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2497
		}
2498
	}
2499

2500 2501 2502
	return 0;
}

2503
static const struct seq_operations fib_trie_seq_ops = {
2504 2505 2506 2507
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2508 2509
};

2510
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2511
{
2512 2513
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2514 2515
}

2516
static const struct file_operations fib_trie_fops = {
2517 2518 2519 2520
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2521
	.release = seq_release_net,
2522 2523
};

2524 2525
struct fib_route_iter {
	struct seq_net_private p;
2526
	struct fib_table *main_tb;
2527
	struct key_vector *tnode;
2528 2529 2530 2531
	loff_t	pos;
	t_key	key;
};

2532 2533
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2534
{
2535
	struct key_vector *l, **tp = &iter->tnode;
2536
	t_key key;
2537

2538
	/* use cached location of previously found key */
2539 2540 2541
	if (iter->pos > 0 && pos >= iter->pos) {
		key = iter->key;
	} else {
2542
		iter->pos = 1;
2543
		key = 0;
2544 2545
	}

2546 2547 2548
	pos -= iter->pos;

	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2549
		key = l->key + 1;
2550
		iter->pos++;
2551 2552 2553 2554 2555
		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2556 2557 2558
	}

	if (l)
2559
		iter->key = l->key;	/* remember it */
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2571
	struct trie *t;
2572 2573

	rcu_read_lock();
2574

2575
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2576 2577 2578
	if (!tb)
		return NULL;

2579
	iter->main_tb = tb;
2580 2581
	t = (struct trie *)tb->tb_data;
	iter->tnode = t->kv;
2582 2583 2584 2585 2586

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	iter->pos = 0;
2587
	iter->key = KEY_MAX;
2588 2589

	return SEQ_START_TOKEN;
2590 2591 2592 2593 2594
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2595
	struct key_vector *l = NULL;
2596
	t_key key = iter->key + 1;
2597 2598

	++*pos;
2599 2600 2601 2602 2603 2604

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
2605
		iter->key = l->key;
2606
		iter->pos++;
2607 2608
	} else {
		iter->pos = 0;
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2620
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2621
{
E
Eric Dumazet 已提交
2622
	unsigned int flags = 0;
2623

E
Eric Dumazet 已提交
2624 2625
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2626 2627
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2628
	if (mask == htonl(0xFFFFFFFF))
2629 2630 2631
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2632 2633
}

2634 2635 2636
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2637
 *	and needs to be same as fib_hash output to avoid breaking
2638 2639 2640
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2641
{
2642 2643
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2644
	struct fib_alias *fa;
2645
	struct key_vector *l = v;
2646
	__be32 prefix;
2647

2648 2649 2650 2651 2652 2653
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2654

2655 2656
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2657 2658 2659 2660
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2661

A
Alexander Duyck 已提交
2662 2663 2664
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2665

2666 2667 2668
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2690

A
Alexander Duyck 已提交
2691
		seq_pad(seq, '\n');
2692 2693 2694 2695 2696
	}

	return 0;
}

2697
static const struct seq_operations fib_route_seq_ops = {
2698 2699 2700
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2701
	.show   = fib_route_seq_show,
2702 2703
};

2704
static int fib_route_seq_open(struct inode *inode, struct file *file)
2705
{
2706
	return seq_open_net(inode, file, &fib_route_seq_ops,
2707
			    sizeof(struct fib_route_iter));
2708 2709
}

2710
static const struct file_operations fib_route_fops = {
2711 2712 2713 2714
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2715
	.release = seq_release_net,
2716 2717
};

2718
int __net_init fib_proc_init(struct net *net)
2719
{
2720
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2721 2722
		goto out1;

2723 2724
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2725 2726
		goto out2;

2727
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2728 2729
		goto out3;

2730
	return 0;
2731 2732

out3:
2733
	remove_proc_entry("fib_triestat", net->proc_net);
2734
out2:
2735
	remove_proc_entry("fib_trie", net->proc_net);
2736 2737
out1:
	return -ENOMEM;
2738 2739
}

2740
void __net_exit fib_proc_exit(struct net *net)
2741
{
2742 2743 2744
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2745 2746 2747
}

#endif /* CONFIG_PROC_FS */