fib_trie.c 55.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
#include "fib_lookup.h"

R
Robert Olsson 已提交
84
#define MAX_STAT_DEPTH 32
85 86 87 88 89

#define KEYLENGTH (8*sizeof(t_key))

typedef unsigned int t_key;

90 91
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
92

93
#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
94

95 96 97 98 99
struct tnode {
	t_key key;
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
	struct tnode __rcu *parent;
100
	struct rcu_head rcu;
A
Alexander Duyck 已提交
101 102 103 104 105 106 107 108 109 110
	union {
		/* The fields in this struct are valid if bits > 0 (TNODE) */
		struct {
			unsigned int full_children;  /* KEYLENGTH bits needed */
			unsigned int empty_children; /* KEYLENGTH bits needed */
			struct tnode __rcu *child[0];
		};
		/* This list pointer if valid if bits == 0 (LEAF) */
		struct hlist_head list;
	};
111 112 113 114 115
};

struct leaf_info {
	struct hlist_node hlist;
	int plen;
116
	u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
117
	struct list_head falh;
118
	struct rcu_head rcu;
119 120 121 122 123 124 125 126 127
};

#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
128
	unsigned int resize_node_skipped;
129 130 131 132 133 134 135 136 137
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
138
	unsigned int prefixes;
R
Robert Olsson 已提交
139
	unsigned int nodesizes[MAX_STAT_DEPTH];
140
};
141 142

struct trie {
A
Alexander Duyck 已提交
143
	struct tnode __rcu *trie;
144
#ifdef CONFIG_IP_FIB_TRIE_STATS
145
	struct trie_use_stats __percpu *stats;
146 147 148
#endif
};

149
static void resize(struct trie *t, struct tnode *tn);
J
Jarek Poplawski 已提交
150
/* tnodes to free after resize(); protected by RTNL */
151
static struct callback_head *tnode_free_head;
152 153 154 155 156 157 158 159
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
160

161
static struct kmem_cache *fn_alias_kmem __read_mostly;
162
static struct kmem_cache *trie_leaf_kmem __read_mostly;
163

164 165
/* caller must hold RTNL */
#define node_parent(n) rtnl_dereference((n)->parent)
E
Eric Dumazet 已提交
166

167 168
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
E
Eric Dumazet 已提交
169

170
/* wrapper for rcu_assign_pointer */
A
Alexander Duyck 已提交
171
static inline void node_set_parent(struct tnode *n, struct tnode *tp)
172
{
A
Alexander Duyck 已提交
173 174
	if (n)
		rcu_assign_pointer(n->parent, tp);
S
Stephen Hemminger 已提交
175 176
}

177 178 179 180
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
181
 */
182
static inline unsigned long tnode_child_length(const struct tnode *tn)
S
Stephen Hemminger 已提交
183
{
184
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
185
}
R
Robert Olsson 已提交
186

187 188 189
/* caller must hold RTNL */
static inline struct tnode *tnode_get_child(const struct tnode *tn,
					    unsigned long i)
190
{
191
	BUG_ON(i >= tnode_child_length(tn));
R
Robert Olsson 已提交
192

E
Eric Dumazet 已提交
193
	return rtnl_dereference(tn->child[i]);
194 195
}

196 197 198
/* caller must hold RCU read lock or RTNL */
static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
						unsigned long i)
199
{
200
	BUG_ON(i >= tnode_child_length(tn));
201

E
Eric Dumazet 已提交
202
	return rcu_dereference_rtnl(tn->child[i]);
203 204
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
263

264 265
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
266
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
267
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
268 269

static void __alias_free_mem(struct rcu_head *head)
270
{
R
Robert Olsson 已提交
271 272
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
273 274
}

R
Robert Olsson 已提交
275
static inline void alias_free_mem_rcu(struct fib_alias *fa)
276
{
R
Robert Olsson 已提交
277 278
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
279

280
#define TNODE_KMALLOC_MAX \
A
Alexander Duyck 已提交
281
	ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
O
Olof Johansson 已提交
282

283
static void __node_free_rcu(struct rcu_head *head)
284
{
A
Alexander Duyck 已提交
285
	struct tnode *n = container_of(head, struct tnode, rcu);
286 287 288 289 290 291 292

	if (IS_LEAF(n))
		kmem_cache_free(trie_leaf_kmem, n);
	else if (n->bits <= TNODE_KMALLOC_MAX)
		kfree(n);
	else
		vfree(n);
293 294
}

295 296
#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)

R
Robert Olsson 已提交
297
static inline void free_leaf_info(struct leaf_info *leaf)
298
{
299
	kfree_rcu(leaf, rcu);
300 301
}

302
static struct tnode *tnode_alloc(size_t size)
303
{
R
Robert Olsson 已提交
304
	if (size <= PAGE_SIZE)
305
		return kzalloc(size, GFP_KERNEL);
306
	else
307
		return vzalloc(size);
308
}
R
Robert Olsson 已提交
309

J
Jarek Poplawski 已提交
310 311 312
static void tnode_free_safe(struct tnode *tn)
{
	BUG_ON(IS_LEAF(tn));
313 314
	tn->rcu.next = tnode_free_head;
	tnode_free_head = &tn->rcu;
J
Jarek Poplawski 已提交
315 316 317 318
}

static void tnode_free_flush(void)
{
319 320 321 322 323 324 325
	struct callback_head *head;

	while ((head = tnode_free_head)) {
		struct tnode *tn = container_of(head, struct tnode, rcu);

		tnode_free_head = head->next;
		tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
J
Jarek Poplawski 已提交
326

327
		node_free(tn);
J
Jarek Poplawski 已提交
328
	}
329 330 331 332 333

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
	}
J
Jarek Poplawski 已提交
334 335
}

A
Alexander Duyck 已提交
336
static struct tnode *leaf_new(t_key key)
R
Robert Olsson 已提交
337
{
A
Alexander Duyck 已提交
338
	struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
339
	if (l) {
340 341 342 343 344 345
		l->parent = NULL;
		/* set key and pos to reflect full key value
		 * any trailing zeros in the key should be ignored
		 * as the nodes are searched
		 */
		l->key = key;
346
		l->pos = 0;
347 348 349
		/* set bits to 0 indicating we are not a tnode */
		l->bits = 0;

R
Robert Olsson 已提交
350 351 352 353 354 355 356 357 358 359
		INIT_HLIST_HEAD(&l->list);
	}
	return l;
}

static struct leaf_info *leaf_info_new(int plen)
{
	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
	if (li) {
		li->plen = plen;
360
		li->mask_plen = ntohl(inet_make_mask(plen));
R
Robert Olsson 已提交
361 362 363 364 365
		INIT_LIST_HEAD(&li->falh);
	}
	return li;
}

366
static struct tnode *tnode_new(t_key key, int pos, int bits)
367
{
368
	size_t sz = offsetof(struct tnode, child[1 << bits]);
369
	struct tnode *tn = tnode_alloc(sz);
370 371 372 373
	unsigned int shift = pos + bits;

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
374

O
Olof Johansson 已提交
375
	if (tn) {
376
		tn->parent = NULL;
377 378
		tn->pos = pos;
		tn->bits = bits;
379
		tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
380 381 382
		tn->full_children = 0;
		tn->empty_children = 1<<bits;
	}
383

E
Eric Dumazet 已提交
384
	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
A
Alexander Duyck 已提交
385
		 sizeof(struct tnode *) << bits);
386 387 388
	return tn;
}

389
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
390 391
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
A
Alexander Duyck 已提交
392
static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
393
{
394
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
395 396
}

397 398 399 400
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
401
{
A
Alexander Duyck 已提交
402
	struct tnode *chi = rtnl_dereference(tn->child[i]);
403
	int isfull, wasfull;
404

405
	BUG_ON(i >= tnode_child_length(tn));
S
Stephen Hemminger 已提交
406

407 408 409 410 411
	/* update emptyChildren */
	if (n == NULL && chi != NULL)
		tn->empty_children++;
	else if (n != NULL && chi == NULL)
		tn->empty_children--;
412

413
	/* update fullChildren */
414
	wasfull = tnode_full(tn, chi);
415
	isfull = tnode_full(tn, n);
416

417
	if (wasfull && !isfull)
418
		tn->full_children--;
419
	else if (!wasfull && isfull)
420
		tn->full_children++;
O
Olof Johansson 已提交
421

422
	node_set_parent(n, tn);
423

424
	rcu_assign_pointer(tn->child[i], n);
425 426
}

427 428 429 430 431 432 433 434 435
static void put_child_root(struct tnode *tp, struct trie *t,
			   t_key key, struct tnode *n)
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
		rcu_assign_pointer(t->trie, n);
}

E
Eric Dumazet 已提交
436 437
static void tnode_clean_free(struct tnode *tn)
{
A
Alexander Duyck 已提交
438
	struct tnode *tofree;
439
	unsigned long i;
E
Eric Dumazet 已提交
440 441

	for (i = 0; i < tnode_child_length(tn); i++) {
442
		tofree = tnode_get_child(tn, i);
E
Eric Dumazet 已提交
443
		if (tofree)
444
			node_free(tofree);
E
Eric Dumazet 已提交
445
	}
446
	node_free(tn);
E
Eric Dumazet 已提交
447 448
}

449
static int inflate(struct trie *t, struct tnode *oldtnode)
450
{
451
	unsigned long olen = tnode_child_length(oldtnode);
452
	struct tnode *tp = node_parent(oldtnode);
A
Alexander Duyck 已提交
453
	struct tnode *tn;
454
	unsigned long i;
455
	t_key m;
456

S
Stephen Hemminger 已提交
457
	pr_debug("In inflate\n");
458

459
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
460
	if (!tn)
461
		return -ENOMEM;
462 463

	/*
464 465 466
	 * Preallocate and store tnodes before the actual work so we
	 * don't get into an inconsistent state if memory allocation
	 * fails. In case of failure we return the oldnode and  inflate
467 468
	 * of tnode is ignored.
	 */
469 470
	for (i = 0, m = 1u << tn->pos; i < olen; i++) {
		struct tnode *inode = tnode_get_child(oldtnode, i);
O
Olof Johansson 已提交
471

472
		if (tnode_full(oldtnode, inode) && (inode->bits > 1)) {
473
			struct tnode *left, *right;
474

475
			left = tnode_new(inode->key & ~m, inode->pos,
476
					 inode->bits - 1);
477 478
			if (!left)
				goto nomem;
O
Olof Johansson 已提交
479

480
			right = tnode_new(inode->key | m, inode->pos,
481 482
					  inode->bits - 1);

483
			if (!right) {
484
				node_free(left);
485
				goto nomem;
486
			}
487

A
Alexander Duyck 已提交
488 489
			put_child(tn, 2*i, left);
			put_child(tn, 2*i+1, right);
490 491 492
		}
	}

O
Olof Johansson 已提交
493
	for (i = 0; i < olen; i++) {
A
Alexander Duyck 已提交
494
		struct tnode *inode = tnode_get_child(oldtnode, i);
O
Olof Johansson 已提交
495
		struct tnode *left, *right;
496
		unsigned long size, j;
497

498
		/* An empty child */
A
Alexander Duyck 已提交
499
		if (inode == NULL)
500 501 502
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
503
		if (!tnode_full(oldtnode, inode)) {
504
			put_child(tn, get_index(inode->key, tn), inode);
505 506 507 508 509
			continue;
		}

		/* An internal node with two children */
		if (inode->bits == 1) {
L
Lin Ming 已提交
510 511
			put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
			put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
512

J
Jarek Poplawski 已提交
513
			tnode_free_safe(inode);
O
Olof Johansson 已提交
514
			continue;
515 516
		}

O
Olof Johansson 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		/* An internal node with more than two children */

		/* We will replace this node 'inode' with two new
		 * ones, 'left' and 'right', each with half of the
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
		 * left's key and "1" in right's key. Since we are
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
		 * (inode->pos) - is the one that will differ between
		 * left and right. So... we synthesize that bit in the
		 * two  new keys.
		 * The mask 'm' below will be a single "one" bit at
		 * the position (inode->pos)
		 */
535

O
Olof Johansson 已提交
536 537 538
		/* Use the old key, but set the new significant
		 *   bit to zero.
		 */
539

A
Alexander Duyck 已提交
540
		left = tnode_get_child(tn, 2*i);
L
Lin Ming 已提交
541
		put_child(tn, 2*i, NULL);
542

O
Olof Johansson 已提交
543
		BUG_ON(!left);
544

A
Alexander Duyck 已提交
545
		right = tnode_get_child(tn, 2*i+1);
L
Lin Ming 已提交
546
		put_child(tn, 2*i+1, NULL);
547

O
Olof Johansson 已提交
548
		BUG_ON(!right);
549

O
Olof Johansson 已提交
550 551
		size = tnode_child_length(left);
		for (j = 0; j < size; j++) {
L
Lin Ming 已提交
552 553
			put_child(left, j, rtnl_dereference(inode->child[j]));
			put_child(right, j, rtnl_dereference(inode->child[j + size]));
554
		}
555 556 557

		put_child(tn, 2 * i, left);
		put_child(tn, 2 * i + 1, right);
O
Olof Johansson 已提交
558

J
Jarek Poplawski 已提交
559
		tnode_free_safe(inode);
560 561 562

		resize(t, left);
		resize(t, right);
563
	}
564 565

	put_child_root(tp, t, tn->key, tn);
J
Jarek Poplawski 已提交
566
	tnode_free_safe(oldtnode);
567
	return 0;
568
nomem:
E
Eric Dumazet 已提交
569
	tnode_clean_free(tn);
570
	return -ENOMEM;
571 572
}

573
static int halve(struct trie *t, struct tnode *oldtnode)
574
{
575
	unsigned long olen = tnode_child_length(oldtnode);
576
	struct tnode *tp = node_parent(oldtnode);
A
Alexander Duyck 已提交
577
	struct tnode *tn, *left, *right;
578 579
	int i;

S
Stephen Hemminger 已提交
580
	pr_debug("In halve\n");
581

582
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
583
	if (!tn)
584
		return -ENOMEM;
585 586

	/*
587 588 589
	 * Preallocate and store tnodes before the actual work so we
	 * don't get into an inconsistent state if memory allocation
	 * fails. In case of failure we return the oldnode and halve
590 591 592
	 * of tnode is ignored.
	 */

O
Olof Johansson 已提交
593
	for (i = 0; i < olen; i += 2) {
594 595
		left = tnode_get_child(oldtnode, i);
		right = tnode_get_child(oldtnode, i+1);
596

597
		/* Two nonempty children */
S
Stephen Hemminger 已提交
598
		if (left && right) {
599
			struct tnode *newn;
S
Stephen Hemminger 已提交
600

601
			newn = tnode_new(left->key, oldtnode->pos, 1);
S
Stephen Hemminger 已提交
602

603 604 605 606
			if (!newn) {
				tnode_clean_free(tn);
				return -ENOMEM;
			}
S
Stephen Hemminger 已提交
607

A
Alexander Duyck 已提交
608
			put_child(tn, i/2, newn);
609 610 611
		}

	}
612

O
Olof Johansson 已提交
613 614 615
	for (i = 0; i < olen; i += 2) {
		struct tnode *newBinNode;

616 617
		left = tnode_get_child(oldtnode, i);
		right = tnode_get_child(oldtnode, i+1);
618

619 620 621 622
		/* At least one of the children is empty */
		if (left == NULL) {
			if (right == NULL)    /* Both are empty */
				continue;
L
Lin Ming 已提交
623
			put_child(tn, i/2, right);
O
Olof Johansson 已提交
624
			continue;
S
Stephen Hemminger 已提交
625
		}
O
Olof Johansson 已提交
626 627

		if (right == NULL) {
L
Lin Ming 已提交
628
			put_child(tn, i/2, left);
O
Olof Johansson 已提交
629 630
			continue;
		}
631

632
		/* Two nonempty children */
A
Alexander Duyck 已提交
633
		newBinNode = tnode_get_child(tn, i/2);
L
Lin Ming 已提交
634 635
		put_child(newBinNode, 0, left);
		put_child(newBinNode, 1, right);
636 637 638 639

		put_child(tn, i / 2, newBinNode);

		resize(t, newBinNode);
640
	}
641 642

	put_child_root(tp, t, tn->key, tn);
J
Jarek Poplawski 已提交
643
	tnode_free_safe(oldtnode);
644 645

	return 0;
646 647
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
 * tnode_child_length() and instead of multiplying by 2 (since the
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
 * The left-hand side may look a bit weird: tnode_child_length(tn)
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 *     tn->full_children;
 *
 * new_child_length = tnode_child_length(tn) * 2;
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >=
 *      inflate_threshold * tnode_child_length(tn) * 2
 *
 * shorten again:
 * 50 * (tn->full_children + tnode_child_length(tn) -
 *    tn->empty_children) >= inflate_threshold *
 *    tnode_child_length(tn)
 *
 */
705
static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
706 707 708 709 710
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
711
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
712 713 714 715 716 717
	used += tn->full_children;
	used -= tn->empty_children;

	return tn->pos && ((50 * used) >= threshold);
}

718
static bool should_halve(const struct tnode *tp, const struct tnode *tn)
719 720 721 722 723
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
724
	threshold *= tp ? halve_threshold : halve_threshold_root;
725 726 727 728 729
	used -= tn->empty_children;

	return (tn->bits > 1) && ((100 * used) < threshold);
}

730
#define MAX_WORK 10
731
static void resize(struct trie *t, struct tnode *tn)
732
{
733 734
	struct tnode *tp = node_parent(tn), *n = NULL;
	struct tnode __rcu **cptr;
735 736 737 738 739
	int max_work;

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

740 741 742 743 744 745 746
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
	cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie;
	BUG_ON(tn != rtnl_dereference(*cptr));

747 748 749 750 751 752 753 754
	/* No children */
	if (tn->empty_children > (tnode_child_length(tn) - 1))
		goto no_children;

	/* One child */
	if (tn->empty_children == (tnode_child_length(tn) - 1))
		goto one_child;

755 756
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
757 758
	 */
	max_work = MAX_WORK;
759 760
	while (should_inflate(tp, tn) && max_work--) {
		if (inflate(t, tn)) {
761 762 763 764 765
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}
766 767

		tn = rtnl_dereference(*cptr);
768 769 770 771
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
772
		return;
773

774
	/* Halve as long as the number of empty children in this
775 776 777
	 * node is above threshold.
	 */
	max_work = MAX_WORK;
778 779
	while (should_halve(tp, tn) && max_work--) {
		if (halve(t, tn)) {
780 781 782 783 784 785
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}

786 787
		tn = rtnl_dereference(*cptr);
	}
788 789 790 791 792 793 794 795 796

	/* Only one child remains */
	if (tn->empty_children == (tnode_child_length(tn) - 1)) {
		unsigned long i;
one_child:
		for (i = tnode_child_length(tn); !n && i;)
			n = tnode_get_child(tn, --i);
no_children:
		/* compress one level */
797 798 799 800
		put_child_root(tp, t, tn->key, n);
		node_set_parent(n, tp);

		/* drop dead node */
801 802 803 804
		tnode_free_safe(tn);
	}
}

R
Robert Olsson 已提交
805
/* readside must use rcu_read_lock currently dump routines
R
Robert Olsson 已提交
806 807
 via get_fa_head and dump */

A
Alexander Duyck 已提交
808
static struct leaf_info *find_leaf_info(struct tnode *l, int plen)
809
{
R
Robert Olsson 已提交
810
	struct hlist_head *head = &l->list;
811 812
	struct leaf_info *li;

813
	hlist_for_each_entry_rcu(li, head, hlist)
814
		if (li->plen == plen)
815
			return li;
O
Olof Johansson 已提交
816

817 818 819
	return NULL;
}

A
Alexander Duyck 已提交
820
static inline struct list_head *get_fa_head(struct tnode *l, int plen)
821
{
R
Robert Olsson 已提交
822
	struct leaf_info *li = find_leaf_info(l, plen);
823

O
Olof Johansson 已提交
824 825
	if (!li)
		return NULL;
826

O
Olof Johansson 已提交
827
	return &li->falh;
828 829 830 831
}

static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
{
832 833 834 835 836
	struct leaf_info *li = NULL, *last = NULL;

	if (hlist_empty(head)) {
		hlist_add_head_rcu(&new->hlist, head);
	} else {
837
		hlist_for_each_entry(li, head, hlist) {
838 839 840 841 842 843
			if (new->plen > li->plen)
				break;

			last = li;
		}
		if (last)
844
			hlist_add_behind_rcu(&new->hlist, &last->hlist);
845 846 847
		else
			hlist_add_before_rcu(&new->hlist, &li->hlist);
	}
848 849
}

R
Robert Olsson 已提交
850
/* rcu_read_lock needs to be hold by caller from readside */
A
Alexander Duyck 已提交
851
static struct tnode *fib_find_node(struct trie *t, u32 key)
852
{
A
Alexander Duyck 已提交
853
	struct tnode *n = rcu_dereference_rtnl(t->trie);
A
Alexander Duyck 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
		 *   if !(index >> bits)
		 *     we know the value is cindex
		 *   else
		 *     we have a mismatch in skip bits and failed
		 */
		if (index >> n->bits)
			return NULL;

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
873 874
			break;

A
Alexander Duyck 已提交
875 876
		n = rcu_dereference_rtnl(n->child[index]);
	}
O
Olof Johansson 已提交
877

A
Alexander Duyck 已提交
878
	return n;
879 880
}

881
static void trie_rebalance(struct trie *t, struct tnode *tn)
882
{
S
Stephen Hemminger 已提交
883
	struct tnode *tp;
884

885 886
	while ((tp = node_parent(tn)) != NULL) {
		resize(t, tn);
887

J
Jarek Poplawski 已提交
888
		tnode_free_flush();
S
Stephen Hemminger 已提交
889
		tn = tp;
890
	}
S
Stephen Hemminger 已提交
891

892
	/* Handle last (top) tnode */
893
	if (IS_TNODE(tn))
894
		resize(t, tn);
895

896
	tnode_free_flush();
897 898
}

R
Robert Olsson 已提交
899 900
/* only used from updater-side */

901
static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
902
{
903
	struct list_head *fa_head = NULL;
904
	struct tnode *l, *n, *tp = NULL;
905 906
	struct leaf_info *li;

907 908 909 910 911
	li = leaf_info_new(plen);
	if (!li)
		return NULL;
	fa_head = &li->falh;

E
Eric Dumazet 已提交
912
	n = rtnl_dereference(t->trie);
913

914 915
	/* If we point to NULL, stop. Either the tree is empty and we should
	 * just put a new leaf in if, or we have reached an empty child slot,
916 917
	 * and we should just put our new leaf in that.
	 *
918 919 920
	 * If we hit a node with a key that does't match then we should stop
	 * and create a new tnode to replace that node and insert ourselves
	 * and the other node into the new tnode.
921
	 */
922 923
	while (n) {
		unsigned long index = get_index(key, n);
924

925 926 927 928 929 930 931 932 933 934 935
		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
		 *   if !(index >> bits)
		 *     we know the value is child index
		 *   else
		 *     we have a mismatch in skip bits and failed
		 */
		if (index >> n->bits)
936 937
			break;

938 939 940 941 942 943
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n)) {
			/* Case 1: n is a leaf, and prefixes match*/
			insert_leaf_info(&n->list, li);
			return fa_head;
		}
944

945 946
		tp = n;
		n = rcu_dereference_rtnl(n->child[index]);
947 948
	}

949 950 951
	l = leaf_new(key);
	if (!l) {
		free_leaf_info(li);
952
		return NULL;
953
	}
954 955 956

	insert_leaf_info(&l->list, li);

957 958 959 960 961 962 963 964
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
		struct tnode *tn;
965

966
		tn = tnode_new(key, __fls(key ^ n->key), 1);
967
		if (!tn) {
968
			free_leaf_info(li);
969
			node_free(l);
970
			return NULL;
O
Olof Johansson 已提交
971 972
		}

973 974 975
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
976

977 978 979
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
980

981
		/* parent now has a NULL spot where the leaf can go */
982
		tp = tn;
983
	}
O
Olof Johansson 已提交
984

985 986 987 988 989 990 991 992
	/* Case 3: n is NULL, and will just insert a new leaf */
	if (tp) {
		NODE_INIT_PARENT(l, tp);
		put_child(tp, get_index(key, tp), l);
		trie_rebalance(t, tp);
	} else {
		rcu_assign_pointer(t->trie, l);
	}
R
Robert Olsson 已提交
993

994 995 996
	return fa_head;
}

997 998 999
/*
 * Caller must hold RTNL.
 */
1000
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1001 1002 1003
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *new_fa;
1004
	struct list_head *fa_head = NULL;
1005
	struct fib_info *fi;
1006 1007
	int plen = cfg->fc_dst_len;
	u8 tos = cfg->fc_tos;
1008 1009
	u32 key, mask;
	int err;
A
Alexander Duyck 已提交
1010
	struct tnode *l;
1011 1012 1013 1014

	if (plen > 32)
		return -EINVAL;

1015
	key = ntohl(cfg->fc_dst);
1016

1017
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1018

O
Olof Johansson 已提交
1019
	mask = ntohl(inet_make_mask(plen));
1020

1021
	if (key & ~mask)
1022 1023 1024 1025
		return -EINVAL;

	key = key & mask;

1026 1027 1028
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1029
		goto err;
1030
	}
1031 1032

	l = fib_find_node(t, key);
1033
	fa = NULL;
1034

1035
	if (l) {
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		fa_head = get_fa_head(l, plen);
		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
	}

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
	 * insert to the head of f.
	 *
	 * If f is NULL, no fib node matched the destination key
	 * and we need to allocate a new one of those as well.
	 */

1051 1052 1053
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1054 1055

		err = -EEXIST;
1056
		if (cfg->fc_nlflags & NLM_F_EXCL)
1057 1058
			goto out;

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
		list_for_each_entry_continue(fa, fa_head, fa_list) {
			if (fa->fa_tos != tos)
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1079
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1080 1081 1082
			struct fib_info *fi_drop;
			u8 state;

1083 1084 1085 1086
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1087
				goto out;
1088
			}
R
Robert Olsson 已提交
1089
			err = -ENOBUFS;
1090
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1091 1092
			if (new_fa == NULL)
				goto out;
1093 1094

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1095 1096
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1097
			new_fa->fa_type = cfg->fc_type;
1098
			state = fa->fa_state;
1099
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1100

R
Robert Olsson 已提交
1101 1102
			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
			alias_free_mem_rcu(fa);
1103 1104 1105

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1106
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1107 1108
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1109

O
Olof Johansson 已提交
1110
			goto succeeded;
1111 1112 1113 1114 1115
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1116 1117
		if (fa_match)
			goto out;
1118

1119
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1120
			fa = fa_first;
1121 1122
	}
	err = -ENOENT;
1123
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1124 1125 1126
		goto out;

	err = -ENOBUFS;
1127
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1128 1129 1130 1131 1132
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1133
	new_fa->fa_type = cfg->fc_type;
1134 1135 1136 1137 1138
	new_fa->fa_state = 0;
	/*
	 * Insert new entry to the list.
	 */

1139
	if (!fa_head) {
1140 1141 1142
		fa_head = fib_insert_node(t, key, plen);
		if (unlikely(!fa_head)) {
			err = -ENOMEM;
1143
			goto out_free_new_fa;
1144
		}
1145
	}
1146

1147 1148 1149
	if (!plen)
		tb->tb_num_default++;

R
Robert Olsson 已提交
1150 1151
	list_add_tail_rcu(&new_fa->fa_list,
			  (fa ? &fa->fa_list : fa_head));
1152

1153
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1154
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1155
		  &cfg->fc_nlinfo, 0);
1156 1157
succeeded:
	return 0;
1158 1159 1160

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1161 1162
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1163
err:
1164 1165 1166
	return err;
}

1167 1168 1169 1170 1171 1172 1173
static inline t_key prefix_mismatch(t_key key, struct tnode *n)
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1174
/* should be called with rcu_read_lock */
1175
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1176
		     struct fib_result *res, int fib_flags)
1177
{
1178
	struct trie *t = (struct trie *)tb->tb_data;
1179 1180 1181
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1182 1183
	const t_key key = ntohl(flp->daddr);
	struct tnode *n, *pn;
1184
	struct leaf_info *li;
1185
	t_key cindex;
O
Olof Johansson 已提交
1186

R
Robert Olsson 已提交
1187
	n = rcu_dereference(t->trie);
1188
	if (!n)
1189
		return -EAGAIN;
1190 1191

#ifdef CONFIG_IP_FIB_TRIE_STATS
1192
	this_cpu_inc(stats->gets);
1193 1194
#endif

A
Alexander Duyck 已提交
1195
	pn = n;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
		 *   if !(index >> bits)
		 *     we know the value is child index
		 *   else
		 *     we have a mismatch in skip bits and failed
		 */
		if (index >> n->bits)
			break;
1214

1215 1216
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1217
			goto found;
1218

1219 1220
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1221
		 */
1222 1223 1224
		if (index) {
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1225
		}
1226

1227 1228 1229 1230
		n = rcu_dereference(n->child[index]);
		if (unlikely(!n))
			goto backtrace;
	}
1231

1232 1233 1234 1235
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
		struct tnode __rcu **cptr = n->child;
1236

1237 1238 1239
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1240
		 */
1241 1242
		if (unlikely(prefix_mismatch(key, n)))
			goto backtrace;
O
Olof Johansson 已提交
1243

1244 1245 1246
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1247

1248 1249 1250
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1251 1252
		 */

1253
		while ((n = rcu_dereference(*cptr)) == NULL) {
1254 1255
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1256 1257
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1258
#endif
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1269
					return -EAGAIN;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
			cptr = &pn->child[cindex];
1282
		}
1283
	}
1284

1285
found:
1286
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	hlist_for_each_entry_rcu(li, &n->list, hlist) {
		struct fib_alias *fa;

		if ((key ^ n->key) & li->mask_plen)
			continue;

		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
			struct fib_info *fi = fa->fa_info;
			int nhsel, err;

			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
				continue;
			if (fi->fib_dead)
				continue;
			if (fa->fa_info->fib_scope < flp->flowi4_scope)
				continue;
			fib_alias_accessed(fa);
			err = fib_props[fa->fa_type].error;
			if (unlikely(err < 0)) {
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->semantic_match_passed);
#endif
				return err;
			}
			if (fi->fib_flags & RTNH_F_DEAD)
				continue;
			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
				const struct fib_nh *nh = &fi->fib_nh[nhsel];

				if (nh->nh_flags & RTNH_F_DEAD)
					continue;
				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
					continue;

				if (!(fib_flags & FIB_LOOKUP_NOREF))
					atomic_inc(&fi->fib_clntref);

				res->prefixlen = li->plen;
				res->nh_sel = nhsel;
				res->type = fa->fa_type;
				res->scope = fi->fib_scope;
				res->fi = fi;
				res->table = tb;
				res->fa_head = &li->falh;
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->semantic_match_passed);
#endif
				return err;
			}
		}

#ifdef CONFIG_IP_FIB_TRIE_STATS
		this_cpu_inc(stats->semantic_match_miss);
#endif
	}
	goto backtrace;
1343
}
1344
EXPORT_SYMBOL_GPL(fib_table_lookup);
1345

1346 1347 1348
/*
 * Remove the leaf and return parent.
 */
A
Alexander Duyck 已提交
1349
static void trie_leaf_remove(struct trie *t, struct tnode *l)
1350
{
1351
	struct tnode *tp = node_parent(l);
1352

1353
	pr_debug("entering trie_leaf_remove(%p)\n", l);
1354

1355
	if (tp) {
1356
		put_child(tp, get_index(l->key, tp), NULL);
1357
		trie_rebalance(t, tp);
1358
	} else {
1359
		RCU_INIT_POINTER(t->trie, NULL);
1360
	}
1361

1362
	node_free(l);
1363 1364
}

1365 1366 1367
/*
 * Caller must hold RTNL.
 */
1368
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1369 1370 1371
{
	struct trie *t = (struct trie *) tb->tb_data;
	u32 key, mask;
1372 1373
	int plen = cfg->fc_dst_len;
	u8 tos = cfg->fc_tos;
1374 1375
	struct fib_alias *fa, *fa_to_delete;
	struct list_head *fa_head;
A
Alexander Duyck 已提交
1376
	struct tnode *l;
O
Olof Johansson 已提交
1377 1378
	struct leaf_info *li;

1379
	if (plen > 32)
1380 1381
		return -EINVAL;

1382
	key = ntohl(cfg->fc_dst);
O
Olof Johansson 已提交
1383
	mask = ntohl(inet_make_mask(plen));
1384

1385
	if (key & ~mask)
1386 1387 1388 1389 1390
		return -EINVAL;

	key = key & mask;
	l = fib_find_node(t, key);

1391
	if (!l)
1392 1393
		return -ESRCH;

1394 1395 1396 1397 1398 1399
	li = find_leaf_info(l, plen);

	if (!li)
		return -ESRCH;

	fa_head = &li->falh;
1400 1401 1402 1403 1404
	fa = fib_find_alias(fa_head, tos, 0);

	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1405
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1406 1407

	fa_to_delete = NULL;
1408 1409
	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
	list_for_each_entry_continue(fa, fa_head, fa_list) {
1410 1411 1412 1413 1414
		struct fib_info *fi = fa->fa_info;

		if (fa->fa_tos != tos)
			break;

1415 1416
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1417
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1418 1419
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1420 1421 1422
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1423 1424 1425 1426 1427
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1428 1429
	if (!fa_to_delete)
		return -ESRCH;
1430

O
Olof Johansson 已提交
1431
	fa = fa_to_delete;
1432
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1433
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1434

R
Robert Olsson 已提交
1435
	list_del_rcu(&fa->fa_list);
1436

1437 1438 1439
	if (!plen)
		tb->tb_num_default--;

O
Olof Johansson 已提交
1440
	if (list_empty(fa_head)) {
R
Robert Olsson 已提交
1441
		hlist_del_rcu(&li->hlist);
O
Olof Johansson 已提交
1442
		free_leaf_info(li);
R
Robert Olsson 已提交
1443
	}
1444

O
Olof Johansson 已提交
1445
	if (hlist_empty(&l->list))
1446
		trie_leaf_remove(t, l);
1447

O
Olof Johansson 已提交
1448
	if (fa->fa_state & FA_S_ACCESSED)
1449
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1450

R
Robert Olsson 已提交
1451 1452
	fib_release_info(fa->fa_info);
	alias_free_mem_rcu(fa);
O
Olof Johansson 已提交
1453
	return 0;
1454 1455
}

1456
static int trie_flush_list(struct list_head *head)
1457 1458 1459 1460 1461 1462 1463
{
	struct fib_alias *fa, *fa_node;
	int found = 0;

	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
		struct fib_info *fi = fa->fa_info;

R
Robert Olsson 已提交
1464 1465 1466 1467
		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
			list_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
1468 1469 1470 1471 1472 1473
			found++;
		}
	}
	return found;
}

A
Alexander Duyck 已提交
1474
static int trie_flush_leaf(struct tnode *l)
1475 1476 1477
{
	int found = 0;
	struct hlist_head *lih = &l->list;
1478
	struct hlist_node *tmp;
1479 1480
	struct leaf_info *li = NULL;

1481
	hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1482
		found += trie_flush_list(&li->falh);
1483 1484

		if (list_empty(&li->falh)) {
R
Robert Olsson 已提交
1485
			hlist_del_rcu(&li->hlist);
1486 1487 1488 1489 1490 1491
			free_leaf_info(li);
		}
	}
	return found;
}

1492 1493 1494 1495
/*
 * Scan for the next right leaf starting at node p->child[idx]
 * Since we have back pointer, no recursion necessary.
 */
A
Alexander Duyck 已提交
1496
static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c)
1497
{
1498
	do {
1499
		unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0;
R
Robert Olsson 已提交
1500

1501
		while (idx < tnode_child_length(p)) {
1502
			c = tnode_get_child_rcu(p, idx++);
R
Robert Olsson 已提交
1503
			if (!c)
O
Olof Johansson 已提交
1504 1505
				continue;

1506
			if (IS_LEAF(c))
A
Alexander Duyck 已提交
1507
				return c;
1508 1509

			/* Rescan start scanning in new node */
A
Alexander Duyck 已提交
1510
			p = c;
1511
			idx = 0;
1512
		}
1513 1514

		/* Node empty, walk back up to parent */
A
Alexander Duyck 已提交
1515
		c = p;
E
Eric Dumazet 已提交
1516
	} while ((p = node_parent_rcu(c)) != NULL);
1517 1518 1519 1520

	return NULL; /* Root of trie */
}

A
Alexander Duyck 已提交
1521
static struct tnode *trie_firstleaf(struct trie *t)
1522
{
A
Alexander Duyck 已提交
1523
	struct tnode *n = rcu_dereference_rtnl(t->trie);
1524 1525 1526 1527 1528

	if (!n)
		return NULL;

	if (IS_LEAF(n))          /* trie is just a leaf */
A
Alexander Duyck 已提交
1529
		return n;
1530 1531 1532 1533

	return leaf_walk_rcu(n, NULL);
}

A
Alexander Duyck 已提交
1534
static struct tnode *trie_nextleaf(struct tnode *l)
1535
{
A
Alexander Duyck 已提交
1536
	struct tnode *p = node_parent_rcu(l);
1537 1538 1539 1540

	if (!p)
		return NULL;	/* trie with just one leaf */

A
Alexander Duyck 已提交
1541
	return leaf_walk_rcu(p, l);
1542 1543
}

A
Alexander Duyck 已提交
1544
static struct tnode *trie_leafindex(struct trie *t, int index)
1545
{
A
Alexander Duyck 已提交
1546
	struct tnode *l = trie_firstleaf(t);
1547

S
Stephen Hemminger 已提交
1548
	while (l && index-- > 0)
1549
		l = trie_nextleaf(l);
S
Stephen Hemminger 已提交
1550

1551 1552 1553 1554
	return l;
}


1555 1556 1557
/*
 * Caller must hold RTNL.
 */
1558
int fib_table_flush(struct fib_table *tb)
1559 1560
{
	struct trie *t = (struct trie *) tb->tb_data;
A
Alexander Duyck 已提交
1561
	struct tnode *l, *ll = NULL;
1562
	int found = 0;
1563

1564
	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1565
		found += trie_flush_leaf(l);
1566 1567

		if (ll && hlist_empty(&ll->list))
1568
			trie_leaf_remove(t, ll);
1569 1570 1571 1572
		ll = l;
	}

	if (ll && hlist_empty(&ll->list))
1573
		trie_leaf_remove(t, ll);
1574

S
Stephen Hemminger 已提交
1575
	pr_debug("trie_flush found=%d\n", found);
1576 1577 1578
	return found;
}

1579 1580
void fib_free_table(struct fib_table *tb)
{
1581 1582 1583 1584 1585
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1586 1587 1588
	kfree(tb);
}

1589 1590
static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
			   struct fib_table *tb,
1591 1592 1593 1594
			   struct sk_buff *skb, struct netlink_callback *cb)
{
	int i, s_i;
	struct fib_alias *fa;
A
Al Viro 已提交
1595
	__be32 xkey = htonl(key);
1596

1597
	s_i = cb->args[5];
1598 1599
	i = 0;

R
Robert Olsson 已提交
1600 1601 1602
	/* rcu_read_lock is hold by caller */

	list_for_each_entry_rcu(fa, fah, fa_list) {
1603 1604 1605 1606 1607
		if (i < s_i) {
			i++;
			continue;
		}

1608
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1609 1610 1611 1612
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1613
				  xkey,
1614 1615
				  plen,
				  fa->fa_tos,
1616
				  fa->fa_info, NLM_F_MULTI) < 0) {
1617
			cb->args[5] = i;
1618
			return -1;
O
Olof Johansson 已提交
1619
		}
1620 1621
		i++;
	}
1622
	cb->args[5] = i;
1623 1624 1625
	return skb->len;
}

A
Alexander Duyck 已提交
1626
static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1627
			struct sk_buff *skb, struct netlink_callback *cb)
1628
{
1629 1630
	struct leaf_info *li;
	int i, s_i;
1631

1632
	s_i = cb->args[4];
1633
	i = 0;
1634

1635
	/* rcu_read_lock is hold by caller */
1636
	hlist_for_each_entry_rcu(li, &l->list, hlist) {
1637 1638
		if (i < s_i) {
			i++;
1639
			continue;
1640
		}
O
Olof Johansson 已提交
1641

1642
		if (i > s_i)
1643
			cb->args[5] = 0;
1644

1645
		if (list_empty(&li->falh))
1646 1647
			continue;

1648
		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1649
			cb->args[4] = i;
1650 1651
			return -1;
		}
1652
		i++;
1653
	}
1654

1655
	cb->args[4] = i;
1656 1657 1658
	return skb->len;
}

1659 1660
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1661
{
A
Alexander Duyck 已提交
1662
	struct tnode *l;
1663
	struct trie *t = (struct trie *) tb->tb_data;
1664
	t_key key = cb->args[2];
1665
	int count = cb->args[3];
1666

R
Robert Olsson 已提交
1667
	rcu_read_lock();
1668 1669 1670
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1671
	if (count == 0)
1672 1673
		l = trie_firstleaf(t);
	else {
1674 1675 1676
		/* Normally, continue from last key, but if that is missing
		 * fallback to using slow rescan
		 */
1677
		l = fib_find_node(t, key);
1678 1679
		if (!l)
			l = trie_leafindex(t, count);
1680
	}
1681

1682 1683
	while (l) {
		cb->args[2] = l->key;
1684
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1685
			cb->args[3] = count;
1686 1687
			rcu_read_unlock();
			return -1;
1688
		}
1689

1690
		++count;
1691
		l = trie_nextleaf(l);
1692 1693
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1694
	}
1695
	cb->args[3] = count;
R
Robert Olsson 已提交
1696
	rcu_read_unlock();
1697

1698 1699 1700
	return skb->len;
}

1701
void __init fib_trie_init(void)
1702
{
1703 1704
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1705 1706 1707
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
A
Alexander Duyck 已提交
1708
					   max(sizeof(struct tnode),
1709 1710
					       sizeof(struct leaf_info)),
					   0, SLAB_PANIC, NULL);
1711
}
1712

1713

1714
struct fib_table *fib_trie_table(u32 id)
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1725
	tb->tb_default = -1;
1726
	tb->tb_num_default = 0;
1727 1728

	t = (struct trie *) tb->tb_data;
1729 1730 1731 1732 1733 1734 1735 1736
	RCU_INIT_POINTER(t->trie, NULL);
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1737 1738 1739 1740

	return tb;
}

1741 1742 1743
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1744
	struct seq_net_private p;
1745
	struct fib_table *tb;
1746
	struct tnode *tnode;
E
Eric Dumazet 已提交
1747 1748
	unsigned int index;
	unsigned int depth;
1749
};
1750

A
Alexander Duyck 已提交
1751
static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1752
{
1753
	unsigned long cindex = iter->index;
1754 1755
	struct tnode *tn = iter->tnode;
	struct tnode *p;
1756

1757 1758 1759 1760
	/* A single entry routing table */
	if (!tn)
		return NULL;

1761 1762 1763
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1764
	while (cindex < tnode_child_length(tn)) {
A
Alexander Duyck 已提交
1765
		struct tnode *n = tnode_get_child_rcu(tn, cindex);
1766

1767 1768 1769 1770 1771 1772
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1773
				iter->tnode = n;
1774 1775 1776 1777 1778
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1779

1780 1781
		++cindex;
	}
O
Olof Johansson 已提交
1782

1783
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1784
	p = node_parent_rcu(tn);
1785
	if (p) {
1786
		cindex = get_index(tn->key, p) + 1;
1787 1788 1789
		tn = p;
		--iter->depth;
		goto rescan;
1790
	}
1791 1792 1793

	/* got root? */
	return NULL;
1794 1795
}

A
Alexander Duyck 已提交
1796
static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1797
				       struct trie *t)
1798
{
A
Alexander Duyck 已提交
1799
	struct tnode *n;
1800

S
Stephen Hemminger 已提交
1801
	if (!t)
1802 1803 1804
		return NULL;

	n = rcu_dereference(t->trie);
1805
	if (!n)
1806
		return NULL;
1807

1808
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1809
		iter->tnode = n;
1810 1811 1812 1813 1814 1815
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1816
	}
1817 1818

	return n;
1819
}
O
Olof Johansson 已提交
1820

1821 1822
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
A
Alexander Duyck 已提交
1823
	struct tnode *n;
1824
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1825

1826
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1827

1828
	rcu_read_lock();
1829
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1830
		if (IS_LEAF(n)) {
1831 1832
			struct leaf_info *li;

1833 1834 1835 1836
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1837

A
Alexander Duyck 已提交
1838
			hlist_for_each_entry_rcu(li, &n->list, hlist)
1839
				++s->prefixes;
1840
		} else {
1841
			unsigned long i;
1842 1843

			s->tnodes++;
A
Alexander Duyck 已提交
1844 1845
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
R
Robert Olsson 已提交
1846

1847
			for (i = 0; i < tnode_child_length(n); i++) {
A
Alexander Duyck 已提交
1848
				if (!rcu_access_pointer(n->child[i]))
1849
					s->nullpointers++;
1850
			}
1851 1852
		}
	}
R
Robert Olsson 已提交
1853
	rcu_read_unlock();
1854 1855
}

1856 1857 1858 1859
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1860
{
E
Eric Dumazet 已提交
1861
	unsigned int i, max, pointers, bytes, avdepth;
1862

1863 1864 1865 1866
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
1867

1868 1869
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
1870
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
1871

1872
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
A
Alexander Duyck 已提交
1873
	bytes = sizeof(struct tnode) * stat->leaves;
1874 1875 1876 1877

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
	bytes += sizeof(struct leaf_info) * stat->prefixes;

1878
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1879
	bytes += sizeof(struct tnode) * stat->tnodes;
1880

R
Robert Olsson 已提交
1881 1882
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
1883
		max--;
1884

1885
	pointers = 0;
1886
	for (i = 1; i < max; i++)
1887
		if (stat->nodesizes[i] != 0) {
1888
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
1889 1890 1891
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
1892
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
1893

A
Alexander Duyck 已提交
1894
	bytes += sizeof(struct tnode *) * pointers;
1895 1896
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
1897
}
R
Robert Olsson 已提交
1898

1899
#ifdef CONFIG_IP_FIB_TRIE_STATS
1900
static void trie_show_usage(struct seq_file *seq,
1901
			    const struct trie_use_stats __percpu *stats)
1902
{
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

1918
	seq_printf(seq, "\nCounters:\n---------\n");
1919 1920
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
1921
	seq_printf(seq, "semantic match passed = %u\n",
1922 1923 1924 1925
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
1926
}
1927 1928
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

1929
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
1930
{
1931 1932 1933 1934 1935 1936
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
1937
}
1938

1939

1940 1941
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
1942
	struct net *net = (struct net *)seq->private;
1943
	unsigned int h;
1944

1945
	seq_printf(seq,
1946 1947
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
A
Alexander Duyck 已提交
1948
		   sizeof(struct tnode), sizeof(struct tnode));
1949

1950 1951 1952 1953
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

1954
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
1955 1956
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
1957

1958 1959 1960 1961 1962 1963 1964 1965
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
1966
			trie_show_usage(seq, t->stats);
1967 1968 1969
#endif
		}
	}
1970

1971
	return 0;
1972 1973
}

1974
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
1975
{
1976
	return single_open_net(inode, file, fib_triestat_seq_show);
1977 1978
}

1979
static const struct file_operations fib_triestat_fops = {
1980 1981 1982 1983
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
1984
	.release = single_release_net,
1985 1986
};

A
Alexander Duyck 已提交
1987
static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
1988
{
1989 1990
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
1991
	loff_t idx = 0;
1992
	unsigned int h;
1993

1994 1995 1996
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
1997

1998
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
A
Alexander Duyck 已提交
1999
			struct tnode *n;
2000 2001 2002 2003 2004 2005 2006 2007 2008

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2009
	}
2010

2011 2012 2013
	return NULL;
}

2014
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2015
	__acquires(RCU)
2016
{
2017
	rcu_read_lock();
2018
	return fib_trie_get_idx(seq, *pos);
2019 2020
}

2021
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2022
{
2023
	struct fib_trie_iter *iter = seq->private;
2024
	struct net *net = seq_file_net(seq);
2025 2026 2027
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
A
Alexander Duyck 已提交
2028
	struct tnode *n;
2029

2030
	++*pos;
2031 2032 2033 2034
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2035

2036 2037
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2038
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2039 2040 2041 2042 2043
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2044

2045 2046 2047
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2048
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2049 2050 2051 2052 2053
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2054
	return NULL;
2055 2056 2057 2058

found:
	iter->tb = tb;
	return n;
2059
}
2060

2061
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2062
	__releases(RCU)
2063
{
2064 2065
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2066

2067 2068
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2069 2070
	while (n-- > 0)
		seq_puts(seq, "   ");
2071
}
2072

2073
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2074
{
S
Stephen Hemminger 已提交
2075
	switch (s) {
2076 2077 2078 2079 2080 2081
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2082
		snprintf(buf, len, "scope=%d", s);
2083 2084 2085
		return buf;
	}
}
2086

2087
static const char *const rtn_type_names[__RTN_MAX] = {
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2101

E
Eric Dumazet 已提交
2102
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2103 2104 2105
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2106
	snprintf(buf, len, "type %u", t);
2107
	return buf;
2108 2109
}

2110 2111
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2112
{
2113
	const struct fib_trie_iter *iter = seq->private;
A
Alexander Duyck 已提交
2114
	struct tnode *n = v;
2115

2116 2117
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2118

2119
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2120
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2121

2122 2123 2124 2125
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
			   n->full_children, n->empty_children);
2126
	} else {
2127
		struct leaf_info *li;
A
Alexander Duyck 已提交
2128
		__be32 val = htonl(n->key);
2129 2130

		seq_indent(seq, iter->depth);
2131
		seq_printf(seq, "  |-- %pI4\n", &val);
2132

A
Alexander Duyck 已提交
2133
		hlist_for_each_entry_rcu(li, &n->list, hlist) {
2134 2135 2136 2137 2138 2139 2140 2141
			struct fib_alias *fa;

			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
				char buf1[32], buf2[32];

				seq_indent(seq, iter->depth+1);
				seq_printf(seq, "  /%d %s %s", li->plen,
					   rtn_scope(buf1, sizeof(buf1),
2142
						     fa->fa_info->fib_scope),
2143 2144 2145
					   rtn_type(buf2, sizeof(buf2),
						    fa->fa_type));
				if (fa->fa_tos)
2146
					seq_printf(seq, " tos=%d", fa->fa_tos);
2147
				seq_putc(seq, '\n');
2148 2149
			}
		}
2150
	}
2151

2152 2153 2154
	return 0;
}

2155
static const struct seq_operations fib_trie_seq_ops = {
2156 2157 2158 2159
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2160 2161
};

2162
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2163
{
2164 2165
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2166 2167
}

2168
static const struct file_operations fib_trie_fops = {
2169 2170 2171 2172
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2173
	.release = seq_release_net,
2174 2175
};

2176 2177 2178 2179 2180 2181 2182
struct fib_route_iter {
	struct seq_net_private p;
	struct trie *main_trie;
	loff_t	pos;
	t_key	key;
};

A
Alexander Duyck 已提交
2183
static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2184
{
A
Alexander Duyck 已提交
2185
	struct tnode *l = NULL;
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	struct trie *t = iter->main_trie;

	/* use cache location of last found key */
	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
		pos -= iter->pos;
	else {
		iter->pos = 0;
		l = trie_firstleaf(t);
	}

	while (l && pos-- > 0) {
		iter->pos++;
		l = trie_nextleaf(l);
	}

	if (l)
		iter->key = pos;	/* remember it */
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;

	rcu_read_lock();
2216
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	if (!tb)
		return NULL;

	iter->main_trie = (struct trie *) tb->tb_data;
	if (*pos == 0)
		return SEQ_START_TOKEN;
	else
		return fib_route_get_idx(iter, *pos - 1);
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
A
Alexander Duyck 已提交
2230
	struct tnode *l = v;
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

	++*pos;
	if (v == SEQ_START_TOKEN) {
		iter->pos = 0;
		l = trie_firstleaf(iter->main_trie);
	} else {
		iter->pos++;
		l = trie_nextleaf(l);
	}

	if (l)
		iter->key = l->key;
	else
		iter->pos = 0;
	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2254
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2255
{
E
Eric Dumazet 已提交
2256
	unsigned int flags = 0;
2257

E
Eric Dumazet 已提交
2258 2259
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2260 2261
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2262
	if (mask == htonl(0xFFFFFFFF))
2263 2264 2265
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2266 2267
}

2268 2269 2270
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2271
 *	and needs to be same as fib_hash output to avoid breaking
2272 2273 2274
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2275
{
A
Alexander Duyck 已提交
2276
	struct tnode *l = v;
2277
	struct leaf_info *li;
2278

2279 2280 2281 2282 2283 2284
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2285

2286
	hlist_for_each_entry_rcu(li, &l->list, hlist) {
2287
		struct fib_alias *fa;
A
Al Viro 已提交
2288
		__be32 mask, prefix;
O
Olof Johansson 已提交
2289

2290 2291
		mask = inet_make_mask(li->plen);
		prefix = htonl(l->key);
2292

2293
		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2294
			const struct fib_info *fi = fa->fa_info;
E
Eric Dumazet 已提交
2295
			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2296

2297 2298 2299
			if (fa->fa_type == RTN_BROADCAST
			    || fa->fa_type == RTN_MULTICAST)
				continue;
2300

2301 2302
			seq_setwidth(seq, 127);

2303
			if (fi)
2304 2305
				seq_printf(seq,
					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2306
					 "%d\t%08X\t%d\t%u\t%u",
2307 2308 2309 2310 2311
					 fi->fib_dev ? fi->fib_dev->name : "*",
					 prefix,
					 fi->fib_nh->nh_gw, flags, 0, 0,
					 fi->fib_priority,
					 mask,
2312 2313
					 (fi->fib_advmss ?
					  fi->fib_advmss + 40 : 0),
2314
					 fi->fib_window,
2315
					 fi->fib_rtt >> 3);
2316
			else
2317 2318
				seq_printf(seq,
					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2319
					 "%d\t%08X\t%d\t%u\t%u",
2320
					 prefix, 0, flags, 0, 0, 0,
2321
					 mask, 0, 0, 0);
2322

2323
			seq_pad(seq, '\n');
2324
		}
2325 2326 2327 2328 2329
	}

	return 0;
}

2330
static const struct seq_operations fib_route_seq_ops = {
2331 2332 2333
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2334
	.show   = fib_route_seq_show,
2335 2336
};

2337
static int fib_route_seq_open(struct inode *inode, struct file *file)
2338
{
2339
	return seq_open_net(inode, file, &fib_route_seq_ops,
2340
			    sizeof(struct fib_route_iter));
2341 2342
}

2343
static const struct file_operations fib_route_fops = {
2344 2345 2346 2347
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2348
	.release = seq_release_net,
2349 2350
};

2351
int __net_init fib_proc_init(struct net *net)
2352
{
2353
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2354 2355
		goto out1;

2356 2357
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2358 2359
		goto out2;

2360
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2361 2362
		goto out3;

2363
	return 0;
2364 2365

out3:
2366
	remove_proc_entry("fib_triestat", net->proc_net);
2367
out2:
2368
	remove_proc_entry("fib_trie", net->proc_net);
2369 2370
out1:
	return -ENOMEM;
2371 2372
}

2373
void __net_exit fib_proc_exit(struct net *net)
2374
{
2375 2376 2377
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2378 2379 2380
}

#endif /* CONFIG_PROC_FS */