page_alloc.c 235.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
70
#include <linux/psi.h>
L
Linus Torvalds 已提交
71

72
#include <asm/sections.h>
L
Linus Torvalds 已提交
73
#include <asm/tlbflush.h>
74
#include <asm/div64.h>
L
Linus Torvalds 已提交
75
#include "internal.h"
76
#include "shuffle.h"
L
Linus Torvalds 已提交
77

78 79
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
80
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
81

82 83 84 85 86
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

87 88
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

89 90 91 92 93 94 95 96 97
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98
int _node_numa_mem_[MAX_NUMNODES];
99 100
#endif

101
/* work_structs for global per-cpu drains */
102 103 104 105
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
106
DEFINE_MUTEX(pcpu_drain_mutex);
107
DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108

109
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110
volatile unsigned long latent_entropy __latent_entropy;
111 112 113
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
114
/*
115
 * Array of node states.
L
Linus Torvalds 已提交
116
 */
117 118 119 120 121 122 123
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 125
#endif
	[N_MEMORY] = { { [0] = 1UL } },
126 127 128 129 130
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

131 132
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
133
unsigned long totalreserve_pages __read_mostly;
134
unsigned long totalcma_pages __read_mostly;
135

136
int percpu_pagelist_fraction;
137
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

157 158 159 160 161
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
162 163 164 165
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
166
 */
167 168 169 170

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
171
{
172
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
173 174 175 176
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
177 178
}

179
void pm_restrict_gfp_mask(void)
180
{
181
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
182 183
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
184
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
185
}
186 187 188

bool pm_suspended_storage(void)
{
189
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
190 191 192
		return false;
	return true;
}
193 194
#endif /* CONFIG_PM_SLEEP */

195
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
196
unsigned int pageblock_order __read_mostly;
197 198
#endif

199
static void __free_pages_ok(struct page *page, unsigned int order);
200

L
Linus Torvalds 已提交
201 202 203 204 205 206
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
207
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
208 209 210
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
211
 */
212
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
213
#ifdef CONFIG_ZONE_DMA
214
	[ZONE_DMA] = 256,
215
#endif
216
#ifdef CONFIG_ZONE_DMA32
217
	[ZONE_DMA32] = 256,
218
#endif
219
	[ZONE_NORMAL] = 32,
220
#ifdef CONFIG_HIGHMEM
221
	[ZONE_HIGHMEM] = 0,
222
#endif
223
	[ZONE_MOVABLE] = 0,
224
};
L
Linus Torvalds 已提交
225

226
static char * const zone_names[MAX_NR_ZONES] = {
227
#ifdef CONFIG_ZONE_DMA
228
	 "DMA",
229
#endif
230
#ifdef CONFIG_ZONE_DMA32
231
	 "DMA32",
232
#endif
233
	 "Normal",
234
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
235
	 "HighMem",
236
#endif
M
Mel Gorman 已提交
237
	 "Movable",
238 239 240
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
241 242
};

243
const char * const migratetype_names[MIGRATE_TYPES] = {
244 245 246 247 248 249 250 251 252 253 254 255
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

256 257 258 259 260 261
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
262 263 264
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
265 266
};

L
Linus Torvalds 已提交
267
int min_free_kbytes = 1024;
268
int user_min_free_kbytes = -1;
269 270 271 272 273 274 275 276 277 278 279 280
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
281
int watermark_boost_factor __read_mostly = 15000;
282
#endif
283
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
284

285 286 287
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
288

T
Tejun Heo 已提交
289
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
290 291
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
292
static unsigned long required_kernelcore __initdata;
293
static unsigned long required_kernelcore_percent __initdata;
294
static unsigned long required_movablecore __initdata;
295
static unsigned long required_movablecore_percent __initdata;
296
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
297
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
298 299 300 301 302

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
303

M
Miklos Szeredi 已提交
304
#if MAX_NUMNODES > 1
305
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
306
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
307
EXPORT_SYMBOL(nr_node_ids);
308
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
309 310
#endif

311 312
int page_group_by_mobility_disabled __read_mostly;

313
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

340
/* Returns true if the struct page for the pfn is uninitialised */
341
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
342
{
343 344 345
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
346 347 348 349 350 351
		return true;

	return false;
}

/*
352
 * Returns true when the remaining initialisation should be deferred until
353 354
 * later in the boot cycle when it can be parallelised.
 */
355 356
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
357
{
358 359 360 361 362 363 364 365 366 367 368
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

369
	/* Always populate low zones for address-constrained allocations */
370
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
371
		return false;
372 373 374 375 376

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
377
	nr_initialised++;
378
	if ((nr_initialised > PAGES_PER_SECTION) &&
379 380 381
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
382
	}
383
	return false;
384 385
}
#else
386 387
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

388 389 390 391 392
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

393
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
394
{
395
	return false;
396 397 398
}
#endif

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
479
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
500

501
void set_pageblock_migratetype(struct page *page, int migratetype)
502
{
503 504
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
505 506
		migratetype = MIGRATE_UNMOVABLE;

507 508 509 510
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
511
#ifdef CONFIG_DEBUG_VM
512
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
513
{
514 515 516
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
517
	unsigned long sp, start_pfn;
518

519 520
	do {
		seq = zone_span_seqbegin(zone);
521 522
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
523
		if (!zone_spans_pfn(zone, pfn))
524 525 526
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

527
	if (ret)
528 529 530
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
531

532
	return ret;
533 534 535 536
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
537
	if (!pfn_valid_within(page_to_pfn(page)))
538
		return 0;
L
Linus Torvalds 已提交
539
	if (zone != page_zone(page))
540 541 542 543 544 545 546
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
547
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
548 549
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
550
		return 1;
551 552 553
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
554 555
	return 0;
}
N
Nick Piggin 已提交
556
#else
557
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
558 559 560 561 562
{
	return 0;
}
#endif

563 564
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
565
{
566 567 568 569 570 571 572 573 574 575 576 577 578 579
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
580
			pr_alert(
581
			      "BUG: Bad page state: %lu messages suppressed\n",
582 583 584 585 586 587 588 589
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

590
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
591
		current->comm, page_to_pfn(page));
592 593 594 595 596
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
597
	dump_page_owner(page);
598

599
	print_modules();
L
Linus Torvalds 已提交
600
	dump_stack();
601
out:
602
	/* Leave bad fields for debug, except PageBuddy could make trouble */
603
	page_mapcount_reset(page); /* remove PageBuddy */
604
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
605 606 607 608 609
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
610
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
611
 *
612 613
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
614
 *
615 616
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
617
 *
618
 * The first tail page's ->compound_order holds the order of allocation.
619
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
620
 */
621

622
void free_compound_page(struct page *page)
623
{
624
	__free_pages_ok(page, compound_order(page));
625 626
}

627
void prep_compound_page(struct page *page, unsigned int order)
628 629 630 631
{
	int i;
	int nr_pages = 1 << order;

632
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
633 634 635 636
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
637
		set_page_count(p, 0);
638
		p->mapping = TAIL_MAPPING;
639
		set_compound_head(p, page);
640
	}
641
	atomic_set(compound_mapcount_ptr(page), -1);
642 643
}

644 645
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
646 647 648 649 650 651

#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
#else
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
#endif
652
EXPORT_SYMBOL(_debug_pagealloc_enabled);
653 654

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
655

656 657
static int __init early_debug_pagealloc(char *buf)
{
658 659 660
	bool enable = false;

	if (kstrtobool(buf, &enable))
661
		return -EINVAL;
662 663 664 665 666

	if (enable)
		static_branch_enable(&_debug_pagealloc_enabled);

	return 0;
667 668 669
}
early_param("debug_pagealloc", early_debug_pagealloc);

670 671
static void init_debug_guardpage(void)
{
672 673 674
	if (!debug_pagealloc_enabled())
		return;

675 676 677
	if (!debug_guardpage_minorder())
		return;

678
	static_branch_enable(&_debug_guardpage_enabled);
679 680
}

681 682 683 684 685
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
686
		pr_err("Bad debug_guardpage_minorder value\n");
687 688 689
		return 0;
	}
	_debug_guardpage_minorder = res;
690
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
691 692
	return 0;
}
693
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
694

695
static inline bool set_page_guard(struct zone *zone, struct page *page,
696
				unsigned int order, int migratetype)
697
{
698
	if (!debug_guardpage_enabled())
699 700 701 702
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
703

704
	__SetPageGuard(page);
705 706 707 708
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
709 710

	return true;
711 712
}

713 714
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
715
{
716 717 718
	if (!debug_guardpage_enabled())
		return;

719
	__ClearPageGuard(page);
720

721 722 723
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
724 725
}
#else
726 727
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
728 729
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
730 731
#endif

732
static inline void set_page_order(struct page *page, unsigned int order)
733
{
H
Hugh Dickins 已提交
734
	set_page_private(page, order);
735
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
736 737 738 739
}

/*
 * This function checks whether a page is free && is the buddy
740
 * we can coalesce a page and its buddy if
741
 * (a) the buddy is not in a hole (check before calling!) &&
742
 * (b) the buddy is in the buddy system &&
743 744
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
745
 *
746 747
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
748
 *
749
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
750
 */
751
static inline int page_is_buddy(struct page *page, struct page *buddy,
752
							unsigned int order)
L
Linus Torvalds 已提交
753
{
754
	if (page_is_guard(buddy) && page_order(buddy) == order) {
755 756 757
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

758 759
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

760 761 762
		return 1;
	}

763
	if (PageBuddy(buddy) && page_order(buddy) == order) {
764 765 766 767 768 769 770 771
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

772 773
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

774
		return 1;
775
	}
776
	return 0;
L
Linus Torvalds 已提交
777 778
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
843 844
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
845
 * So when we are allocating or freeing one, we can derive the state of the
846 847
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
848
 * If a block is freed, and its buddy is also free, then this
849
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
850
 *
851
 * -- nyc
L
Linus Torvalds 已提交
852 853
 */

N
Nick Piggin 已提交
854
static inline void __free_one_page(struct page *page,
855
		unsigned long pfn,
856 857
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
858
{
859 860
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
861
	struct page *buddy;
862
	unsigned int max_order;
863
	struct capture_control *capc = task_capc(zone);
864 865

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
866

867
	VM_BUG_ON(!zone_is_initialized(zone));
868
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
869

870
	VM_BUG_ON(migratetype == -1);
871
	if (likely(!is_migrate_isolate(migratetype)))
872
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
873

874
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
875
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
876

877
continue_merging:
878
	while (order < max_order - 1) {
879 880 881 882 883
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
884 885
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
886 887 888

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
889
		if (!page_is_buddy(page, buddy, order))
890
			goto done_merging;
891 892 893 894
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
895
		if (page_is_guard(buddy))
896
			clear_page_guard(zone, buddy, order, migratetype);
897 898
		else
			del_page_from_free_area(buddy, &zone->free_area[order]);
899 900 901
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
902 903
		order++;
	}
904 905 906 907 908 909 910 911 912 913 914 915
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

916 917
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
918 919 920 921 922 923 924 925 926 927 928 929
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
930
	set_page_order(page, order);
931 932 933 934 935 936 937 938 939

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
940 941
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
			&& !is_shuffle_order(order)) {
942
		struct page *higher_page, *higher_buddy;
943 944 945 946
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
947 948
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
949 950 951
			add_to_free_area_tail(page, &zone->free_area[order],
					      migratetype);
			return;
952 953 954
		}
	}

955 956 957 958 959 960
	if (is_shuffle_order(order))
		add_to_free_area_random(page, &zone->free_area[order],
				migratetype);
	else
		add_to_free_area(page, &zone->free_area[order], migratetype);

L
Linus Torvalds 已提交
961 962
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

985
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
986
{
987 988 989 990 991
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
992

993
	if (unlikely(atomic_read(&page->_mapcount) != -1))
994 995 996
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
997
	if (unlikely(page_ref_count(page) != 0))
998
		bad_reason = "nonzero _refcount";
999 1000 1001 1002
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1003 1004 1005 1006
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1007
	bad_page(page, bad_reason, bad_flags);
1008 1009 1010 1011
}

static inline int free_pages_check(struct page *page)
{
1012
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1013 1014 1015 1016
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1017
	return 1;
L
Linus Torvalds 已提交
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1036
		/* the first tail page: ->mapping may be compound_mapcount() */
1037 1038 1039 1040 1041 1042 1043 1044
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1045
		 * deferred_list.next -- ignore value.
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1070 1071
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1072
{
1073
	int bad = 0;
1074 1075 1076

	VM_BUG_ON_PAGE(PageTail(page), page);

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1088

1089 1090
		if (compound)
			ClearPageDoubleMap(page);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1101
	if (PageMappingFlags(page))
1102
		page->mapping = NULL;
1103
	if (memcg_kmem_enabled() && PageKmemcg(page))
1104
		__memcg_kmem_uncharge(page, order);
1105 1106 1107 1108
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1109

1110 1111 1112
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1113 1114 1115

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1116
					   PAGE_SIZE << order);
1117
		debug_check_no_obj_freed(page_address(page),
1118
					   PAGE_SIZE << order);
1119
	}
1120 1121
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
1122 1123 1124
	if (debug_pagealloc_enabled())
		kernel_map_pages(page, 1 << order, 0);

1125
	kasan_free_nondeferred_pages(page, order);
1126 1127 1128 1129

	return true;
}

1130
#ifdef CONFIG_DEBUG_VM
1131 1132 1133 1134 1135 1136
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1137 1138 1139 1140
{
	return free_pages_prepare(page, 0, true);
}

1141
static bool bulkfree_pcp_prepare(struct page *page)
1142
{
1143 1144 1145 1146
	if (debug_pagealloc_enabled())
		return free_pages_check(page);
	else
		return false;
1147 1148
}
#else
1149 1150 1151 1152 1153 1154
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1155 1156
static bool free_pcp_prepare(struct page *page)
{
1157 1158 1159 1160
	if (debug_pagealloc_enabled())
		return free_pages_prepare(page, 0, true);
	else
		return free_pages_prepare(page, 0, false);
1161 1162
}

1163 1164 1165 1166 1167 1168
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1169 1170 1171 1172 1173 1174 1175 1176 1177
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1178
/*
1179
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1180
 * Assumes all pages on list are in same zone, and of same order.
1181
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1182 1183 1184 1185 1186 1187 1188
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1189 1190
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1191
{
1192
	int migratetype = 0;
1193
	int batch_free = 0;
1194
	int prefetch_nr = 0;
1195
	bool isolated_pageblocks;
1196 1197
	struct page *page, *tmp;
	LIST_HEAD(head);
1198

1199
	while (count) {
1200 1201 1202
		struct list_head *list;

		/*
1203 1204 1205 1206 1207
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1208 1209
		 */
		do {
1210
			batch_free++;
1211 1212 1213 1214
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1215

1216 1217
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1218
			batch_free = count;
1219

1220
		do {
1221
			page = list_last_entry(list, struct page, lru);
1222
			/* must delete to avoid corrupting pcp list */
1223
			list_del(&page->lru);
1224
			pcp->count--;
1225

1226 1227 1228
			if (bulkfree_pcp_prepare(page))
				continue;

1229
			list_add_tail(&page->lru, &head);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1242
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1243
	}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1263
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1264 1265
}

1266 1267
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1268
				unsigned int order,
1269
				int migratetype)
L
Linus Torvalds 已提交
1270
{
1271
	spin_lock(&zone->lock);
1272 1273 1274 1275
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1276
	__free_one_page(page, pfn, zone, order, migratetype);
1277
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1278 1279
}

1280
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1281
				unsigned long zone, int nid)
1282
{
1283
	mm_zero_struct_page(page);
1284 1285 1286 1287
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1288
	page_kasan_tag_reset(page);
1289 1290 1291 1292 1293 1294 1295 1296 1297

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1298
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1299
static void __meminit init_reserved_page(unsigned long pfn)
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1316
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1317 1318 1319 1320 1321 1322 1323
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1324 1325 1326 1327 1328 1329
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1330
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1331 1332 1333 1334
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1335 1336 1337 1338 1339
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1340 1341 1342 1343

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1344 1345 1346 1347 1348 1349
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1350 1351
		}
	}
1352 1353
}

1354 1355
static void __free_pages_ok(struct page *page, unsigned int order)
{
1356
	unsigned long flags;
M
Minchan Kim 已提交
1357
	int migratetype;
1358
	unsigned long pfn = page_to_pfn(page);
1359

1360
	if (!free_pages_prepare(page, order, true))
1361 1362
		return;

1363
	migratetype = get_pfnblock_migratetype(page, pfn);
1364 1365
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1366
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1367
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1368 1369
}

1370
void __free_pages_core(struct page *page, unsigned int order)
1371
{
1372
	unsigned int nr_pages = 1 << order;
1373
	struct page *p = page;
1374
	unsigned int loop;
1375

1376 1377 1378
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1379 1380
		__ClearPageReserved(p);
		set_page_count(p, 0);
1381
	}
1382 1383
	__ClearPageReserved(p);
	set_page_count(p, 0);
1384

1385
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1386 1387
	set_page_refcounted(page);
	__free_pages(page, order);
1388 1389
}

1390 1391
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1392

1393 1394 1395 1396
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1397
	static DEFINE_SPINLOCK(early_pfn_lock);
1398 1399
	int nid;

1400
	spin_lock(&early_pfn_lock);
1401
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1402
	if (nid < 0)
1403
		nid = first_online_node;
1404 1405 1406
	spin_unlock(&early_pfn_lock);

	return nid;
1407 1408 1409 1410
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1411 1412
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1413 1414 1415
{
	int nid;

1416
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1430
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1431 1432 1433 1434
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1435
	__free_pages_core(page, order);
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1467 1468 1469
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1509
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1510 1511
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1512
{
1513 1514
	struct page *page;
	unsigned long i;
1515

1516
	if (!nr_pages)
1517 1518
		return;

1519 1520
	page = pfn_to_page(pfn);

1521
	/* Free a large naturally-aligned chunk if possible */
1522 1523
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1524
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1525
		__free_pages_core(page, pageblock_order);
1526 1527 1528
		return;
	}

1529 1530 1531
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1532
		__free_pages_core(page, 0);
1533
	}
1534 1535
}

1536 1537 1538 1539 1540 1541 1542 1543 1544
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1545

1546
/*
1547 1548 1549 1550 1551 1552 1553 1554
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1555
 */
1556
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1557
{
1558 1559 1560 1561 1562 1563
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1564

1565 1566 1567 1568
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1569
static void __init deferred_free_pages(unsigned long pfn,
1570 1571 1572 1573
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1574

1575
	for (; pfn < end_pfn; pfn++) {
1576
		if (!deferred_pfn_valid(pfn)) {
1577 1578 1579 1580 1581
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1582
			touch_nmi_watchdog();
1583 1584 1585 1586 1587 1588
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1589 1590
}

1591 1592 1593 1594 1595
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1596
static unsigned long  __init deferred_init_pages(struct zone *zone,
1597 1598
						 unsigned long pfn,
						 unsigned long end_pfn)
1599 1600
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1601
	int nid = zone_to_nid(zone);
1602
	unsigned long nr_pages = 0;
1603
	int zid = zone_idx(zone);
1604 1605
	struct page *page = NULL;

1606
	for (; pfn < end_pfn; pfn++) {
1607
		if (!deferred_pfn_valid(pfn)) {
1608
			page = NULL;
1609
			continue;
1610
		} else if (!page || !(pfn & nr_pgmask)) {
1611
			page = pfn_to_page(pfn);
1612
			touch_nmi_watchdog();
1613 1614
		} else {
			page++;
1615
		}
1616
		__init_single_page(page, pfn, zid, nid);
1617
		nr_pages++;
1618
	}
1619
	return (nr_pages);
1620 1621
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1706
/* Initialise remaining memory on a node */
1707
static int __init deferred_init_memmap(void *data)
1708
{
1709
	pg_data_t *pgdat = data;
1710 1711 1712
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
	unsigned long first_init_pfn, flags;
1713 1714
	unsigned long start = jiffies;
	struct zone *zone;
1715
	int zid;
1716
	u64 i;
1717

1718 1719 1720 1721 1722 1723
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1724
	if (first_init_pfn == ULONG_MAX) {
1725
		pgdat_resize_unlock(pgdat, &flags);
1726
		pgdat_init_report_one_done();
1727 1728 1729
		return 0;
	}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1741 1742 1743 1744 1745

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1746

1747
	/*
1748 1749 1750
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1751
	 */
1752 1753 1754
	while (spfn < epfn)
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
zone_empty:
1755
	pgdat_resize_unlock(pgdat, &flags);
1756 1757 1758 1759

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1760 1761
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1762 1763

	pgdat_init_report_one_done();
1764 1765
	return 0;
}
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1786
	pg_data_t *pgdat = zone->zone_pgdat;
1787
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1788 1789
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1818 1819 1820 1821
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1822
		pgdat_resize_unlock(pgdat, &flags);
1823 1824
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1825 1826
	}

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1837

1838 1839 1840
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1841

1842
		/* If our quota has been met we can stop here */
1843 1844 1845 1846
		if (nr_pages >= nr_pages_needed)
			break;
	}

1847
	pgdat->first_deferred_pfn = spfn;
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1865
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1866 1867 1868

void __init page_alloc_init_late(void)
{
1869
	struct zone *zone;
1870
	int nid;
1871 1872

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1873

1874 1875
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1876 1877 1878 1879 1880
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1881
	wait_for_completion(&pgdat_init_all_done_comp);
1882

1883 1884 1885 1886 1887 1888
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1889 1890
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1891
#endif
1892

P
Pavel Tatashin 已提交
1893 1894
	/* Discard memblock private memory */
	memblock_discard();
1895

1896 1897 1898
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

1899 1900
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1901 1902 1903 1904

#ifdef CONFIG_DEBUG_PAGEALLOC
	init_debug_guardpage();
#endif
1905 1906
}

1907
#ifdef CONFIG_CMA
1908
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1909 1910 1911 1912 1913 1914 1915 1916
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1917
	} while (++p, --i);
1918 1919

	set_pageblock_migratetype(page, MIGRATE_CMA);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1934
	adjust_managed_page_count(page, pageblock_nr_pages);
1935 1936
}
#endif
L
Linus Torvalds 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1950
 * -- nyc
L
Linus Torvalds 已提交
1951
 */
N
Nick Piggin 已提交
1952
static inline void expand(struct zone *zone, struct page *page,
1953 1954
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959 1960 1961
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1962
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1963

1964 1965 1966 1967 1968 1969 1970
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1971
			continue;
1972

1973
		add_to_free_area(&page[size], area, migratetype);
L
Linus Torvalds 已提交
1974 1975 1976 1977
		set_page_order(&page[size], high);
	}
}

1978
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1979
{
1980 1981
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1982

1983
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1984 1985 1986
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1987
	if (unlikely(page_ref_count(page) != 0))
1988
		bad_reason = "nonzero _refcount";
1989 1990 1991
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1992 1993 1994
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1995
	}
1996 1997 1998 1999
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2000 2001 2002 2003
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2018 2019
}

2020
static inline bool free_pages_prezeroed(void)
2021 2022
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2023
		page_poisoning_enabled();
2024 2025
}

2026
#ifdef CONFIG_DEBUG_VM
2027 2028 2029 2030 2031 2032
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2033
{
2034 2035 2036 2037
	if (debug_pagealloc_enabled())
		return check_new_page(page);
	else
		return false;
2038 2039
}

2040
static inline bool check_new_pcp(struct page *page)
2041 2042 2043 2044
{
	return check_new_page(page);
}
#else
2045 2046 2047 2048 2049 2050
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2051 2052 2053
{
	return check_new_page(page);
}
2054
static inline bool check_new_pcp(struct page *page)
2055
{
2056 2057 2058 2059
	if (debug_pagealloc_enabled())
		return check_new_page(page);
	else
		return false;
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2076 2077 2078 2079 2080 2081 2082
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2083 2084
	if (debug_pagealloc_enabled())
		kernel_map_pages(page, 1 << order, 1);
2085
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2086
	kernel_poison_pages(page, 1 << order, 1);
2087 2088 2089
	set_page_owner(page, order, gfp_flags);
}

2090
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2091
							unsigned int alloc_flags)
2092 2093
{
	int i;
2094

2095
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2096

2097
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2098 2099
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2100 2101 2102 2103

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2104
	/*
2105
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2106 2107 2108 2109
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2110 2111 2112 2113
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2114 2115
}

2116 2117 2118 2119
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2120
static __always_inline
2121
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2122 2123 2124
						int migratetype)
{
	unsigned int current_order;
2125
	struct free_area *area;
2126 2127 2128 2129 2130
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2131
		page = get_page_from_free_area(area, migratetype);
2132 2133
		if (!page)
			continue;
2134
		del_page_from_free_area(page, area);
2135
		expand(zone, page, order, current_order, area, migratetype);
2136
		set_pcppage_migratetype(page, migratetype);
2137 2138 2139 2140 2141 2142 2143
		return page;
	}

	return NULL;
}


2144 2145 2146 2147
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2148
static int fallbacks[MIGRATE_TYPES][4] = {
2149 2150
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2151
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2152
#ifdef CONFIG_CMA
2153
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2154
#endif
2155
#ifdef CONFIG_MEMORY_ISOLATION
2156
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2157
#endif
2158 2159
};

2160
#ifdef CONFIG_CMA
2161
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2162 2163 2164 2165 2166 2167 2168 2169 2170
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2171 2172
/*
 * Move the free pages in a range to the free lists of the requested type.
2173
 * Note that start_page and end_pages are not aligned on a pageblock
2174 2175
 * boundary. If alignment is required, use move_freepages_block()
 */
2176
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2177
			  struct page *start_page, struct page *end_page,
2178
			  int migratetype, int *num_movable)
2179 2180
{
	struct page *page;
2181
	unsigned int order;
2182
	int pages_moved = 0;
2183 2184 2185 2186 2187 2188 2189

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2190
	 * grouping pages by mobility
2191
	 */
2192 2193 2194
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2195 2196 2197 2198 2199 2200 2201
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2202 2203 2204
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2205
		if (!PageBuddy(page)) {
2206 2207 2208 2209 2210 2211 2212 2213 2214
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2215 2216 2217 2218 2219
			page++;
			continue;
		}

		order = page_order(page);
2220
		move_to_free_area(page, &zone->free_area[order], migratetype);
2221
		page += 1 << order;
2222
		pages_moved += 1 << order;
2223 2224
	}

2225
	return pages_moved;
2226 2227
}

2228
int move_freepages_block(struct zone *zone, struct page *page,
2229
				int migratetype, int *num_movable)
2230 2231 2232 2233
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2234 2235 2236
	if (num_movable)
		*num_movable = 0;

2237
	start_pfn = page_to_pfn(page);
2238
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2239
	start_page = pfn_to_page(start_pfn);
2240 2241
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2242 2243

	/* Do not cross zone boundaries */
2244
	if (!zone_spans_pfn(zone, start_pfn))
2245
		start_page = page;
2246
	if (!zone_spans_pfn(zone, end_pfn))
2247 2248
		return 0;

2249 2250
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2251 2252
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2264
/*
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2275
 */
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2297 2298 2299 2300 2301 2302 2303 2304 2305
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2318 2319 2320 2321 2322 2323
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2324 2325 2326
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2327 2328 2329 2330
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2331 2332
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2333
		unsigned int alloc_flags, int start_type, bool whole_block)
2334
{
2335
	unsigned int current_order = page_order(page);
2336
	struct free_area *area;
2337 2338 2339 2340
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2341

2342 2343 2344 2345
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2346
	if (is_migrate_highatomic(old_block_type))
2347 2348
		goto single_page;

2349 2350 2351
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2352
		goto single_page;
2353 2354
	}

2355 2356 2357 2358 2359 2360 2361
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2362
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2363

2364 2365 2366 2367
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2392
	/* moving whole block can fail due to zone boundary conditions */
2393
	if (!free_pages)
2394
		goto single_page;
2395

2396 2397 2398 2399 2400
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2401 2402
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2403 2404 2405 2406 2407

	return;

single_page:
	area = &zone->free_area[current_order];
2408
	move_to_free_area(page, area, start_type);
2409 2410
}

2411 2412 2413 2414 2415 2416 2417 2418
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2429
		if (fallback_mt == MIGRATE_TYPES)
2430 2431
			break;

2432
		if (free_area_empty(area, fallback_mt))
2433
			continue;
2434

2435 2436 2437
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2438 2439 2440 2441 2442
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2443
	}
2444 2445

	return -1;
2446 2447
}

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2462
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2474 2475
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2476 2477
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2478
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2490 2491 2492
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2493
 */
2494 2495
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2496 2497 2498 2499 2500 2501 2502
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2503
	bool ret;
2504 2505 2506

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2507 2508 2509 2510 2511 2512
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2513 2514 2515 2516 2517 2518
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2519
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2520
			if (!page)
2521 2522 2523
				continue;

			/*
2524 2525 2526 2527 2528
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2529
			 */
2530
			if (is_migrate_highatomic_page(page)) {
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2553 2554
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2555 2556 2557 2558
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2559 2560 2561
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2562 2563

	return false;
2564 2565
}

2566 2567 2568 2569 2570
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2571 2572 2573 2574
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2575
 */
2576
static __always_inline bool
2577 2578
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2579
{
2580
	struct free_area *area;
2581
	int current_order;
2582
	int min_order = order;
2583
	struct page *page;
2584 2585
	int fallback_mt;
	bool can_steal;
2586

2587 2588 2589 2590 2591 2592 2593 2594
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2595 2596 2597 2598 2599
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2600
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2601
				--current_order) {
2602 2603
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2604
				start_migratetype, false, &can_steal);
2605 2606
		if (fallback_mt == -1)
			continue;
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2619

2620 2621
		goto do_steal;
	}
2622

2623
	return false;
2624

2625 2626 2627 2628 2629 2630 2631 2632
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2633 2634
	}

2635 2636 2637 2638 2639 2640 2641
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2642
	page = get_page_from_free_area(area, fallback_mt);
2643

2644 2645
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2646 2647 2648 2649 2650 2651

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2652 2653
}

2654
/*
L
Linus Torvalds 已提交
2655 2656 2657
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2658
static __always_inline struct page *
2659 2660
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2661 2662 2663
{
	struct page *page;

2664
retry:
2665
	page = __rmqueue_smallest(zone, order, migratetype);
2666
	if (unlikely(!page)) {
2667 2668 2669
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2670 2671
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2672
			goto retry;
2673 2674
	}

2675
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2676
	return page;
L
Linus Torvalds 已提交
2677 2678
}

2679
/*
L
Linus Torvalds 已提交
2680 2681 2682 2683
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2684
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2685
			unsigned long count, struct list_head *list,
2686
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2687
{
2688
	int i, alloced = 0;
2689

2690
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2691
	for (i = 0; i < count; ++i) {
2692 2693
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2694
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2695
			break;
2696

2697 2698 2699
		if (unlikely(check_pcp_refill(page)))
			continue;

2700
		/*
2701 2702 2703 2704 2705 2706 2707 2708
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2709
		 */
2710
		list_add_tail(&page->lru, list);
2711
		alloced++;
2712
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2713 2714
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2715
	}
2716 2717 2718 2719 2720 2721 2722

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2723
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2724
	spin_unlock(&zone->lock);
2725
	return alloced;
L
Linus Torvalds 已提交
2726 2727
}

2728
#ifdef CONFIG_NUMA
2729
/*
2730 2731 2732 2733
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2734 2735
 * Note that this function must be called with the thread pinned to
 * a single processor.
2736
 */
2737
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2738 2739
{
	unsigned long flags;
2740
	int to_drain, batch;
2741

2742
	local_irq_save(flags);
2743
	batch = READ_ONCE(pcp->batch);
2744
	to_drain = min(pcp->count, batch);
2745
	if (to_drain > 0)
2746
		free_pcppages_bulk(zone, to_drain, pcp);
2747
	local_irq_restore(flags);
2748 2749 2750
}
#endif

2751
/*
2752
 * Drain pcplists of the indicated processor and zone.
2753 2754 2755 2756 2757
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2758
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2759
{
N
Nick Piggin 已提交
2760
	unsigned long flags;
2761 2762
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2763

2764 2765
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2766

2767
	pcp = &pset->pcp;
2768
	if (pcp->count)
2769 2770 2771
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2772

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2786 2787 2788
	}
}

2789 2790
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2791 2792 2793
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2794
 */
2795
void drain_local_pages(struct zone *zone)
2796
{
2797 2798 2799 2800 2801 2802
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2803 2804
}

2805 2806
static void drain_local_pages_wq(struct work_struct *work)
{
2807 2808 2809 2810
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2811 2812 2813 2814 2815 2816 2817 2818
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2819
	drain_local_pages(drain->zone);
2820
	preempt_enable();
2821 2822
}

2823
/*
2824 2825
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2826 2827
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2828
 * Note that this can be extremely slow as the draining happens in a workqueue.
2829
 */
2830
void drain_all_pages(struct zone *zone)
2831
{
2832 2833 2834 2835 2836 2837 2838 2839
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2840 2841 2842 2843 2844 2845 2846
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2857

2858 2859 2860 2861 2862 2863 2864
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2865 2866
		struct per_cpu_pageset *pcp;
		struct zone *z;
2867
		bool has_pcps = false;
2868 2869

		if (zone) {
2870
			pcp = per_cpu_ptr(zone->pageset, cpu);
2871
			if (pcp->pcp.count)
2872
				has_pcps = true;
2873 2874 2875 2876 2877 2878 2879
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2880 2881
			}
		}
2882

2883 2884 2885 2886 2887
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2888

2889
	for_each_cpu(cpu, &cpus_with_pcps) {
2890 2891 2892 2893 2894
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2895
	}
2896
	for_each_cpu(cpu, &cpus_with_pcps)
2897
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2898 2899

	mutex_unlock(&pcpu_drain_mutex);
2900 2901
}

2902
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2903

2904 2905 2906 2907 2908
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2909 2910
void mark_free_pages(struct zone *zone)
{
2911
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2912
	unsigned long flags;
2913
	unsigned int order, t;
2914
	struct page *page;
L
Linus Torvalds 已提交
2915

2916
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2917 2918 2919
		return;

	spin_lock_irqsave(&zone->lock, flags);
2920

2921
	max_zone_pfn = zone_end_pfn(zone);
2922 2923
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2924
			page = pfn_to_page(pfn);
2925

2926 2927 2928 2929 2930
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2931 2932 2933
			if (page_zone(page) != zone)
				continue;

2934 2935
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2936
		}
L
Linus Torvalds 已提交
2937

2938
	for_each_migratetype_order(order, t) {
2939 2940
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2941
			unsigned long i;
L
Linus Torvalds 已提交
2942

2943
			pfn = page_to_pfn(page);
2944 2945 2946 2947 2948
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2949
				swsusp_set_page_free(pfn_to_page(pfn + i));
2950
			}
2951
		}
2952
	}
L
Linus Torvalds 已提交
2953 2954
	spin_unlock_irqrestore(&zone->lock, flags);
}
2955
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2956

2957
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2958
{
2959
	int migratetype;
L
Linus Torvalds 已提交
2960

2961
	if (!free_pcp_prepare(page))
2962
		return false;
2963

2964
	migratetype = get_pfnblock_migratetype(page, pfn);
2965
	set_pcppage_migratetype(page, migratetype);
2966 2967 2968
	return true;
}

2969
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2970 2971 2972 2973 2974 2975
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2976
	__count_vm_event(PGFREE);
2977

2978 2979 2980
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2981
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2982 2983 2984 2985
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2986
		if (unlikely(is_migrate_isolate(migratetype))) {
2987
			free_one_page(zone, page, pfn, 0, migratetype);
2988
			return;
2989 2990 2991 2992
		}
		migratetype = MIGRATE_MOVABLE;
	}

2993
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2994
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2995
	pcp->count++;
N
Nick Piggin 已提交
2996
	if (pcp->count >= pcp->high) {
2997
		unsigned long batch = READ_ONCE(pcp->batch);
2998
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2999
	}
3000
}
3001

3002 3003 3004
/*
 * Free a 0-order page
 */
3005
void free_unref_page(struct page *page)
3006 3007 3008 3009
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3010
	if (!free_unref_page_prepare(page, pfn))
3011 3012 3013
		return;

	local_irq_save(flags);
3014
	free_unref_page_commit(page, pfn);
3015
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3016 3017
}

3018 3019 3020
/*
 * Free a list of 0-order pages
 */
3021
void free_unref_page_list(struct list_head *list)
3022 3023
{
	struct page *page, *next;
3024
	unsigned long flags, pfn;
3025
	int batch_count = 0;
3026 3027 3028 3029

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3030
		if (!free_unref_page_prepare(page, pfn))
3031 3032 3033
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3034

3035
	local_irq_save(flags);
3036
	list_for_each_entry_safe(page, next, list, lru) {
3037 3038 3039
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3040 3041
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3052
	}
3053
	local_irq_restore(flags);
3054 3055
}

N
Nick Piggin 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3068 3069
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3070

3071
	for (i = 1; i < (1 << order); i++)
3072
		set_page_refcounted(page + i);
3073
	split_page_owner(page, order);
N
Nick Piggin 已提交
3074
}
K
K. Y. Srinivasan 已提交
3075
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3076

3077
int __isolate_free_page(struct page *page, unsigned int order)
3078
{
3079
	struct free_area *area = &page_zone(page)->free_area[order];
3080 3081
	unsigned long watermark;
	struct zone *zone;
3082
	int mt;
3083 3084 3085 3086

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3087
	mt = get_pageblock_migratetype(page);
3088

3089
	if (!is_migrate_isolate(mt)) {
3090 3091 3092 3093 3094 3095
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3096
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3097
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3098 3099
			return 0;

3100
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3101
	}
3102 3103

	/* Remove page from free list */
3104 3105

	del_page_from_free_area(page, area);
3106

3107 3108 3109 3110
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3111 3112
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3113 3114
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3115
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3116
			    && !is_migrate_highatomic(mt))
3117 3118 3119
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3120 3121
	}

3122

3123
	return 1UL << order;
3124 3125
}

3126 3127 3128 3129 3130
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3131
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3132 3133
{
#ifdef CONFIG_NUMA
3134
	enum numa_stat_item local_stat = NUMA_LOCAL;
3135

3136 3137 3138 3139
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3140
	if (zone_to_nid(z) != numa_node_id())
3141 3142
		local_stat = NUMA_OTHER;

3143
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3144
		__inc_numa_state(z, NUMA_HIT);
3145
	else {
3146 3147
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3148
	}
3149
	__inc_numa_state(z, local_stat);
3150 3151 3152
#endif
}

3153 3154
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3155
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3156
			struct per_cpu_pages *pcp,
3157 3158 3159 3160 3161 3162 3163 3164
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3165
					migratetype, alloc_flags);
3166 3167 3168 3169
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3170
		page = list_first_entry(list, struct page, lru);
3171 3172 3173 3174 3175 3176 3177 3178 3179
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3180 3181
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3182 3183 3184 3185
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3186
	unsigned long flags;
3187

3188
	local_irq_save(flags);
3189 3190
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3191
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3192
	if (page) {
3193
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3194 3195
		zone_statistics(preferred_zone, zone);
	}
3196
	local_irq_restore(flags);
3197 3198 3199
	return page;
}

L
Linus Torvalds 已提交
3200
/*
3201
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3202
 */
3203
static inline
3204
struct page *rmqueue(struct zone *preferred_zone,
3205
			struct zone *zone, unsigned int order,
3206 3207
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3208 3209
{
	unsigned long flags;
3210
	struct page *page;
L
Linus Torvalds 已提交
3211

3212
	if (likely(order == 0)) {
3213 3214
		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
					migratetype, alloc_flags);
3215 3216
		goto out;
	}
3217

3218 3219 3220 3221 3222 3223
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3224

3225 3226 3227 3228 3229 3230 3231
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3232
		if (!page)
3233
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3234 3235 3236 3237 3238 3239
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3240

3241
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3242
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3243
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3244

3245
out:
3246 3247 3248 3249 3250 3251
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3252
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3253
	return page;
N
Nick Piggin 已提交
3254 3255 3256 3257

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3258 3259
}

3260 3261
#ifdef CONFIG_FAIL_PAGE_ALLOC

3262
static struct {
3263 3264
	struct fault_attr attr;

3265
	bool ignore_gfp_highmem;
3266
	bool ignore_gfp_reclaim;
3267
	u32 min_order;
3268 3269
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3270
	.ignore_gfp_reclaim = true,
3271
	.ignore_gfp_highmem = true,
3272
	.min_order = 1,
3273 3274 3275 3276 3277 3278 3279 3280
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3281
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3282
{
3283
	if (order < fail_page_alloc.min_order)
3284
		return false;
3285
	if (gfp_mask & __GFP_NOFAIL)
3286
		return false;
3287
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3288
		return false;
3289 3290
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3291
		return false;
3292 3293 3294 3295 3296 3297 3298 3299

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3300
	umode_t mode = S_IFREG | 0600;
3301 3302
	struct dentry *dir;

3303 3304
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3305

3306 3307 3308 3309 3310
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3311

3312
	return 0;
3313 3314 3315 3316 3317 3318 3319 3320
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3321
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3322
{
3323
	return false;
3324 3325 3326 3327
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3328 3329 3330 3331 3332 3333
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3334
/*
3335 3336 3337 3338
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3339
 */
3340 3341 3342
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3343
{
3344
	long min = mark;
L
Linus Torvalds 已提交
3345
	int o;
3346
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3347

3348
	/* free_pages may go negative - that's OK */
3349
	free_pages -= (1 << order) - 1;
3350

R
Rohit Seth 已提交
3351
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3352
		min -= min / 2;
3353 3354 3355 3356 3357 3358

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3359
	if (likely(!alloc_harder)) {
3360
		free_pages -= z->nr_reserved_highatomic;
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3374

3375 3376 3377 3378 3379 3380
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3381 3382 3383 3384 3385 3386
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3387
		return false;
L
Linus Torvalds 已提交
3388

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3402
			if (!free_area_empty(area, mt))
3403 3404 3405 3406
				return true;
		}

#ifdef CONFIG_CMA
3407
		if ((alloc_flags & ALLOC_CMA) &&
3408
		    !free_area_empty(area, MIGRATE_CMA)) {
3409
			return true;
3410
		}
3411
#endif
3412 3413 3414
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3415
	}
3416
	return false;
3417 3418
}

3419
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3420
		      int classzone_idx, unsigned int alloc_flags)
3421 3422 3423 3424 3425
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3426 3427 3428 3429
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3430 3431 3432 3433 3434 3435 3436
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3437 3438 3439 3440 3441 3442 3443 3444

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3445
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3446 3447 3448 3449 3450 3451
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3452
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3453
			unsigned long mark, int classzone_idx)
3454 3455 3456 3457 3458 3459
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3460
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3461
								free_pages);
L
Linus Torvalds 已提交
3462 3463
}

3464
#ifdef CONFIG_NUMA
3465 3466
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3467
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3468
				RECLAIM_DISTANCE;
3469
}
3470
#else	/* CONFIG_NUMA */
3471 3472 3473 3474
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3475 3476
#endif	/* CONFIG_NUMA */

3477 3478 3479 3480 3481 3482 3483 3484 3485
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3486
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3487
{
3488 3489 3490 3491 3492 3493
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3494 3495 3496
	if (!zone)
		return alloc_flags;

3497
	if (zone_idx(zone) != ZONE_NORMAL)
3498
		return alloc_flags;
3499 3500 3501 3502 3503 3504 3505 3506

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3507
		return alloc_flags;
3508

3509
	alloc_flags |= ALLOC_NOFRAGMENT;
3510 3511
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3512 3513
}

R
Rohit Seth 已提交
3514
/*
3515
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3516 3517 3518
 * a page.
 */
static struct page *
3519 3520
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3521
{
3522
	struct zoneref *z;
3523
	struct zone *zone;
3524
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3525
	bool no_fallback;
3526

3527
retry:
R
Rohit Seth 已提交
3528
	/*
3529
	 * Scan zonelist, looking for a zone with enough free.
3530
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3531
	 */
3532 3533
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3534
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3535
								ac->nodemask) {
3536
		struct page *page;
3537 3538
		unsigned long mark;

3539 3540
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3541
			!__cpuset_zone_allowed(zone, gfp_mask))
3542
				continue;
3543 3544
		/*
		 * When allocating a page cache page for writing, we
3545 3546
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3547
		 * proportional share of globally allowed dirty pages.
3548
		 * The dirty limits take into account the node's
3549 3550 3551 3552 3553
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3554
		 * exceed the per-node dirty limit in the slowpath
3555
		 * (spread_dirty_pages unset) before going into reclaim,
3556
		 * which is important when on a NUMA setup the allowed
3557
		 * nodes are together not big enough to reach the
3558
		 * global limit.  The proper fix for these situations
3559
		 * will require awareness of nodes in the
3560 3561
		 * dirty-throttling and the flusher threads.
		 */
3562 3563 3564 3565 3566 3567 3568 3569 3570
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3588
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3589
		if (!zone_watermark_fast(zone, order, mark,
3590
				       ac_classzone_idx(ac), alloc_flags)) {
3591 3592
			int ret;

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3603 3604 3605 3606 3607
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3608
			if (node_reclaim_mode == 0 ||
3609
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3610 3611
				continue;

3612
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3613
			switch (ret) {
3614
			case NODE_RECLAIM_NOSCAN:
3615
				/* did not scan */
3616
				continue;
3617
			case NODE_RECLAIM_FULL:
3618
				/* scanned but unreclaimable */
3619
				continue;
3620 3621
			default:
				/* did we reclaim enough */
3622
				if (zone_watermark_ok(zone, order, mark,
3623
						ac_classzone_idx(ac), alloc_flags))
3624 3625 3626
					goto try_this_zone;

				continue;
3627
			}
R
Rohit Seth 已提交
3628 3629
		}

3630
try_this_zone:
3631
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3632
				gfp_mask, alloc_flags, ac->migratetype);
3633
		if (page) {
3634
			prep_new_page(page, order, gfp_mask, alloc_flags);
3635 3636 3637 3638 3639 3640 3641 3642

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3643
			return page;
3644 3645 3646 3647 3648 3649 3650 3651
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3652
		}
3653
	}
3654

3655 3656 3657 3658 3659 3660 3661 3662 3663
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3664
	return NULL;
M
Martin Hicks 已提交
3665 3666
}

3667
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3668 3669
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3670
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3671

3672
	if (!__ratelimit(&show_mem_rs))
3673 3674 3675 3676 3677 3678 3679 3680
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3681
		if (tsk_is_oom_victim(current) ||
3682 3683
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3684
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3685 3686
		filter &= ~SHOW_MEM_FILTER_NODES;

3687
	show_mem(filter, nodemask);
3688 3689
}

3690
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3691 3692 3693 3694 3695 3696
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3697
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3698 3699
		return;

3700 3701 3702
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3703
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3704 3705
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3706
	va_end(args);
J
Joe Perches 已提交
3707

3708
	cpuset_print_current_mems_allowed();
3709
	pr_cont("\n");
3710
	dump_stack();
3711
	warn_alloc_show_mem(gfp_mask, nodemask);
3712 3713
}

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3734 3735
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3736
	const struct alloc_context *ac, unsigned long *did_some_progress)
3737
{
3738 3739 3740
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3741
		.memcg = NULL,
3742 3743 3744
		.gfp_mask = gfp_mask,
		.order = order,
	};
3745 3746
	struct page *page;

3747 3748 3749
	*did_some_progress = 0;

	/*
3750 3751
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3752
	 */
3753
	if (!mutex_trylock(&oom_lock)) {
3754
		*did_some_progress = 1;
3755
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3756 3757
		return NULL;
	}
3758

3759 3760 3761
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3762 3763 3764
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3765
	 */
3766 3767 3768
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3769
	if (page)
3770 3771
		goto out;

3772 3773 3774 3775 3776 3777
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3778 3779 3780 3781 3782 3783 3784 3785
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3804

3805
	/* Exhausted what can be done so it's blame time */
3806
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3807
		*did_some_progress = 1;
3808

3809 3810 3811 3812 3813 3814
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3815 3816
					ALLOC_NO_WATERMARKS, ac);
	}
3817
out:
3818
	mutex_unlock(&oom_lock);
3819 3820 3821
	return page;
}

3822 3823 3824 3825 3826 3827
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3828 3829 3830 3831
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3832
		unsigned int alloc_flags, const struct alloc_context *ac,
3833
		enum compact_priority prio, enum compact_result *compact_result)
3834
{
3835
	struct page *page = NULL;
3836
	unsigned long pflags;
3837
	unsigned int noreclaim_flag;
3838 3839

	if (!order)
3840 3841
		return NULL;

3842
	psi_memstall_enter(&pflags);
3843
	noreclaim_flag = memalloc_noreclaim_save();
3844

3845
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3846
								prio, &page);
3847

3848
	memalloc_noreclaim_restore(noreclaim_flag);
3849
	psi_memstall_leave(&pflags);
3850

3851 3852 3853 3854 3855
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3856

3857 3858 3859 3860 3861 3862 3863
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3864

3865 3866
	if (page) {
		struct zone *zone = page_zone(page);
3867

3868 3869 3870 3871 3872
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3873

3874 3875 3876 3877 3878
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3879

3880
	cond_resched();
3881 3882 3883

	return NULL;
}
3884

3885 3886 3887 3888
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3889
		     int *compaction_retries)
3890 3891
{
	int max_retries = MAX_COMPACT_RETRIES;
3892
	int min_priority;
3893 3894 3895
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3896 3897 3898 3899

	if (!order)
		return false;

3900 3901 3902
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3903 3904 3905 3906 3907
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3908 3909
	if (compaction_failed(compact_result))
		goto check_priority;
3910 3911 3912 3913 3914 3915 3916

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3917 3918 3919 3920
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3921 3922

	/*
3923
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3924 3925 3926 3927 3928 3929 3930 3931
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3932 3933 3934 3935
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3936

3937 3938 3939 3940 3941
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3942 3943
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3944

3945
	if (*compact_priority > min_priority) {
3946 3947
		(*compact_priority)--;
		*compaction_retries = 0;
3948
		ret = true;
3949
	}
3950 3951 3952
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3953
}
3954 3955 3956
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3957
		unsigned int alloc_flags, const struct alloc_context *ac,
3958
		enum compact_priority prio, enum compact_result *compact_result)
3959
{
3960
	*compact_result = COMPACT_SKIPPED;
3961 3962
	return NULL;
}
3963 3964

static inline bool
3965 3966
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3967
		     enum compact_priority *compact_priority,
3968
		     int *compaction_retries)
3969
{
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3988 3989
	return false;
}
3990
#endif /* CONFIG_COMPACTION */
3991

3992
#ifdef CONFIG_LOCKDEP
3993
static struct lockdep_map __fs_reclaim_map =
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4005
	if (current->flags & PF_MEMALLOC)
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4028 4029 4030
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4031
		__fs_reclaim_acquire();
4032 4033 4034 4035 4036 4037
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4038
		__fs_reclaim_release();
4039 4040 4041 4042
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4043 4044
/* Perform direct synchronous page reclaim */
static int
4045 4046
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4047 4048
{
	struct reclaim_state reclaim_state;
4049
	int progress;
4050
	unsigned int noreclaim_flag;
4051
	unsigned long pflags;
4052 4053 4054 4055 4056

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4057
	psi_memstall_enter(&pflags);
4058
	fs_reclaim_acquire(gfp_mask);
4059
	noreclaim_flag = memalloc_noreclaim_save();
4060
	reclaim_state.reclaimed_slab = 0;
4061
	current->reclaim_state = &reclaim_state;
4062

4063 4064
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4065

4066
	current->reclaim_state = NULL;
4067
	memalloc_noreclaim_restore(noreclaim_flag);
4068
	fs_reclaim_release(gfp_mask);
4069
	psi_memstall_leave(&pflags);
4070 4071 4072

	cond_resched();

4073 4074 4075 4076 4077 4078
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4079
		unsigned int alloc_flags, const struct alloc_context *ac,
4080
		unsigned long *did_some_progress)
4081 4082 4083 4084
{
	struct page *page = NULL;
	bool drained = false;

4085
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4086 4087
	if (unlikely(!(*did_some_progress)))
		return NULL;
4088

4089
retry:
4090
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4091 4092 4093

	/*
	 * If an allocation failed after direct reclaim, it could be because
4094 4095
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4096 4097
	 */
	if (!page && !drained) {
4098
		unreserve_highatomic_pageblock(ac, false);
4099
		drain_all_pages(NULL);
4100 4101 4102 4103
		drained = true;
		goto retry;
	}

4104 4105 4106
	return page;
}

4107 4108
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4109 4110 4111
{
	struct zoneref *z;
	struct zone *zone;
4112
	pg_data_t *last_pgdat = NULL;
4113
	enum zone_type high_zoneidx = ac->high_zoneidx;
4114

4115 4116
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4117
		if (last_pgdat != zone->zone_pgdat)
4118
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4119 4120
		last_pgdat = zone->zone_pgdat;
	}
4121 4122
}

4123
static inline unsigned int
4124 4125
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4126
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4127

4128
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4129
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4130

4131 4132 4133 4134
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4135
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4136
	 */
4137
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4138

4139
	if (gfp_mask & __GFP_ATOMIC) {
4140
		/*
4141 4142
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4143
		 */
4144
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4145
			alloc_flags |= ALLOC_HARDER;
4146
		/*
4147
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4148
		 * comment for __cpuset_node_allowed().
4149
		 */
4150
		alloc_flags &= ~ALLOC_CPUSET;
4151
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4152 4153
		alloc_flags |= ALLOC_HARDER;

4154 4155 4156
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4157 4158 4159 4160
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4161 4162 4163
	return alloc_flags;
}

4164
static bool oom_reserves_allowed(struct task_struct *tsk)
4165
{
4166 4167 4168 4169 4170 4171 4172 4173
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4174 4175
		return false;

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4187
	if (gfp_mask & __GFP_MEMALLOC)
4188
		return ALLOC_NO_WATERMARKS;
4189
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4190 4191 4192 4193 4194 4195 4196
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4197

4198 4199 4200 4201 4202 4203
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4204 4205
}

M
Michal Hocko 已提交
4206 4207 4208
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4209 4210 4211 4212
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4213 4214 4215 4216 4217 4218
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4219
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4220 4221 4222
{
	struct zone *zone;
	struct zoneref *z;
4223
	bool ret = false;
M
Michal Hocko 已提交
4224

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4235 4236 4237 4238
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4239 4240
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4241
		return unreserve_highatomic_pageblock(ac, true);
4242
	}
M
Michal Hocko 已提交
4243

4244 4245 4246 4247 4248
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4249 4250 4251 4252
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4253
		unsigned long reclaimable;
4254 4255
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4256

4257 4258
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4259 4260

		/*
4261 4262
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4263
		 */
4264 4265 4266 4267 4268
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4269 4270 4271 4272 4273 4274 4275
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4276
				unsigned long write_pending;
4277

4278 4279
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4280

4281
				if (2 * write_pending > reclaimable) {
4282 4283 4284 4285
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4286

4287 4288
			ret = true;
			goto out;
M
Michal Hocko 已提交
4289 4290 4291
		}
	}

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4305 4306
}

4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4340 4341
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4342
						struct alloc_context *ac)
4343
{
4344
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4345
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4346
	struct page *page = NULL;
4347
	unsigned int alloc_flags;
4348
	unsigned long did_some_progress;
4349
	enum compact_priority compact_priority;
4350
	enum compact_result compact_result;
4351 4352 4353
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4354
	int reserve_flags;
L
Linus Torvalds 已提交
4355

4356 4357 4358 4359 4360 4361 4362 4363
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4364 4365 4366 4367 4368
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4369 4370 4371 4372 4373 4374 4375 4376

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4388
	if (alloc_flags & ALLOC_KSWAPD)
4389
		wake_all_kswapds(order, gfp_mask, ac);
4390 4391 4392 4393 4394 4395 4396 4397 4398

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4399 4400
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4401 4402 4403 4404 4405 4406
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4407
	 */
4408 4409 4410 4411
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4412 4413
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4414
						INIT_COMPACT_PRIORITY,
4415 4416 4417 4418
						&compact_result);
		if (page)
			goto got_pg;

4419 4420 4421 4422
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4423
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4436 4437
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4438
			 * using async compaction.
4439
			 */
4440
			compact_priority = INIT_COMPACT_PRIORITY;
4441 4442
		}
	}
4443

4444
retry:
4445
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4446
	if (alloc_flags & ALLOC_KSWAPD)
4447
		wake_all_kswapds(order, gfp_mask, ac);
4448

4449 4450 4451
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4452

4453
	/*
4454 4455 4456
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4457
	 */
4458
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4459
		ac->nodemask = NULL;
4460 4461 4462 4463
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4464
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4465
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4466 4467
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4468

4469
	/* Caller is not willing to reclaim, we can't balance anything */
4470
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4471 4472
		goto nopage;

4473 4474
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4475 4476
		goto nopage;

4477 4478 4479 4480 4481 4482 4483
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4484
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4485
					compact_priority, &compact_result);
4486 4487
	if (page)
		goto got_pg;
4488

4489 4490
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4491
		goto nopage;
4492

M
Michal Hocko 已提交
4493 4494
	/*
	 * Do not retry costly high order allocations unless they are
4495
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4496
	 */
4497
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4498
		goto nopage;
M
Michal Hocko 已提交
4499 4500

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4501
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4502 4503
		goto retry;

4504 4505 4506 4507 4508 4509 4510
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4511
			should_compact_retry(ac, order, alloc_flags,
4512
				compact_result, &compact_priority,
4513
				&compaction_retries))
4514 4515
		goto retry;

4516 4517 4518

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4519 4520
		goto retry_cpuset;

4521 4522 4523 4524 4525
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4526
	/* Avoid allocations with no watermarks from looping endlessly */
4527 4528
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4529
	     (gfp_mask & __GFP_NOMEMALLOC)))
4530 4531
		goto nopage;

4532
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4533 4534
	if (did_some_progress) {
		no_progress_loops = 0;
4535
		goto retry;
M
Michal Hocko 已提交
4536
	}
4537

L
Linus Torvalds 已提交
4538
nopage:
4539 4540
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4541 4542
		goto retry_cpuset;

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4580 4581 4582 4583
		cond_resched();
		goto retry;
	}
fail:
4584
	warn_alloc(gfp_mask, ac->nodemask,
4585
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4586
got_pg:
4587
	return page;
L
Linus Torvalds 已提交
4588
}
4589

4590
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4591
		int preferred_nid, nodemask_t *nodemask,
4592 4593
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4594
{
4595
	ac->high_zoneidx = gfp_zone(gfp_mask);
4596
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4597 4598
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4599

4600
	if (cpusets_enabled()) {
4601 4602 4603
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4604 4605
		else
			*alloc_flags |= ALLOC_CPUSET;
4606 4607
	}

4608 4609
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4610

4611
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4612 4613

	if (should_fail_alloc_page(gfp_mask, order))
4614
		return false;
4615

4616 4617 4618
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4619 4620
	return true;
}
4621

4622
/* Determine whether to spread dirty pages and what the first usable zone */
4623
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4624
{
4625
	/* Dirty zone balancing only done in the fast path */
4626
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4627

4628 4629 4630 4631 4632
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4633 4634 4635 4636 4637 4638 4639 4640
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4641 4642
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4643 4644 4645
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4646
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4647 4648
	struct alloc_context ac = { };

4649 4650 4651 4652 4653 4654 4655 4656 4657
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4658
	gfp_mask &= gfp_allowed_mask;
4659
	alloc_mask = gfp_mask;
4660
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4661 4662
		return NULL;

4663
	finalise_ac(gfp_mask, &ac);
4664

4665 4666 4667 4668
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4669
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4670

4671
	/* First allocation attempt */
4672
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4673 4674
	if (likely(page))
		goto out;
4675

4676
	/*
4677 4678 4679 4680
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4681
	 */
4682
	alloc_mask = current_gfp_context(gfp_mask);
4683
	ac.spread_dirty_pages = false;
4684

4685 4686 4687 4688
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4689
	if (unlikely(ac.nodemask != nodemask))
4690
		ac.nodemask = nodemask;
4691

4692
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4693

4694
out:
4695
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4696
	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4697 4698
		__free_pages(page, order);
		page = NULL;
4699 4700
	}

4701 4702
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4703
	return page;
L
Linus Torvalds 已提交
4704
}
4705
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4706 4707

/*
4708 4709 4710
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4711
 */
H
Harvey Harrison 已提交
4712
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4713
{
4714 4715
	struct page *page;

4716
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4717 4718 4719 4720 4721 4722
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4723
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4724
{
4725
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4726 4727 4728
}
EXPORT_SYMBOL(get_zeroed_page);

4729
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4730
{
4731 4732 4733 4734
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4735 4736
}

4737 4738 4739 4740 4741
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4742 4743
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4744
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4745 4746
{
	if (addr != 0) {
N
Nick Piggin 已提交
4747
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4748 4749 4750 4751 4752 4753
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4765 4766
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4786
void __page_frag_cache_drain(struct page *page, unsigned int count)
4787 4788 4789
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4790 4791
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4792
}
4793
EXPORT_SYMBOL(__page_frag_cache_drain);
4794

4795 4796
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4797 4798 4799 4800 4801 4802 4803
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4804
		page = __page_frag_cache_refill(nc, gfp_mask);
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4815
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4816 4817

		/* reset page count bias and offset to start of new frag */
4818
		nc->pfmemalloc = page_is_pfmemalloc(page);
4819
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4820 4821 4822 4823 4824 4825 4826
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4827
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4828 4829 4830 4831 4832 4833 4834
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4835
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4836 4837

		/* reset page count bias and offset to start of new frag */
4838
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4839 4840 4841 4842 4843 4844 4845 4846
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4847
EXPORT_SYMBOL(page_frag_alloc);
4848 4849 4850 4851

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4852
void page_frag_free(void *addr)
4853 4854 4855
{
	struct page *page = virt_to_head_page(addr);

4856 4857
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4858
}
4859
EXPORT_SYMBOL(page_frag_free);
4860

4861 4862
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4877 4878 4879
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
4880
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4881 4882 4883 4884 4885 4886 4887 4888
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
4889 4890
 *
 * Return: pointer to the allocated area or %NULL in case of error.
4891 4892 4893 4894 4895 4896
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

4897 4898 4899
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

4900
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4901
	return make_alloc_exact(addr, order, size);
4902 4903 4904
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4905 4906 4907
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4908
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4909
 * @size: the number of bytes to allocate
4910
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
4911 4912 4913
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
4914 4915
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
4916
 */
4917
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4918
{
4919
	unsigned int order = get_order(size);
4920 4921 4922 4923 4924 4925
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
4926 4927 4928 4929 4930
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4950 4951 4952 4953
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
4954
 * nr_free_zone_pages() counts the number of pages which are beyond the
4955 4956
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4957 4958
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4959 4960
 *
 * Return: number of pages beyond high watermark.
4961
 */
4962
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4963
{
4964
	struct zoneref *z;
4965 4966
	struct zone *zone;

4967
	/* Just pick one node, since fallback list is circular */
4968
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4969

4970
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4971

4972
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4973
		unsigned long size = zone_managed_pages(zone);
4974
		unsigned long high = high_wmark_pages(zone);
4975 4976
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4977 4978 4979 4980 4981
	}

	return sum;
}

4982 4983 4984 4985 4986
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
4987 4988 4989
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
4990
 */
4991
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4992
{
A
Al Viro 已提交
4993
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4994
}
4995
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4996

4997 4998 4999 5000 5001
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
5002 5003
 *
 * Return: number of pages beyond high watermark within all zones.
L
Linus Torvalds 已提交
5004
 */
5005
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
5006
{
M
Mel Gorman 已提交
5007
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
5008
}
5009 5010

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5011
{
5012
	if (IS_ENABLED(CONFIG_NUMA))
5013
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5014 5015
}

5016 5017 5018 5019 5020 5021
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5022
	unsigned long reclaimable;
5023 5024 5025 5026
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5027
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5028 5029

	for_each_zone(zone)
5030
		wmark_low += low_wmark_pages(zone);
5031 5032 5033 5034 5035

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5036
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5048 5049 5050
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5051
	 */
5052 5053 5054
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
5055

5056 5057 5058 5059 5060 5061
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5062 5063
void si_meminfo(struct sysinfo *val)
{
5064
	val->totalram = totalram_pages();
5065
	val->sharedram = global_node_page_state(NR_SHMEM);
5066
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5067
	val->bufferram = nr_blockdev_pages();
5068
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5078 5079
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5080 5081
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5082 5083
	pg_data_t *pgdat = NODE_DATA(nid);

5084
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5085
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5086
	val->totalram = managed_pages;
5087
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5088
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5089
#ifdef CONFIG_HIGHMEM
5090 5091 5092 5093
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5094
			managed_highpages += zone_managed_pages(zone);
5095 5096 5097 5098 5099
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5100
#else
5101 5102
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5103
#endif
L
Linus Torvalds 已提交
5104 5105 5106 5107
	val->mem_unit = PAGE_SIZE;
}
#endif

5108
/*
5109 5110
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5111
 */
5112
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5113 5114
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5115
		return false;
5116

5117 5118 5119 5120 5121 5122 5123 5124 5125
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5126 5127
}

L
Linus Torvalds 已提交
5128 5129
#define K(x) ((x) << (PAGE_SHIFT-10))

5130 5131 5132 5133 5134
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5135 5136
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5137 5138 5139
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5140
#ifdef CONFIG_MEMORY_ISOLATION
5141
		[MIGRATE_ISOLATE]	= 'I',
5142
#endif
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5154
	printk(KERN_CONT "(%s) ", tmp);
5155 5156
}

L
Linus Torvalds 已提交
5157 5158 5159 5160
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5161 5162 5163 5164
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5165
 */
5166
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5167
{
5168
	unsigned long free_pcp = 0;
5169
	int cpu;
L
Linus Torvalds 已提交
5170
	struct zone *zone;
M
Mel Gorman 已提交
5171
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5172

5173
	for_each_populated_zone(zone) {
5174
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5175
			continue;
5176

5177 5178
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5179 5180
	}

K
KOSAKI Motohiro 已提交
5181 5182
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5183 5184
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5185
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5186
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5187 5188 5189 5190 5191 5192 5193
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5194 5195 5196
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5197 5198
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5199
		global_node_page_state(NR_FILE_MAPPED),
5200
		global_node_page_state(NR_SHMEM),
5201 5202 5203
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5204
		free_pcp,
5205
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5206

M
Mel Gorman 已提交
5207
	for_each_online_pgdat(pgdat) {
5208
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5209 5210
			continue;

M
Mel Gorman 已提交
5211 5212 5213 5214 5215 5216 5217 5218
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5219
			" mapped:%lukB"
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5240
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5241 5242
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5243
			K(node_page_state(pgdat, NR_SHMEM)),
5244 5245 5246 5247 5248 5249 5250 5251
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5252 5253
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5254 5255
	}

5256
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5257 5258
		int i;

5259
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5260
			continue;
5261 5262 5263 5264 5265

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5266
		show_node(zone);
5267 5268
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5269 5270 5271 5272
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5273 5274 5275 5276 5277
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5278
			" writepending:%lukB"
L
Linus Torvalds 已提交
5279
			" present:%lukB"
5280
			" managed:%lukB"
5281
			" mlocked:%lukB"
5282
			" kernel_stack:%lukB"
5283 5284
			" pagetables:%lukB"
			" bounce:%lukB"
5285 5286
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5287
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5288 5289
			"\n",
			zone->name,
5290
			K(zone_page_state(zone, NR_FREE_PAGES)),
5291 5292 5293
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5294 5295 5296 5297 5298
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5299
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5300
			K(zone->present_pages),
5301
			K(zone_managed_pages(zone)),
5302
			K(zone_page_state(zone, NR_MLOCK)),
5303
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5304 5305
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5306 5307
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5308
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5309 5310
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5311 5312
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5313 5314
	}

5315
	for_each_populated_zone(zone) {
5316 5317
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5318
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5319

5320
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5321
			continue;
L
Linus Torvalds 已提交
5322
		show_node(zone);
5323
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5324 5325 5326

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5327 5328 5329 5330
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5331
			total += nr[order] << order;
5332 5333 5334

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5335
				if (!free_area_empty(area, type))
5336 5337
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5338 5339
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5340
		for (order = 0; order < MAX_ORDER; order++) {
5341 5342
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5343 5344 5345
			if (nr[order])
				show_migration_types(types[order]);
		}
5346
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5347 5348
	}

5349 5350
	hugetlb_show_meminfo();

5351
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5352

L
Linus Torvalds 已提交
5353 5354 5355
	show_swap_cache_info();
}

5356 5357 5358 5359 5360 5361
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5362 5363
/*
 * Builds allocation fallback zone lists.
5364 5365
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5366
 */
5367
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5368
{
5369
	struct zone *zone;
5370
	enum zone_type zone_type = MAX_NR_ZONES;
5371
	int nr_zones = 0;
5372 5373

	do {
5374
		zone_type--;
5375
		zone = pgdat->node_zones + zone_type;
5376
		if (managed_zone(zone)) {
5377
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5378
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5379
		}
5380
	} while (zone_type);
5381

5382
	return nr_zones;
L
Linus Torvalds 已提交
5383 5384 5385
}

#ifdef CONFIG_NUMA
5386 5387 5388

static int __parse_numa_zonelist_order(char *s)
{
5389 5390 5391 5392 5393 5394 5395 5396
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5397 5398 5399 5400 5401 5402 5403
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5404 5405 5406
	if (!s)
		return 0;

5407
	return __parse_numa_zonelist_order(s);
5408 5409 5410
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5411 5412
char numa_zonelist_order[] = "Node";

5413 5414 5415
/*
 * sysctl handler for numa_zonelist_order
 */
5416
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5417
		void __user *buffer, size_t *length,
5418 5419
		loff_t *ppos)
{
5420
	char *str;
5421 5422
	int ret;

5423 5424 5425 5426 5427
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5428

5429 5430
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5431
	return ret;
5432 5433 5434
}


5435
#define MAX_NODE_LOAD (nr_online_nodes)
5436 5437
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5438
/**
5439
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5450 5451
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5452
 */
5453
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5454
{
5455
	int n, val;
L
Linus Torvalds 已提交
5456
	int min_val = INT_MAX;
D
David Rientjes 已提交
5457
	int best_node = NUMA_NO_NODE;
5458
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5459

5460 5461 5462 5463 5464
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5465

5466
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5467 5468 5469 5470 5471 5472 5473 5474

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5475 5476 5477
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5478
		/* Give preference to headless and unused nodes */
5479 5480
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5499 5500 5501 5502 5503 5504

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5505 5506
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5507
{
5508 5509 5510 5511 5512 5513 5514 5515 5516
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5517

5518 5519 5520 5521 5522
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5523 5524
}

5525 5526 5527 5528 5529
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5530 5531
	struct zoneref *zonerefs;
	int nr_zones;
5532

5533 5534 5535 5536 5537
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5538 5539
}

5540 5541 5542 5543 5544 5545 5546 5547 5548
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5549 5550
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5551
	nodemask_t used_mask;
5552
	int local_node, prev_node;
L
Linus Torvalds 已提交
5553 5554 5555

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5556
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5557 5558
	prev_node = local_node;
	nodes_clear(used_mask);
5559 5560

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5561 5562 5563 5564 5565 5566
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5567 5568
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5569 5570
			node_load[node] = load;

5571
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5572 5573 5574
		prev_node = node;
		load--;
	}
5575

5576
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5577
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5578 5579
}

5580 5581 5582 5583 5584 5585 5586 5587 5588
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5589
	struct zoneref *z;
5590

5591
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5592
				   gfp_zone(GFP_KERNEL),
5593
				   NULL);
5594
	return zone_to_nid(z->zone);
5595 5596
}
#endif
5597

5598 5599
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5600 5601
#else	/* CONFIG_NUMA */

5602
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5603
{
5604
	int node, local_node;
5605 5606
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5607 5608 5609

	local_node = pgdat->node_id;

5610 5611 5612
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5613

5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5625 5626
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5627
	}
5628 5629 5630
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5631 5632
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5633 5634
	}

5635 5636
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5637 5638 5639 5640
}

#endif	/* CONFIG_NUMA */

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5658
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5659

5660
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5661
{
5662
	int nid;
5663
	int __maybe_unused cpu;
5664
	pg_data_t *self = data;
5665 5666 5667
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5668

5669 5670 5671
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5672

5673 5674 5675 5676
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5677 5678
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5679 5680 5681
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5682

5683 5684
			build_zonelists(pgdat);
		}
5685

5686 5687 5688 5689 5690 5691 5692 5693 5694
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5695
		for_each_online_cpu(cpu)
5696
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5697
#endif
5698
	}
5699 5700

	spin_unlock(&lock);
5701 5702
}

5703 5704 5705
static noinline void __init
build_all_zonelists_init(void)
{
5706 5707
	int cpu;

5708
	__build_all_zonelists(NULL);
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5726 5727 5728 5729
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5730 5731
/*
 * unless system_state == SYSTEM_BOOTING.
5732
 *
5733
 * __ref due to call of __init annotated helper build_all_zonelists_init
5734
 * [protected by SYSTEM_BOOTING].
5735
 */
5736
void __ref build_all_zonelists(pg_data_t *pgdat)
5737 5738
{
	if (system_state == SYSTEM_BOOTING) {
5739
		build_all_zonelists_init();
5740
	} else {
5741
		__build_all_zonelists(pgdat);
5742 5743
		/* cpuset refresh routine should be here */
	}
5744
	vm_total_pages = nr_free_pagecache_pages();
5745 5746 5747 5748 5749 5750 5751
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5752
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5753 5754 5755 5756
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5757
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5758 5759 5760
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5761
#ifdef CONFIG_NUMA
5762
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5763
#endif
L
Linus Torvalds 已提交
5764 5765
}

5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5790 5791
/*
 * Initially all pages are reserved - free ones are freed
5792
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5793 5794
 * done. Non-atomic initialization, single-pass.
 */
5795
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5796 5797
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5798
{
5799
	unsigned long pfn, end_pfn = start_pfn + size;
5800
	struct page *page;
L
Linus Torvalds 已提交
5801

5802 5803 5804
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5805
#ifdef CONFIG_ZONE_DEVICE
5806 5807
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5808 5809 5810 5811
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5812
	 */
5813 5814 5815 5816 5817 5818 5819 5820 5821
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5822

5823
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5824
		/*
5825 5826
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5827
		 */
5828 5829
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5830
				continue;
5831 5832 5833 5834 5835 5836
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5837
		}
5838

5839 5840 5841
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5842
			__SetPageReserved(page);
5843

5844 5845 5846 5847 5848
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5849
		 * kernel allocations are made.
5850 5851 5852 5853 5854 5855 5856 5857
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5858
			cond_resched();
5859
		}
L
Linus Torvalds 已提交
5860 5861 5862
	}
}

5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5938
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5939
{
5940
	unsigned int order, t;
5941 5942
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5943 5944 5945 5946
		zone->free_area[order].nr_free = 0;
	}
}

5947 5948 5949 5950 5951
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5952

5953
static int zone_batchsize(struct zone *zone)
5954
{
5955
#ifdef CONFIG_MMU
5956 5957 5958 5959
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5960
	 * size of the zone.
5961
	 */
5962
	batch = zone_managed_pages(zone) / 1024;
5963 5964 5965
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5966 5967 5968 5969 5970
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5971 5972 5973
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5974
	 *
5975 5976 5977 5978
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5979
	 */
5980
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5981

5982
	return batch;
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6000 6001
}

6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6029
/* a companion to pageset_set_high() */
6030 6031
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6032
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6033 6034
}

6035
static void pageset_init(struct per_cpu_pageset *p)
6036 6037
{
	struct per_cpu_pages *pcp;
6038
	int migratetype;
6039

6040 6041
	memset(p, 0, sizeof(*p));

6042
	pcp = &p->pcp;
6043 6044
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6045 6046
}

6047 6048 6049 6050 6051 6052
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6053
/*
6054
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6055 6056
 * to the value high for the pageset p.
 */
6057
static void pageset_set_high(struct per_cpu_pageset *p,
6058 6059
				unsigned long high)
{
6060 6061 6062
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6063

6064
	pageset_update(&p->pcp, high, batch);
6065 6066
}

6067 6068
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6069 6070
{
	if (percpu_pagelist_fraction)
6071
		pageset_set_high(pcp,
6072
			(zone_managed_pages(zone) /
6073 6074 6075 6076 6077
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6078 6079 6080 6081 6082 6083 6084 6085
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6086
void __meminit setup_zone_pageset(struct zone *zone)
6087 6088 6089
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6090 6091
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6092 6093
}

6094
/*
6095 6096
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6097
 */
6098
void __init setup_per_cpu_pageset(void)
6099
{
6100
	struct pglist_data *pgdat;
6101
	struct zone *zone;
6102

6103 6104
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6105 6106 6107 6108

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6109 6110
}

6111
static __meminit void zone_pcp_init(struct zone *zone)
6112
{
6113 6114 6115 6116 6117 6118
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6119

6120
	if (populated_zone(zone))
6121 6122 6123
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6124 6125
}

6126
void __meminit init_currently_empty_zone(struct zone *zone,
6127
					unsigned long zone_start_pfn,
6128
					unsigned long size)
6129 6130
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6131
	int zone_idx = zone_idx(zone) + 1;
6132

6133 6134
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6135 6136 6137

	zone->zone_start_pfn = zone_start_pfn;

6138 6139 6140 6141 6142 6143
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6144
	zone_init_free_lists(zone);
6145
	zone->initialized = 1;
6146 6147
}

T
Tejun Heo 已提交
6148
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6149
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6150

6151 6152 6153
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6154 6155
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6156
{
6157
	unsigned long start_pfn, end_pfn;
6158
	int nid;
6159

6160 6161
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6162

6163
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6164
	if (nid != NUMA_NO_NODE) {
6165 6166 6167
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6168 6169 6170
	}

	return nid;
6171 6172 6173 6174
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6175
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6176
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6177
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6178
 *
6179 6180 6181
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6182
 */
6183
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6184
{
6185 6186
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6187

6188 6189 6190
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6191

6192
		if (start_pfn < end_pfn)
6193 6194 6195
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6196 6197 6198
	}
}

6199 6200
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6201
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6202
 *
6203 6204
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6205 6206 6207
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6208 6209
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6210

6211 6212
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6213 6214 6215 6216
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6217 6218 6219
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6220 6221
 *
 * It returns the start and end page frame of a node based on information
6222
 * provided by memblock_set_node(). If called for a node
6223
 * with no available memory, a warning is printed and the start and end
6224
 * PFNs will be 0.
6225
 */
6226
void __init get_pfn_range_for_nid(unsigned int nid,
6227 6228
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6229
	unsigned long this_start_pfn, this_end_pfn;
6230
	int i;
6231

6232 6233 6234
	*start_pfn = -1UL;
	*end_pfn = 0;

6235 6236 6237
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6238 6239
	}

6240
	if (*start_pfn == -1UL)
6241 6242 6243
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6244 6245 6246 6247 6248
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6249
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6267
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6268 6269 6270 6271 6272 6273 6274
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6275
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6290 6291 6292 6293 6294 6295
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6296 6297 6298 6299 6300 6301
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6302 6303 6304 6305
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6306
static unsigned long __init zone_spanned_pages_in_node(int nid,
6307
					unsigned long zone_type,
6308 6309
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6310 6311
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6312 6313
					unsigned long *ignored)
{
6314 6315
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6316
	/* When hotadd a new node from cpu_up(), the node should be empty */
6317 6318 6319
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6320
	/* Get the start and end of the zone */
6321 6322
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6323 6324
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6325
				zone_start_pfn, zone_end_pfn);
6326 6327

	/* Check that this node has pages within the zone's required range */
6328
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6329 6330 6331
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6332 6333
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6334 6335

	/* Return the spanned pages */
6336
	return *zone_end_pfn - *zone_start_pfn;
6337 6338 6339 6340
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6341
 * then all holes in the requested range will be accounted for.
6342
 */
6343
unsigned long __init __absent_pages_in_range(int nid,
6344 6345 6346
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6347 6348 6349
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6350

6351 6352 6353 6354
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6355
	}
6356
	return nr_absent;
6357 6358 6359 6360 6361 6362 6363
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6364
 * Return: the number of pages frames in memory holes within a range.
6365 6366 6367 6368 6369 6370 6371 6372
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6373
static unsigned long __init zone_absent_pages_in_node(int nid,
6374
					unsigned long zone_type,
6375 6376
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6377 6378
					unsigned long *ignored)
{
6379 6380
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6381
	unsigned long zone_start_pfn, zone_end_pfn;
6382
	unsigned long nr_absent;
6383

6384
	/* When hotadd a new node from cpu_up(), the node should be empty */
6385 6386 6387
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6388 6389
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6390

M
Mel Gorman 已提交
6391 6392 6393
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6394 6395 6396 6397 6398 6399 6400
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6418 6419 6420 6421
		}
	}

	return nr_absent;
6422
}
6423

T
Tejun Heo 已提交
6424
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6425
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6426
					unsigned long zone_type,
6427 6428
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6429 6430
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6431 6432
					unsigned long *zones_size)
{
6433 6434 6435 6436 6437 6438 6439 6440
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6441 6442 6443
	return zones_size[zone_type];
}

6444
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6445
						unsigned long zone_type,
6446 6447
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6448 6449 6450 6451 6452 6453 6454
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6455

T
Tejun Heo 已提交
6456
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6457

6458
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6459 6460 6461 6462
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6463
{
6464
	unsigned long realtotalpages = 0, totalpages = 0;
6465 6466
	enum zone_type i;

6467 6468
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6469
		unsigned long zone_start_pfn, zone_end_pfn;
6470
		unsigned long size, real_size;
6471

6472 6473 6474
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6475 6476
						  &zone_start_pfn,
						  &zone_end_pfn,
6477 6478
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6479 6480
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6481 6482 6483 6484
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6485 6486 6487 6488 6489 6490 6491 6492
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6493 6494 6495 6496 6497
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6498 6499 6500
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6501 6502
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6503 6504 6505
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6506
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6507 6508 6509
{
	unsigned long usemapsize;

6510
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6511 6512
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6513 6514 6515 6516 6517 6518
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6519
static void __ref setup_usemap(struct pglist_data *pgdat,
6520 6521 6522
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6523
{
6524
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6525
	zone->pageblock_flags = NULL;
6526
	if (usemapsize) {
6527
		zone->pageblock_flags =
6528 6529
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6530 6531 6532 6533
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6534 6535
}
#else
6536 6537
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6538 6539
#endif /* CONFIG_SPARSEMEM */

6540
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6541

6542
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6543
void __init set_pageblock_order(void)
6544
{
6545 6546
	unsigned int order;

6547 6548 6549 6550
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6551 6552 6553 6554 6555
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6556 6557
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6558 6559
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6560 6561 6562 6563 6564
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6565 6566
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6567 6568 6569
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6570
 */
6571
void __init set_pageblock_order(void)
6572 6573
{
}
6574 6575 6576

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6577
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6578
						unsigned long present_pages)
6579 6580 6581 6582 6583 6584 6585 6586
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6587
	 * populated regions may not be naturally aligned on page boundary.
6588 6589 6590 6591 6592 6593 6594 6595 6596
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6617
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6618
{
6619
	pgdat_resize_init(pgdat);
6620 6621 6622 6623

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6624
	init_waitqueue_head(&pgdat->kswapd_wait);
6625
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6626

6627
	pgdat_page_ext_init(pgdat);
6628
	spin_lock_init(&pgdat->lru_lock);
6629
	lruvec_init(node_lruvec(pgdat));
6630 6631 6632 6633 6634
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6635
	atomic_long_set(&zone->managed_pages, remaining_pages);
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6676

6677
	pgdat_init_internals(pgdat);
6678 6679
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6680 6681
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6682
		unsigned long size, freesize, memmap_pages;
6683
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6684

6685
		size = zone->spanned_pages;
6686
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6687

6688
		/*
6689
		 * Adjust freesize so that it accounts for how much memory
6690 6691 6692
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6693
		memmap_pages = calc_memmap_size(size, freesize);
6694 6695 6696 6697 6698 6699 6700 6701
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6702
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6703 6704
					zone_names[j], memmap_pages, freesize);
		}
6705

6706
		/* Account for reserved pages */
6707 6708
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6709
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6710
					zone_names[0], dma_reserve);
6711 6712
		}

6713
		if (!is_highmem_idx(j))
6714
			nr_kernel_pages += freesize;
6715 6716 6717
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6718
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6719

6720 6721 6722 6723 6724
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6725
		zone_init_internals(zone, j, nid, freesize);
6726

6727
		if (!size)
L
Linus Torvalds 已提交
6728 6729
			continue;

6730
		set_pageblock_order();
6731 6732
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6733
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6734 6735 6736
	}
}

6737
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6738
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6739
{
6740
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6741 6742
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6743 6744 6745 6746
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6747 6748
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6749 6750
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6751
		unsigned long size, end;
A
Andy Whitcroft 已提交
6752 6753
		struct page *map;

6754 6755 6756 6757 6758
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6759
		end = pgdat_end_pfn(pgdat);
6760 6761
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6762 6763
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6764 6765 6766
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6767
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6768
	}
6769 6770 6771
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6772
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6773 6774 6775
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6776
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6777
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6778
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6779
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6780
			mem_map -= offset;
T
Tejun Heo 已提交
6781
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6782
	}
L
Linus Torvalds 已提交
6783 6784
#endif
}
6785 6786 6787
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6788

6789 6790 6791 6792 6793 6794 6795 6796 6797
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6798
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6799 6800
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6801
{
6802
	pg_data_t *pgdat = NODE_DATA(nid);
6803 6804
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6805

6806
	/* pg_data_t should be reset to zero when it's allocated */
6807
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6808

L
Linus Torvalds 已提交
6809 6810
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6811
	pgdat->per_cpu_nodestats = NULL;
6812 6813
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6814
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6815 6816
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6817 6818
#else
	start_pfn = node_start_pfn;
6819 6820 6821
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6822 6823

	alloc_node_mem_map(pgdat);
6824
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6825

6826
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6827 6828
}

M
Mike Rapoport 已提交
6829
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6852 6853 6854 6855 6856 6857
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6858 6859 6860 6861 6862
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6863
 */
6864
void __init zero_resv_unavail(void)
6865 6866 6867
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6868
	phys_addr_t next = 0;
6869 6870

	/*
6871
	 * Loop through unavailable ranges not covered by memblock.memory.
6872 6873
	 */
	pgcnt = 0;
6874 6875
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6876 6877
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6878 6879
		next = end;
	}
6880
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6881

6882 6883 6884 6885 6886
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6887
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6888
}
M
Mike Rapoport 已提交
6889
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6890

T
Tejun Heo 已提交
6891
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6892 6893 6894 6895 6896

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6897
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6898
{
6899
	unsigned int highest;
M
Miklos Szeredi 已提交
6900

6901
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6902 6903 6904 6905
	nr_node_ids = highest + 1;
}
#endif

6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
6922
 * Return: the determined alignment in pfn's.  0 if there is no alignment
6923 6924 6925 6926 6927
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6928
	unsigned long start, end, mask;
6929
	int last_nid = NUMA_NO_NODE;
6930
	int i, nid;
6931

6932
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6956
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6957
static unsigned long __init find_min_pfn_for_node(int nid)
6958
{
6959
	unsigned long min_pfn = ULONG_MAX;
6960 6961
	unsigned long start_pfn;
	int i;
6962

6963 6964
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6965

6966
	if (min_pfn == ULONG_MAX) {
6967
		pr_warn("Could not find start_pfn for node %d\n", nid);
6968 6969 6970 6971
		return 0;
	}

	return min_pfn;
6972 6973 6974 6975 6976
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
6977
 * Return: the minimum PFN based on information provided via
6978
 * memblock_set_node().
6979 6980 6981 6982 6983 6984
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6985 6986 6987
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6988
 * Populate N_MEMORY for calculating usable_nodes.
6989
 */
A
Adrian Bunk 已提交
6990
static unsigned long __init early_calculate_totalpages(void)
6991 6992
{
	unsigned long totalpages = 0;
6993 6994 6995 6996 6997
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6998

6999 7000
		totalpages += pages;
		if (pages)
7001
			node_set_state(nid, N_MEMORY);
7002
	}
7003
	return totalpages;
7004 7005
}

M
Mel Gorman 已提交
7006 7007 7008 7009 7010 7011
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7012
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7013 7014 7015 7016
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7017
	/* save the state before borrow the nodemask */
7018
	nodemask_t saved_node_state = node_states[N_MEMORY];
7019
	unsigned long totalpages = early_calculate_totalpages();
7020
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7021
	struct memblock_region *r;
7022 7023 7024 7025 7026 7027 7028 7029 7030

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
7031 7032
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
7033 7034
				continue;

E
Emil Medve 已提交
7035
			nid = r->nid;
7036

E
Emil Medve 已提交
7037
			usable_startpfn = PFN_DOWN(r->base);
7038 7039 7040 7041 7042 7043 7044
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7045

7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7076
	/*
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7104
		required_movablecore = min(totalpages, required_movablecore);
7105 7106 7107 7108 7109
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7110 7111 7112 7113 7114
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7115
		goto out;
M
Mel Gorman 已提交
7116 7117 7118 7119 7120 7121 7122

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7123
	for_each_node_state(nid, N_MEMORY) {
7124 7125
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7142
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7143 7144
			unsigned long size_pages;

7145
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7188
			 * satisfied
M
Mel Gorman 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7202
	 * satisfied
M
Mel Gorman 已提交
7203 7204 7205 7206 7207
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7208
out2:
M
Mel Gorman 已提交
7209 7210 7211 7212
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7213

7214
out:
7215
	/* restore the node_state */
7216
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7217 7218
}

7219 7220
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7221 7222 7223
{
	enum zone_type zone_type;

7224
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7225
		struct zone *zone = &pgdat->node_zones[zone_type];
7226
		if (populated_zone(zone)) {
7227 7228 7229
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7230
				node_set_state(nid, N_NORMAL_MEMORY);
7231 7232
			break;
		}
7233 7234 7235
	}
}

7236 7237
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7238
 * @max_zone_pfn: an array of max PFNs for each zone
7239 7240
 *
 * This will call free_area_init_node() for each active node in the system.
7241
 * Using the page ranges provided by memblock_set_node(), the size of each
7242 7243 7244 7245 7246 7247 7248 7249 7250
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7251 7252
	unsigned long start_pfn, end_pfn;
	int i, nid;
7253

7254 7255 7256 7257 7258
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7259 7260 7261 7262

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7263 7264
		if (i == ZONE_MOVABLE)
			continue;
7265 7266 7267 7268 7269 7270

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7271
	}
M
Mel Gorman 已提交
7272 7273 7274

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7275
	find_zone_movable_pfns_for_nodes();
7276 7277

	/* Print out the zone ranges */
7278
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7279 7280 7281
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7282
		pr_info("  %-8s ", zone_names[i]);
7283 7284
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7285
			pr_cont("empty\n");
7286
		else
7287 7288 7289 7290
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7291
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7292 7293 7294
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7295
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7296 7297
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7298 7299
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7300
	}
7301

7302
	/* Print out the early node map */
7303
	pr_info("Early memory node ranges\n");
7304
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7305 7306 7307
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7308 7309

	/* Initialise every node */
7310
	mminit_verify_pageflags_layout();
7311
	setup_nr_node_ids();
7312
	zero_resv_unavail();
7313 7314
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7315
		free_area_init_node(nid, NULL,
7316
				find_min_pfn_for_node(nid), NULL);
7317 7318 7319

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7320 7321
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7322 7323
	}
}
M
Mel Gorman 已提交
7324

7325 7326
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7327 7328
{
	unsigned long long coremem;
7329 7330
	char *endptr;

M
Mel Gorman 已提交
7331 7332 7333
	if (!p)
		return -EINVAL;

7334 7335 7336 7337 7338
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7339

7340 7341 7342 7343 7344
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7345

7346 7347 7348
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7349 7350
	return 0;
}
M
Mel Gorman 已提交
7351

7352 7353 7354 7355 7356 7357
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7358 7359 7360 7361 7362 7363
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7364 7365
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7366 7367 7368 7369 7370 7371 7372 7373
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7374 7375
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7376 7377
}

M
Mel Gorman 已提交
7378
early_param("kernelcore", cmdline_parse_kernelcore);
7379
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7380

T
Tejun Heo 已提交
7381
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7382

7383 7384
void adjust_managed_page_count(struct page *page, long count)
{
7385
	atomic_long_add(count, &page_zone(page)->managed_pages);
7386
	totalram_pages_add(count);
7387 7388
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7389
		totalhigh_pages_add(count);
7390
#endif
7391
}
7392
EXPORT_SYMBOL(adjust_managed_page_count);
7393

7394
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7395
{
7396 7397
	void *pos;
	unsigned long pages = 0;
7398

7399 7400 7401
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7413
		if ((unsigned int)poison <= 0xFF)
7414 7415 7416
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7417 7418 7419
	}

	if (pages && s)
7420 7421
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7422 7423 7424 7425

	return pages;
}

7426 7427 7428 7429
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7430
	totalram_pages_inc();
7431
	atomic_long_inc(&page_zone(page)->managed_pages);
7432
	totalhigh_pages_inc();
7433 7434 7435
}
#endif

7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7458 7459 7460 7461
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7472
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7473
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7474
		", %luK highmem"
7475
#endif
J
Joe Perches 已提交
7476 7477 7478 7479 7480
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7481
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7482
		totalcma_pages << (PAGE_SHIFT - 10),
7483
#ifdef	CONFIG_HIGHMEM
7484
		totalhigh_pages() << (PAGE_SHIFT - 10),
7485
#endif
J
Joe Perches 已提交
7486
		str ? ", " : "", str ? str : "");
7487 7488
}

7489
/**
7490 7491
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7492
 *
7493
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7494 7495
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7496 7497 7498
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7499 7500 7501 7502 7503 7504
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7505 7506
void __init free_area_init(unsigned long *zones_size)
{
7507
	zero_resv_unavail();
7508
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7509 7510 7511
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7512
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7513 7514
{

7515 7516
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7517

7518 7519 7520 7521 7522 7523 7524
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7525

7526 7527 7528 7529 7530 7531 7532 7533 7534
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7535 7536
}

7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
7550 7551
void __init page_alloc_init(void)
{
7552 7553
	int ret;

7554 7555 7556 7557 7558
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

7559 7560 7561 7562
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7563 7564
}

7565
/*
7566
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7567 7568 7569 7570 7571 7572
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7573
	enum zone_type i, j;
7574 7575

	for_each_online_pgdat(pgdat) {
7576 7577 7578

		pgdat->totalreserve_pages = 0;

7579 7580
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7581
			long max = 0;
7582
			unsigned long managed_pages = zone_managed_pages(zone);
7583 7584 7585 7586 7587 7588 7589

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7590 7591
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7592

7593 7594
			if (max > managed_pages)
				max = managed_pages;
7595

7596
			pgdat->totalreserve_pages += max;
7597

7598 7599 7600 7601 7602 7603
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7604 7605
/*
 * setup_per_zone_lowmem_reserve - called whenever
7606
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7607 7608 7609 7610 7611 7612
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7613
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7614

7615
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7616 7617
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7618
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7619 7620 7621

			zone->lowmem_reserve[j] = 0;

7622 7623
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7624 7625
				struct zone *lower_zone;

7626
				idx--;
L
Linus Torvalds 已提交
7627
				lower_zone = pgdat->node_zones + idx;
7628 7629 7630 7631 7632 7633 7634 7635

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7636
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7637 7638 7639
			}
		}
	}
7640 7641 7642

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7643 7644
}

7645
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7646 7647 7648 7649 7650 7651 7652 7653 7654
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7655
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7656 7657 7658
	}

	for_each_zone(zone) {
7659 7660
		u64 tmp;

7661
		spin_lock_irqsave(&zone->lock, flags);
7662
		tmp = (u64)pages_min * zone_managed_pages(zone);
7663
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7664 7665
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7666 7667 7668 7669
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7670
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7671
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7672
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7673
			 */
7674
			unsigned long min_pages;
L
Linus Torvalds 已提交
7675

7676
			min_pages = zone_managed_pages(zone) / 1024;
7677
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7678
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7679
		} else {
N
Nick Piggin 已提交
7680 7681
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7682 7683
			 * proportionate to the zone's size.
			 */
7684
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7685 7686
		}

7687 7688 7689 7690 7691 7692
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7693
			    mult_frac(zone_managed_pages(zone),
7694 7695
				      watermark_scale_factor, 10000));

7696 7697
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7698
		zone->watermark_boost = 0;
7699

7700
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7701
	}
7702 7703 7704

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7705 7706
}

7707 7708 7709 7710 7711 7712 7713 7714 7715
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7716 7717 7718
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7719
	__setup_per_zone_wmarks();
7720
	spin_unlock(&lock);
7721 7722
}

L
Linus Torvalds 已提交
7723 7724 7725 7726 7727 7728 7729
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7730
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7747
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7748 7749
{
	unsigned long lowmem_kbytes;
7750
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7751 7752

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7765
	setup_per_zone_wmarks();
7766
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7767
	setup_per_zone_lowmem_reserve();
7768 7769 7770 7771 7772 7773

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7774 7775
	return 0;
}
7776
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7777 7778

/*
7779
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7780 7781 7782
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7783
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7784
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7785
{
7786 7787 7788 7789 7790 7791
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7792 7793
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7794
		setup_per_zone_wmarks();
7795
	}
L
Linus Torvalds 已提交
7796 7797 7798
	return 0;
}

7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7826
#ifdef CONFIG_NUMA
7827
static void setup_min_unmapped_ratio(void)
7828
{
7829
	pg_data_t *pgdat;
7830 7831
	struct zone *zone;

7832
	for_each_online_pgdat(pgdat)
7833
		pgdat->min_unmapped_pages = 0;
7834

7835
	for_each_zone(zone)
7836 7837
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7838
}
7839

7840 7841

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7842
	void __user *buffer, size_t *length, loff_t *ppos)
7843 7844 7845
{
	int rc;

7846
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7847 7848 7849
	if (rc)
		return rc;

7850 7851 7852 7853 7854 7855 7856 7857 7858 7859
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7860 7861 7862
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7863
	for_each_zone(zone)
7864 7865
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7879 7880
	return 0;
}
7881 7882
#endif

L
Linus Torvalds 已提交
7883 7884 7885 7886 7887 7888
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7889
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7890 7891
 * if in function of the boot time zone sizes.
 */
7892
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7893
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7894
{
7895
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7896 7897 7898 7899
	setup_per_zone_lowmem_reserve();
	return 0;
}

7900 7901
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7902 7903
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7904
 */
7905
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7906
	void __user *buffer, size_t *length, loff_t *ppos)
7907 7908
{
	struct zone *zone;
7909
	int old_percpu_pagelist_fraction;
7910 7911
	int ret;

7912 7913 7914
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7915
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7930

7931
	for_each_populated_zone(zone) {
7932 7933
		unsigned int cpu;

7934
		for_each_possible_cpu(cpu)
7935 7936
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7937
	}
7938
out:
7939
	mutex_unlock(&pcp_batch_high_lock);
7940
	return ret;
7941 7942
}

7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7982 7983
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7984
{
7985
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7986 7987
	unsigned long log2qty, size;
	void *table = NULL;
7988
	gfp_t gfp_flags;
7989
	bool virt;
L
Linus Torvalds 已提交
7990 7991 7992 7993

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7994
		numentries = nr_kernel_pages;
7995
		numentries -= arch_reserved_kernel_pages();
7996 7997 7998 7999

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8000

P
Pavel Tatashin 已提交
8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8011 8012 8013 8014 8015
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8016 8017

		/* Make sure we've got at least a 0-order allocation.. */
8018 8019 8020 8021 8022 8023 8024 8025
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8026
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8027
	}
8028
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8029 8030 8031 8032 8033 8034

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8035
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8036

8037 8038
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8039 8040 8041
	if (numentries > max)
		numentries = max;

8042
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8043

8044
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8045
	do {
8046
		virt = false;
L
Linus Torvalds 已提交
8047
		size = bucketsize << log2qty;
8048 8049
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8050
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8051
			else
8052 8053
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8054
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8055
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8056
			virt = true;
8057
		} else {
8058 8059
			/*
			 * If bucketsize is not a power-of-two, we may free
8060 8061
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8062
			 */
8063 8064
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8065 8066 8067 8068 8069 8070
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8071 8072 8073
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
		virt ? "vmalloc" : "linear");
L
Linus Torvalds 已提交
8074 8075 8076 8077 8078 8079 8080 8081

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8082

K
KAMEZAWA Hiroyuki 已提交
8083
/*
8084 8085 8086
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8087
 * PageLRU check without isolation or lru_lock could race so that
8088 8089 8090
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
8091
 */
8092
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8093
			 int migratetype, int flags)
8094
{
8095 8096 8097 8098
	unsigned long found;
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
	const char *reason = "unmovable page";
8099

8100
	/*
8101 8102 8103 8104 8105
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8106 8107
	 */

8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
			return false;

		reason = "CMA page";
		goto unmovable;
	}
8120

8121
	for (found = 0; iter < pageblock_nr_pages; iter++) {
8122 8123
		unsigned long check = pfn + iter;

8124
		if (!pfn_valid_within(check))
8125
			continue;
8126

8127
		page = pfn_to_page(check);
8128

8129
		if (PageReserved(page))
8130
			goto unmovable;
8131

8132 8133 8134 8135 8136 8137 8138 8139
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8140 8141
		/*
		 * Hugepages are not in LRU lists, but they're movable.
W
Wei Yang 已提交
8142
		 * We need not scan over tail pages because we don't
8143 8144 8145
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8146 8147
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8148

8149
			if (!hugepage_migration_supported(page_hstate(head)))
8150 8151
				goto unmovable;

8152 8153
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
8154 8155 8156
			continue;
		}

8157 8158 8159 8160
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8161
		 * because their page->_refcount is zero at all time.
8162
		 */
8163
		if (!page_ref_count(page)) {
8164 8165 8166 8167
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8168

8169 8170 8171 8172
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8173
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8174 8175
			continue;

8176 8177 8178
		if (__PageMovable(page))
			continue;

8179 8180 8181
		if (!PageLRU(page))
			found++;
		/*
8182 8183 8184
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8195
			goto unmovable;
8196
	}
8197
	return false;
8198 8199
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8200
	if (flags & REPORT_FAILURE)
8201
		dump_page(pfn_to_page(pfn + iter), reason);
8202
	return true;
8203 8204
}

8205
#ifdef CONFIG_CONTIG_ALLOC
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8219 8220
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8221 8222
{
	/* This function is based on compact_zone() from compaction.c. */
8223
	unsigned long nr_reclaimed;
8224 8225 8226 8227
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8228
	migrate_prep();
8229

8230
	while (pfn < end || !list_empty(&cc->migratepages)) {
8231 8232 8233 8234 8235
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8236 8237
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8238
			pfn = isolate_migratepages_range(cc, pfn, end);
8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8249 8250 8251
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8252

8253
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8254
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8255
	}
8256 8257 8258 8259 8260
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8261 8262 8263 8264 8265 8266
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8267 8268 8269 8270
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8271
 * @gfp_mask:	GFP mask to use during compaction
8272 8273
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8274
 * aligned.  The PFN range must belong to a single zone.
8275
 *
8276 8277 8278
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8279
 *
8280
 * Return: zero on success or negative error code.  On success all
8281 8282 8283
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8284
int alloc_contig_range(unsigned long start, unsigned long end,
8285
		       unsigned migratetype, gfp_t gfp_mask)
8286 8287
{
	unsigned long outer_start, outer_end;
8288 8289
	unsigned int order;
	int ret = 0;
8290

8291 8292 8293 8294
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8295
		.mode = MIGRATE_SYNC,
8296
		.ignore_skip_hint = true,
8297
		.no_set_skip_hint = true,
8298
		.gfp_mask = current_gfp_context(gfp_mask),
8299 8300 8301
	};
	INIT_LIST_HEAD(&cc.migratepages);

8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8327
				       pfn_max_align_up(end), migratetype, 0);
8328
	if (ret < 0)
8329
		return ret;
8330

8331 8332
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8333 8334 8335 8336 8337 8338 8339
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8340
	 */
8341
	ret = __alloc_contig_migrate_range(&cc, start, end);
8342
	if (ret && ret != -EBUSY)
8343
		goto done;
8344
	ret =0;
8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8369 8370
			outer_start = start;
			break;
8371 8372 8373 8374
		}
		outer_start &= ~0UL << order;
	}

8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8388
	/* Make sure the range is really isolated. */
8389
	if (test_pages_isolated(outer_start, end, false)) {
8390
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8391
			__func__, outer_start, end);
8392 8393 8394 8395
		ret = -EBUSY;
		goto done;
	}

8396
	/* Grab isolated pages from freelists. */
8397
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8411
				pfn_max_align_up(end), migratetype);
8412 8413
	return ret;
}
8414
#endif /* CONFIG_CONTIG_ALLOC */
8415

8416
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8417
{
8418 8419 8420 8421 8422 8423 8424 8425 8426
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8427 8428
}

8429
#ifdef CONFIG_MEMORY_HOTPLUG
8430 8431 8432 8433
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8434 8435
void __meminit zone_pcp_update(struct zone *zone)
{
8436
	unsigned cpu;
8437
	mutex_lock(&pcp_batch_high_lock);
8438
	for_each_possible_cpu(cpu)
8439 8440
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8441
	mutex_unlock(&pcp_batch_high_lock);
8442 8443 8444
}
#endif

8445 8446 8447
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8448 8449
	int cpu;
	struct per_cpu_pageset *pset;
8450 8451 8452 8453

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8454 8455 8456 8457
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8458 8459 8460 8461 8462 8463
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8464
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8465
/*
8466 8467
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8468
 */
8469
unsigned long
K
KAMEZAWA Hiroyuki 已提交
8470 8471 8472 8473
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8474
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8475 8476
	unsigned long pfn;
	unsigned long flags;
8477 8478
	unsigned long offlined_pages = 0;

K
KAMEZAWA Hiroyuki 已提交
8479 8480 8481 8482 8483
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
8484 8485
		return offlined_pages;

8486
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8487 8488 8489 8490 8491 8492 8493 8494 8495
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8496 8497 8498 8499 8500 8501 8502
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
8503
			offlined_pages++;
8504 8505 8506
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8507 8508 8509
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
8510
		offlined_pages += 1 << order;
K
KAMEZAWA Hiroyuki 已提交
8511
#ifdef CONFIG_DEBUG_VM
8512 8513
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8514
#endif
8515
		del_page_from_free_area(page, &zone->free_area[order]);
K
KAMEZAWA Hiroyuki 已提交
8516 8517 8518 8519 8520
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
8521 8522

	return offlined_pages;
K
KAMEZAWA Hiroyuki 已提交
8523 8524
}
#endif
8525 8526 8527 8528 8529 8530

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8531
	unsigned int order;
8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif