vmscan.c 124.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 84 85 86 87 88 89 90
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

91 92 93 94 95 96 97
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
98

99 100 101 102 103
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
104 105 106 107 108 109 110 111 112 113 114 115
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

116 117 118 119 120
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
121 122 123 124 125 126 127 128 129 130

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
131 132 133

	/* for recording the reclaimed slab by now */
	struct reclaim_state reclaim_state;
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
168 169 170 171 172
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
173

174 175 176 177 178 179 180 181 182 183 184 185
static void set_task_reclaim_state(struct task_struct *task,
				   struct reclaim_state *rs)
{
	/* Check for an overwrite */
	WARN_ON_ONCE(rs && task->reclaim_state);

	/* Check for the nulling of an already-nulled member */
	WARN_ON_ONCE(!rs && !task->reclaim_state);

	task->reclaim_state = rs;
}

L
Linus Torvalds 已提交
186 187 188
static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

189
#ifdef CONFIG_MEMCG
190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

203 204 205 206 207 208 209 210 211
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
212
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 214 215
	if (id < 0)
		goto unlock;

216 217 218 219 220 221
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

222
		shrinker_nr_max = id + 1;
223
	}
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}

242 243
static bool global_reclaim(struct scan_control *sc)
{
244
	return !sc->target_mem_cgroup;
245
}
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
267
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 269 270 271
		return true;
#endif
	return false;
}
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
295
#else
296 297 298 299 300 301 302 303 304
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}

305 306 307 308
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
309 310 311 312 313

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
314 315 316 317 318 319 320 321 322 323 324 325

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
326 327
#endif

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

346 347 348 349 350 351 352
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
353
{
354
	unsigned long size = 0;
355 356
	int zid;

357
	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
358
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
359

360 361 362 363
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
364
			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
365
		else
366
			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
367
	}
368
	return size;
369 370
}

L
Linus Torvalds 已提交
371
/*
G
Glauber Costa 已提交
372
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
373
 */
374
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
375
{
376
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
377 378 379 380 381 382 383

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
384 385 386 387 388 389

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

390
	return 0;
391 392 393 394 395

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
396 397 398 399
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
400 401 402 403 404 405
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

406 407 408
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
409

410 411
void register_shrinker_prepared(struct shrinker *shrinker)
{
412 413
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
414
#ifdef CONFIG_MEMCG_KMEM
415 416
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
417
#endif
418
	up_write(&shrinker_rwsem);
419 420 421 422 423 424 425 426 427
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
428
	return 0;
L
Linus Torvalds 已提交
429
}
430
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
431 432 433 434

/*
 * Remove one
 */
435
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
436
{
437 438
	if (!shrinker->nr_deferred)
		return;
439 440
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
441 442 443
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
444
	kfree(shrinker->nr_deferred);
445
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
446
}
447
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
448 449

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
450

451
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
452
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
453 454 455 456
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
457
	long freeable;
G
Glauber Costa 已提交
458 459 460 461 462
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
463
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
464

465 466 467
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

468
	freeable = shrinker->count_objects(shrinker, shrinkctl);
469 470
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
471 472 473 474 475 476 477 478 479

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
480 481 482 483 484 485 486 487 488 489 490 491
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
492

G
Glauber Costa 已提交
493 494
	total_scan += delta;
	if (total_scan < 0) {
495
		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
496
		       shrinker->scan_objects, total_scan);
497
		total_scan = freeable;
498 499 500
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
501 502 503 504 505 506 507

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
508
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
509 510 511 512 513
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
514 515
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
516 517 518 519 520 521

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
522 523
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
524 525

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
526
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
527

528 529 530 531 532 533 534 535 536 537 538
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
539
	 * than the total number of objects on slab (freeable), we must be
540 541 542 543
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
544
	       total_scan >= freeable) {
D
Dave Chinner 已提交
545
		unsigned long ret;
546
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
547

548
		shrinkctl->nr_to_scan = nr_to_scan;
549
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
550 551 552 553
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
554

555 556 557
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
558 559 560 561

		cond_resched();
	}

562 563 564 565
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
566 567 568 569 570
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
571 572
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
573 574 575 576
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

577
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
578
	return freed;
579 580
}

581
#ifdef CONFIG_MEMCG
582 583 584 585
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
586 587
	unsigned long ret, freed = 0;
	int i;
588

589
	if (!mem_cgroup_online(memcg))
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
609 610 611
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
612 613 614
			continue;
		}

615 616 617 618 619
		/* Call non-slab shrinkers even though kmem is disabled */
		if (!memcg_kmem_enabled() &&
		    !(shrinker->flags & SHRINKER_NONSLAB))
			continue;

620
		ret = do_shrink_slab(&sc, shrinker, priority);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
645 646 647 648 649 650 651 652 653 654 655
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
656
#else /* CONFIG_MEMCG */
657 658 659 660 661
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
662
#endif /* CONFIG_MEMCG */
663

664
/**
665
 * shrink_slab - shrink slab caches
666 667
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
668
 * @memcg: memory cgroup whose slab caches to target
669
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
670
 *
671
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
672
 *
673 674
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
675
 *
676 677
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
678
 *
679 680
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
681
 *
682
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
683
 */
684 685
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
686
				 int priority)
L
Linus Torvalds 已提交
687
{
688
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
689 690
	struct shrinker *shrinker;

691 692 693 694 695 696 697 698
	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
699
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
700

701
	if (!down_read_trylock(&shrinker_rwsem))
702
		goto out;
L
Linus Torvalds 已提交
703 704

	list_for_each_entry(shrinker, &shrinker_list, list) {
705 706 707
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
708
			.memcg = memcg,
709
		};
710

711 712 713 714
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
715 716 717 718 719 720 721 722 723
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
724
	}
725

L
Linus Torvalds 已提交
726
	up_read(&shrinker_rwsem);
727 728
out:
	cond_resched();
D
Dave Chinner 已提交
729
	return freed;
L
Linus Torvalds 已提交
730 731
}

732 733 734 735 736 737 738 739
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
740
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
741
		do {
742
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
743 744 745 746 747 748 749 750 751 752 753 754
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
755 756
static inline int is_page_cache_freeable(struct page *page)
{
757 758
	/*
	 * A freeable page cache page is referenced only by the caller
759 760
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
761
	 */
762
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
763
		HPAGE_PMD_NR : 1;
764
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
765 766
}

767
static int may_write_to_inode(struct inode *inode)
L
Linus Torvalds 已提交
768
{
769
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
770
		return 1;
771
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
772
		return 1;
773
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
793
	lock_page(page);
794 795
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
796 797 798
	unlock_page(page);
}

799 800 801 802 803 804 805 806 807 808 809 810
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
811
/*
A
Andrew Morton 已提交
812 813
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
814
 */
815
static pageout_t pageout(struct page *page, struct address_space *mapping)
L
Linus Torvalds 已提交
816 817 818 819 820 821 822 823
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
824
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
840
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
841 842
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
843
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
844 845 846 847 848 849 850
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
851
	if (!may_write_to_inode(mapping->host))
L
Linus Torvalds 已提交
852 853 854 855 856 857 858
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
859 860
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
861 862 863 864 865 866 867
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
868
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
869 870 871
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
872

L
Linus Torvalds 已提交
873 874 875 876
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
877
		trace_mm_vmscan_writepage(page);
878
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
879 880 881 882 883 884
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

885
/*
N
Nick Piggin 已提交
886 887
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
888
 */
889 890
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
891
{
892
	unsigned long flags;
893
	int refcount;
894

895 896
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
897

M
Matthew Wilcox 已提交
898
	xa_lock_irqsave(&mapping->i_pages, flags);
899
	/*
N
Nick Piggin 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
919
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
920 921
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
922
	 * and thus under the i_pages lock, then this ordering is not required.
923
	 */
924
	refcount = 1 + compound_nr(page);
925
	if (!page_ref_freeze(page, refcount))
926
		goto cannot_free;
927
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
928
	if (unlikely(PageDirty(page))) {
929
		page_ref_unfreeze(page, refcount);
930
		goto cannot_free;
N
Nick Piggin 已提交
931
	}
932 933 934

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
935
		mem_cgroup_swapout(page, swap);
936
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
937
		xa_unlock_irqrestore(&mapping->i_pages, flags);
938
		put_swap_page(page, swap);
N
Nick Piggin 已提交
939
	} else {
940
		void (*freepage)(struct page *);
941
		void *shadow = NULL;
942 943

		freepage = mapping->a_ops->freepage;
944 945 946 947 948 949 950 951 952
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
953 954 955 956 957
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
958
		 * same address_space.
959 960
		 */
		if (reclaimed && page_is_file_cache(page) &&
961
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
962
			shadow = workingset_eviction(page);
J
Johannes Weiner 已提交
963
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
964
		xa_unlock_irqrestore(&mapping->i_pages, flags);
965 966 967

		if (freepage != NULL)
			freepage(page);
968 969 970 971 972
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
973
	xa_unlock_irqrestore(&mapping->i_pages, flags);
974 975 976
	return 0;
}

N
Nick Piggin 已提交
977 978 979 980 981 982 983 984
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
985
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
986 987 988 989 990
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
991
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
992 993 994 995 996
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
1008
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
1009 1010 1011
	put_page(page);		/* drop ref from isolate */
}

1012 1013 1014
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1015
	PAGEREF_KEEP,
1016 1017 1018 1019 1020 1021
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1022
	int referenced_ptes, referenced_page;
1023 1024
	unsigned long vm_flags;

1025 1026
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1027
	referenced_page = TestClearPageReferenced(page);
1028 1029 1030 1031 1032 1033 1034 1035

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1036
	if (referenced_ptes) {
1037
		if (PageSwapBacked(page))
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1055
		if (referenced_page || referenced_ptes > 1)
1056 1057
			return PAGEREF_ACTIVATE;

1058 1059 1060 1061 1062 1063
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1064 1065
		return PAGEREF_KEEP;
	}
1066 1067

	/* Reclaim if clean, defer dirty pages to writeback */
1068
	if (referenced_page && !PageSwapBacked(page))
1069 1070 1071
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1072 1073
}

1074 1075 1076 1077
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1078 1079
	struct address_space *mapping;

1080 1081 1082 1083
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1084 1085
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1086 1087 1088 1089 1090 1091 1092 1093
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1094 1095 1096 1097 1098 1099 1100 1101

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1102 1103
}

L
Linus Torvalds 已提交
1104
/*
A
Andrew Morton 已提交
1105
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1106
 */
A
Andrew Morton 已提交
1107
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1108
				      struct pglist_data *pgdat,
1109
				      struct scan_control *sc,
1110
				      enum ttu_flags ttu_flags,
1111
				      struct reclaim_stat *stat,
1112
				      bool ignore_references)
L
Linus Torvalds 已提交
1113 1114
{
	LIST_HEAD(ret_pages);
1115
	LIST_HEAD(free_pages);
1116
	unsigned nr_reclaimed = 0;
1117
	unsigned pgactivate = 0;
L
Linus Torvalds 已提交
1118

1119
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1120 1121 1122 1123 1124 1125
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1126
		enum page_references references = PAGEREF_RECLAIM;
1127
		bool dirty, writeback;
1128
		unsigned int nr_pages;
L
Linus Torvalds 已提交
1129 1130 1131 1132 1133 1134

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1135
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1136 1137
			goto keep;

1138
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1139

1140
		nr_pages = compound_nr(page);
1141 1142 1143

		/* Account the number of base pages even though THP */
		sc->nr_scanned += nr_pages;
1144

1145
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1146
			goto activate_locked;
L
Lee Schermerhorn 已提交
1147

1148
		if (!sc->may_unmap && page_mapped(page))
1149 1150
			goto keep_locked;

1151 1152 1153
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1154
		/*
1155
		 * The number of dirty pages determines if a node is marked
1156 1157 1158 1159 1160 1161
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1162
			stat->nr_dirty++;
1163 1164

		if (dirty && !writeback)
1165
			stat->nr_unqueued_dirty++;
1166

1167 1168 1169 1170 1171 1172
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1173
		mapping = page_mapping(page);
1174
		if (((dirty || writeback) && mapping &&
1175
		     inode_write_congested(mapping->host)) ||
1176
		    (writeback && PageReclaim(page)))
1177
			stat->nr_congested++;
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1190 1191
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1192
		 *
1193
		 * 2) Global or new memcg reclaim encounters a page that is
1194 1195 1196
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1197
		 *    reclaim and continue scanning.
1198
		 *
1199 1200
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1201 1202 1203 1204 1205
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1206
		 * 3) Legacy memcg encounters a page that is already marked
1207 1208 1209 1210
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1211 1212 1213 1214 1215 1216 1217 1218 1219
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1220
		 */
1221
		if (PageWriteback(page)) {
1222 1223 1224
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1225
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1226
				stat->nr_immediate++;
1227
				goto activate_locked;
1228 1229

			/* Case 2 above */
1230
			} else if (sane_reclaim(sc) ||
1231
			    !PageReclaim(page) || !may_enter_fs) {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1244
				stat->nr_writeback++;
1245
				goto activate_locked;
1246 1247 1248

			/* Case 3 above */
			} else {
1249
				unlock_page(page);
1250
				wait_on_page_writeback(page);
1251 1252 1253
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1254
			}
1255
		}
L
Linus Torvalds 已提交
1256

1257
		if (!ignore_references)
1258 1259
			references = page_check_references(page, sc);

1260 1261
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1262
			goto activate_locked;
1263
		case PAGEREF_KEEP:
1264
			stat->nr_ref_keep += nr_pages;
1265
			goto keep_locked;
1266 1267 1268 1269
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1270 1271 1272 1273

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1274
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1275
		 */
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
1296
						goto activate_locked_split;
1297 1298 1299 1300
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1301 1302 1303
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1304
					if (!add_to_swap(page))
1305
						goto activate_locked_split;
1306
				}
1307

1308
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1309

1310 1311 1312
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1313 1314 1315 1316
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1317
		}
L
Linus Torvalds 已提交
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		/*
		 * THP may get split above, need minus tail pages and update
		 * nr_pages to avoid accounting tail pages twice.
		 *
		 * The tail pages that are added into swap cache successfully
		 * reach here.
		 */
		if ((nr_pages > 1) && !PageTransHuge(page)) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}

L
Linus Torvalds 已提交
1331 1332 1333 1334
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1335
		if (page_mapped(page)) {
1336 1337 1338 1339 1340
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1341
				stat->nr_unmap_fail += nr_pages;
L
Linus Torvalds 已提交
1342 1343 1344 1345 1346
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1347
			/*
1348 1349 1350 1351 1352 1353 1354 1355
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1356
			 */
1357
			if (page_is_file_cache(page) &&
1358 1359
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1360 1361 1362 1363 1364 1365
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1366
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1367 1368
				SetPageReclaim(page);

1369
				goto activate_locked;
1370 1371
			}

1372
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1373
				goto keep_locked;
1374
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1375
				goto keep_locked;
1376
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1377 1378
				goto keep_locked;

1379 1380 1381 1382 1383 1384
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1385
			switch (pageout(page, mapping)) {
L
Linus Torvalds 已提交
1386 1387 1388 1389 1390
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1391
				if (PageWriteback(page))
1392
					goto keep;
1393
				if (PageDirty(page))
L
Linus Torvalds 已提交
1394
					goto keep;
1395

L
Linus Torvalds 已提交
1396 1397 1398 1399
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1400
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1420
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1431
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1432 1433
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1450 1451
		}

S
Shaohua Li 已提交
1452 1453 1454 1455 1456 1457 1458 1459
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1460

S
Shaohua Li 已提交
1461
			count_vm_event(PGLAZYFREED);
1462
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1463 1464
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
1465 1466

		unlock_page(page);
N
Nick Piggin 已提交
1467
free_it:
1468 1469 1470 1471 1472
		/*
		 * THP may get swapped out in a whole, need account
		 * all base pages.
		 */
		nr_reclaimed += nr_pages;
1473 1474 1475 1476 1477

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1478
		if (unlikely(PageTransHuge(page)))
1479
			(*get_compound_page_dtor(page))(page);
1480
		else
1481
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1482 1483
		continue;

1484 1485 1486 1487 1488 1489 1490 1491 1492
activate_locked_split:
		/*
		 * The tail pages that are failed to add into swap cache
		 * reach here.  Fixup nr_scanned and nr_pages.
		 */
		if (nr_pages > 1) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}
L
Linus Torvalds 已提交
1493
activate_locked:
1494
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1495 1496
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1497
			try_to_free_swap(page);
1498
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1499
		if (!PageMlocked(page)) {
1500
			int type = page_is_file_cache(page);
M
Minchan Kim 已提交
1501
			SetPageActive(page);
1502
			stat->nr_activate[type] += nr_pages;
1503
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1504
		}
L
Linus Torvalds 已提交
1505 1506 1507 1508
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1509
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1510
	}
1511

1512 1513
	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];

1514
	mem_cgroup_uncharge_list(&free_pages);
1515
	try_to_unmap_flush();
1516
	free_unref_page_list(&free_pages);
1517

L
Linus Torvalds 已提交
1518
	list_splice(&ret_pages, page_list);
1519
	count_vm_events(PGACTIVATE, pgactivate);
1520

1521
	return nr_reclaimed;
L
Linus Torvalds 已提交
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1532
	struct reclaim_stat dummy_stat;
1533
	unsigned long ret;
1534 1535 1536 1537
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1538
		if (page_is_file_cache(page) && !PageDirty(page) &&
1539
		    !__PageMovable(page) && !PageUnevictable(page)) {
1540 1541 1542 1543 1544
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1545
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1546
			TTU_IGNORE_ACCESS, &dummy_stat, true);
1547
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1548
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1549 1550 1551
	return ret;
}

A
Andy Whitcroft 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1562
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1563 1564 1565 1566 1567 1568 1569
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1570 1571
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1572 1573
		return ret;

A
Andy Whitcroft 已提交
1574
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1575

1576 1577 1578 1579 1580 1581 1582 1583
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1584
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1585 1586 1587 1588 1589 1590
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1591
			bool migrate_dirty;
1592 1593 1594 1595

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1596 1597 1598 1599 1600
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1601
			 */
1602 1603 1604
			if (!trylock_page(page))
				return ret;

1605
			mapping = page_mapping(page);
1606
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1607 1608
			unlock_page(page);
			if (!migrate_dirty)
1609 1610 1611
				return ret;
		}
	}
1612

1613 1614 1615
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1629 1630 1631 1632 1633 1634

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1635
			enum lru_list lru, unsigned long *nr_zone_taken)
1636 1637 1638 1639 1640 1641 1642 1643 1644
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1645
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1646
#endif
1647 1648
	}

1649 1650
}

1651 1652
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658 1659 1660
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1661
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1662
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1663
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1664
 * @nr_scanned:	The number of pages that were scanned.
1665
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1666
 * @mode:	One of the LRU isolation modes
1667
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1668 1669 1670
 *
 * returns how many pages were moved onto *@dst.
 */
1671
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1672
		struct lruvec *lruvec, struct list_head *dst,
1673
		unsigned long *nr_scanned, struct scan_control *sc,
1674
		enum lru_list lru)
L
Linus Torvalds 已提交
1675
{
H
Hugh Dickins 已提交
1676
	struct list_head *src = &lruvec->lists[lru];
1677
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1678
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1679
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1680
	unsigned long skipped = 0;
1681
	unsigned long scan, total_scan, nr_pages;
1682
	LIST_HEAD(pages_skipped);
1683
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1684

1685
	total_scan = 0;
1686
	scan = 0;
1687
	while (scan < nr_to_scan && !list_empty(src)) {
A
Andy Whitcroft 已提交
1688 1689
		struct page *page;

L
Linus Torvalds 已提交
1690 1691 1692
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1693
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1694

1695
		nr_pages = compound_nr(page);
1696 1697
		total_scan += nr_pages;

1698 1699
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1700
			nr_skipped[page_zonenum(page)] += nr_pages;
1701 1702 1703
			continue;
		}

1704 1705 1706 1707 1708
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
1709 1710 1711 1712
		 *
		 * Account all tail pages of THP.  This would not cause
		 * premature OOM since __isolate_lru_page() returns -EBUSY
		 * only when the page is being freed somewhere else.
1713
		 */
1714
		scan += nr_pages;
1715
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1716
		case 0:
M
Mel Gorman 已提交
1717 1718
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1719 1720 1721 1722 1723 1724 1725
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1726

A
Andy Whitcroft 已提交
1727 1728 1729
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1730 1731
	}

1732 1733 1734 1735 1736 1737 1738
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1739 1740 1741
	if (!list_empty(&pages_skipped)) {
		int zid;

1742
		list_splice(&pages_skipped, src);
1743 1744 1745 1746 1747
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1748
			skipped += nr_skipped[zid];
1749 1750
		}
	}
1751
	*nr_scanned = total_scan;
1752
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1753
				    total_scan, skipped, nr_taken, mode, lru);
1754
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1755 1756 1757
	return nr_taken;
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1769 1770 1771
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1772 1773 1774 1775 1776
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1777
 *
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1788
	VM_BUG_ON_PAGE(!page_count(page), page);
1789
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1790

1791
	if (PageLRU(page)) {
1792
		pg_data_t *pgdat = page_pgdat(page);
1793
		struct lruvec *lruvec;
1794

1795 1796
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1797
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1798
			int lru = page_lru(page);
1799
			get_page(page);
1800
			ClearPageLRU(page);
1801 1802
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1803
		}
1804
		spin_unlock_irq(&pgdat->lru_lock);
1805 1806 1807 1808
	}
	return ret;
}

1809
/*
F
Fengguang Wu 已提交
1810 1811 1812 1813 1814
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1815
 */
M
Mel Gorman 已提交
1816
static int too_many_isolated(struct pglist_data *pgdat, int file,
1817 1818 1819 1820 1821 1822 1823
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1824
	if (!sane_reclaim(sc))
1825 1826 1827
		return 0;

	if (file) {
M
Mel Gorman 已提交
1828 1829
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1830
	} else {
M
Mel Gorman 已提交
1831 1832
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1833 1834
	}

1835 1836 1837 1838 1839
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1840
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1841 1842
		inactive >>= 3;

1843 1844 1845
	return isolated > inactive;
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
/*
 * This moves pages from @list to corresponding LRU list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone_lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone_lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_refcount against each page.
 * But we had to alter page->flags anyway.
 *
 * Returns the number of pages moved to the given lruvec.
 */

static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
						     struct list_head *list)
1868
{
M
Mel Gorman 已提交
1869
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1870
	int nr_pages, nr_moved = 0;
1871
	LIST_HEAD(pages_to_free);
1872 1873
	struct page *page;
	enum lru_list lru;
1874

1875 1876
	while (!list_empty(list)) {
		page = lru_to_page(list);
1877
		VM_BUG_ON_PAGE(PageLRU(page), page);
1878
		if (unlikely(!page_evictable(page))) {
1879
			list_del(&page->lru);
M
Mel Gorman 已提交
1880
			spin_unlock_irq(&pgdat->lru_lock);
1881
			putback_lru_page(page);
M
Mel Gorman 已提交
1882
			spin_lock_irq(&pgdat->lru_lock);
1883 1884
			continue;
		}
M
Mel Gorman 已提交
1885
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1886

1887
		SetPageLRU(page);
1888
		lru = page_lru(page);
1889 1890 1891 1892

		nr_pages = hpage_nr_pages(page);
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
		list_move(&page->lru, &lruvec->lists[lru]);
1893

1894 1895 1896
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1897
			del_page_from_lru_list(page, lruvec, lru);
1898 1899

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1900
				spin_unlock_irq(&pgdat->lru_lock);
1901
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1902
				spin_lock_irq(&pgdat->lru_lock);
1903 1904
			} else
				list_add(&page->lru, &pages_to_free);
1905 1906
		} else {
			nr_moved += nr_pages;
1907 1908 1909
		}
	}

1910 1911 1912
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
1913 1914 1915
	list_splice(&pages_to_free, list);

	return nr_moved;
1916 1917
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1931
/*
1932
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1933
 * of reclaimed pages
L
Linus Torvalds 已提交
1934
 */
1935
static noinline_for_stack unsigned long
1936
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1937
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1938 1939
{
	LIST_HEAD(page_list);
1940
	unsigned long nr_scanned;
1941
	unsigned long nr_reclaimed = 0;
1942
	unsigned long nr_taken;
1943
	struct reclaim_stat stat;
1944
	int file = is_file_lru(lru);
1945
	enum vm_event_item item;
M
Mel Gorman 已提交
1946
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1947
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1948
	bool stalled = false;
1949

M
Mel Gorman 已提交
1950
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1951 1952 1953 1954 1955 1956
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1957 1958 1959 1960 1961 1962

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1963
	lru_add_drain();
1964

M
Mel Gorman 已提交
1965
	spin_lock_irq(&pgdat->lru_lock);
1966

1967
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1968
				     &nr_scanned, sc, lru);
1969

M
Mel Gorman 已提交
1970
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1971
	reclaim_stat->recent_scanned[file] += nr_taken;
1972

1973 1974 1975 1976
	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
	if (global_reclaim(sc))
		__count_vm_events(item, nr_scanned);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
M
Mel Gorman 已提交
1977
	spin_unlock_irq(&pgdat->lru_lock);
1978

1979
	if (nr_taken == 0)
1980
		return 0;
A
Andy Whitcroft 已提交
1981

S
Shaohua Li 已提交
1982
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1983
				&stat, false);
1984

M
Mel Gorman 已提交
1985
	spin_lock_irq(&pgdat->lru_lock);
1986

1987 1988 1989 1990
	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
	if (global_reclaim(sc))
		__count_vm_events(item, nr_reclaimed);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1991 1992
	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
N
Nick Piggin 已提交
1993

1994
	move_pages_to_lru(lruvec, &page_list);
1995

M
Mel Gorman 已提交
1996
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1997

M
Mel Gorman 已提交
1998
	spin_unlock_irq(&pgdat->lru_lock);
1999

2000
	mem_cgroup_uncharge_list(&page_list);
2001
	free_unref_page_list(&page_list);
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

2017 2018 2019 2020 2021 2022 2023 2024
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2025

M
Mel Gorman 已提交
2026
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2027
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2028
	return nr_reclaimed;
L
Linus Torvalds 已提交
2029 2030
}

H
Hugh Dickins 已提交
2031
static void shrink_active_list(unsigned long nr_to_scan,
2032
			       struct lruvec *lruvec,
2033
			       struct scan_control *sc,
2034
			       enum lru_list lru)
L
Linus Torvalds 已提交
2035
{
2036
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2037
	unsigned long nr_scanned;
2038
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2039
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2040
	LIST_HEAD(l_active);
2041
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2042
	struct page *page;
2043
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2044 2045
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2046
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2047
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2048 2049

	lru_add_drain();
2050

M
Mel Gorman 已提交
2051
	spin_lock_irq(&pgdat->lru_lock);
2052

2053
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2054
				     &nr_scanned, sc, lru);
2055

M
Mel Gorman 已提交
2056
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2057
	reclaim_stat->recent_scanned[file] += nr_taken;
2058

M
Mel Gorman 已提交
2059
	__count_vm_events(PGREFILL, nr_scanned);
2060
	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2061

M
Mel Gorman 已提交
2062
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2068

2069
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2070 2071 2072 2073
			putback_lru_page(page);
			continue;
		}

2074 2075 2076 2077 2078 2079 2080 2081
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2082 2083
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2084
			nr_rotated += hpage_nr_pages(page);
2085 2086 2087 2088 2089 2090 2091 2092 2093
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2094
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2095 2096 2097 2098
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2099

2100
		ClearPageActive(page);	/* we are de-activating */
2101
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2102 2103 2104
		list_add(&page->lru, &l_inactive);
	}

2105
	/*
2106
	 * Move pages back to the lru list.
2107
	 */
M
Mel Gorman 已提交
2108
	spin_lock_irq(&pgdat->lru_lock);
2109
	/*
2110 2111 2112
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2113
	 * get_scan_count.
2114
	 */
2115
	reclaim_stat->recent_rotated[file] += nr_rotated;
2116

2117 2118
	nr_activate = move_pages_to_lru(lruvec, &l_active);
	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2119 2120
	/* Keep all free pages in l_active list */
	list_splice(&l_inactive, &l_active);
2121 2122 2123 2124

	__count_vm_events(PGDEACTIVATE, nr_deactivate);
	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);

M
Mel Gorman 已提交
2125 2126
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2127

2128 2129
	mem_cgroup_uncharge_list(&l_active);
	free_unref_page_list(&l_active);
2130 2131
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2132 2133
}

M
Minchan Kim 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
unsigned long reclaim_pages(struct list_head *page_list)
{
	int nid = -1;
	unsigned long nr_reclaimed = 0;
	LIST_HEAD(node_page_list);
	struct reclaim_stat dummy_stat;
	struct page *page;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_writepage = 1,
		.may_unmap = 1,
		.may_swap = 1,
	};

	while (!list_empty(page_list)) {
		page = lru_to_page(page_list);
		if (nid == -1) {
			nid = page_to_nid(page);
			INIT_LIST_HEAD(&node_page_list);
		}

		if (nid == page_to_nid(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &node_page_list);
			continue;
		}

		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}

		nid = -1;
	}

	if (!list_empty(&node_page_list)) {
		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}
	}

	return nr_reclaimed;
}

2190 2191 2192
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2193
 *
2194 2195 2196
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2197
 *
2198 2199
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2200
 *
2201 2202
 * If that fails and refaulting is observed, the inactive list grows.
 *
2203
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2204
 * on this LRU, maintained by the pageout code. An inactive_ratio
2205
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2206
 *
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2217
 */
2218
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2219
				 struct scan_control *sc, bool trace)
2220
{
2221
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2222 2223 2224 2225 2226
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2227
	unsigned long gb;
2228

2229 2230 2231 2232 2233 2234
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2235

2236 2237
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2238

2239 2240 2241 2242 2243
	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
2244
	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2245
	if (file && lruvec->refaults != refaults) {
2246 2247 2248 2249 2250 2251 2252 2253
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2254

2255
	if (trace)
2256 2257 2258 2259
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2260

2261
	return inactive * inactive_ratio < active;
2262 2263
}

2264
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2265
				 struct lruvec *lruvec, struct scan_control *sc)
2266
{
2267
	if (is_active_lru(lru)) {
2268
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2269
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2270 2271 2272
		return 0;
	}

2273
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2274 2275
}

2276 2277 2278 2279 2280 2281 2282
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2283 2284 2285 2286 2287 2288
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2289 2290
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2291
 */
2292
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2293
			   struct scan_control *sc, unsigned long *nr)
2294
{
2295
	int swappiness = mem_cgroup_swappiness(memcg);
2296 2297 2298
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2299
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2300
	unsigned long anon_prio, file_prio;
2301
	enum scan_balance scan_balance;
2302
	unsigned long anon, file;
2303
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2304
	enum lru_list lru;
2305 2306

	/* If we have no swap space, do not bother scanning anon pages. */
2307
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2308
		scan_balance = SCAN_FILE;
2309 2310
		goto out;
	}
2311

2312 2313 2314 2315 2316 2317 2318
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2319
	if (!global_reclaim(sc) && !swappiness) {
2320
		scan_balance = SCAN_FILE;
2321 2322 2323 2324 2325 2326 2327 2328
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2329
	if (!sc->priority && swappiness) {
2330
		scan_balance = SCAN_EQUAL;
2331 2332 2333
		goto out;
	}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2344 2345 2346 2347
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2348

M
Mel Gorman 已提交
2349 2350 2351 2352 2353 2354
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2355
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2356 2357 2358 2359
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2360

M
Mel Gorman 已提交
2361
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2362 2363 2364 2365 2366
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
2367
			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2368 2369 2370 2371 2372
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2373 2374 2375
		}
	}

2376
	/*
2377 2378 2379 2380 2381 2382 2383
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2384
	 */
2385
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2386
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2387
		scan_balance = SCAN_FILE;
2388 2389 2390
		goto out;
	}

2391 2392
	scan_balance = SCAN_FRACT;

2393 2394 2395 2396
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2397
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2398
	file_prio = 200 - anon_prio;
2399

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2411

2412 2413 2414 2415
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2416

M
Mel Gorman 已提交
2417
	spin_lock_irq(&pgdat->lru_lock);
2418 2419 2420
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2421 2422
	}

2423 2424 2425
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2426 2427 2428
	}

	/*
2429 2430 2431
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2432
	 */
2433
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2434
	ap /= reclaim_stat->recent_rotated[0] + 1;
2435

2436
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2437
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2438
	spin_unlock_irq(&pgdat->lru_lock);
2439

2440 2441 2442 2443
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2444 2445
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
2446
		unsigned long lruvec_size;
2447
		unsigned long scan;
2448
		unsigned long protection;
2449 2450

		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2451 2452
		protection = mem_cgroup_protection(memcg,
						   sc->memcg_low_reclaim);
2453

2454
		if (protection) {
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
			/*
			 * Scale a cgroup's reclaim pressure by proportioning
			 * its current usage to its memory.low or memory.min
			 * setting.
			 *
			 * This is important, as otherwise scanning aggression
			 * becomes extremely binary -- from nothing as we
			 * approach the memory protection threshold, to totally
			 * nominal as we exceed it.  This results in requiring
			 * setting extremely liberal protection thresholds. It
			 * also means we simply get no protection at all if we
			 * set it too low, which is not ideal.
2467 2468 2469 2470
			 *
			 * If there is any protection in place, we reduce scan
			 * pressure by how much of the total memory used is
			 * within protection thresholds.
2471
			 *
2472 2473 2474 2475 2476 2477 2478 2479
			 * There is one special case: in the first reclaim pass,
			 * we skip over all groups that are within their low
			 * protection. If that fails to reclaim enough pages to
			 * satisfy the reclaim goal, we come back and override
			 * the best-effort low protection. However, we still
			 * ideally want to honor how well-behaved groups are in
			 * that case instead of simply punishing them all
			 * equally. As such, we reclaim them based on how much
2480 2481 2482
			 * memory they are using, reducing the scan pressure
			 * again by how much of the total memory used is under
			 * hard protection.
2483
			 */
2484 2485 2486 2487 2488 2489 2490
			unsigned long cgroup_size = mem_cgroup_size(memcg);

			/* Avoid TOCTOU with earlier protection check */
			cgroup_size = max(cgroup_size, protection);

			scan = lruvec_size - lruvec_size * protection /
				cgroup_size;
2491 2492

			/*
2493
			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2494 2495
			 * reclaim moving forwards, avoiding decremeting
			 * sc->priority further than desirable.
2496
			 */
2497
			scan = max(scan, SWAP_CLUSTER_MAX);
2498 2499 2500 2501 2502
		} else {
			scan = lruvec_size;
		}

		scan >>= sc->priority;
2503

2504 2505 2506 2507 2508
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
2509
			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2510

2511 2512 2513 2514 2515
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2516
			/*
2517 2518
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2519 2520
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2521
			 */
2522 2523
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2524 2525 2526 2527 2528
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
2529
				lruvec_size = 0;
2530 2531 2532 2533 2534 2535
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2536
		}
2537 2538

		nr[lru] = scan;
2539
	}
2540
}
2541

2542
/*
2543
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2544
 */
2545
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2546
			      struct scan_control *sc)
2547
{
2548
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2549
	unsigned long nr[NR_LRU_LISTS];
2550
	unsigned long targets[NR_LRU_LISTS];
2551 2552 2553 2554 2555
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2556
	bool scan_adjusted;
2557

2558
	get_scan_count(lruvec, memcg, sc, nr);
2559

2560 2561 2562
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2577 2578 2579
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2580 2581 2582
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2583 2584 2585 2586 2587 2588
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2589
							    lruvec, sc);
2590 2591
			}
		}
2592

2593 2594
		cond_resched();

2595 2596 2597 2598 2599
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2600
		 * requested. Ensure that the anon and file LRUs are scanned
2601 2602 2603 2604 2605 2606 2607
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2608 2609 2610 2611 2612 2613 2614 2615 2616
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2648 2649 2650 2651 2652 2653 2654 2655
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2656
	if (inactive_list_is_low(lruvec, false, sc, true))
2657 2658 2659 2660
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2661
/* Use reclaim/compaction for costly allocs or under memory pressure */
2662
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2663
{
2664
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2665
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2666
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2667 2668 2669 2670 2671
		return true;

	return false;
}

2672
/*
M
Mel Gorman 已提交
2673 2674 2675 2676 2677
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2678
 */
2679
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2680 2681 2682 2683 2684
					unsigned long nr_reclaimed,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2685
	int z;
2686 2687

	/* If not in reclaim/compaction mode, stop */
2688
	if (!in_reclaim_compaction(sc))
2689 2690
		return false;

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	/*
	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
	 * number of pages that were scanned. This will return to the caller
	 * with the risk reclaim/compaction and the resulting allocation attempt
	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
	 * allocations through requiring that the full LRU list has been scanned
	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
	 * scan, but that approximation was wrong, and there were corner cases
	 * where always a non-zero amount of pages were scanned.
	 */
	if (!nr_reclaimed)
		return false;
2703 2704

	/* If compaction would go ahead or the allocation would succeed, stop */
2705 2706
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2707
		if (!managed_zone(zone))
2708 2709 2710
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2711
		case COMPACT_SUCCESS:
2712 2713 2714 2715 2716 2717
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2718
	}
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = compact_gap(sc->order);
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);

2729
	return inactive_lru_pages > pages_for_compaction;
2730 2731
}

2732 2733 2734 2735 2736 2737
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2738
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2739
{
2740
	struct reclaim_state *reclaim_state = current->reclaim_state;
2741
	unsigned long nr_reclaimed, nr_scanned;
2742
	bool reclaimable = false;
L
Linus Torvalds 已提交
2743

2744 2745
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
2746
		struct mem_cgroup *memcg;
2747

2748 2749
		memset(&sc->nr, 0, sizeof(sc->nr));

2750 2751
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2752

2753
		memcg = mem_cgroup_iter(root, NULL, NULL);
2754
		do {
2755
			unsigned long reclaimed;
2756
			unsigned long scanned;
2757

R
Roman Gushchin 已提交
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2772 2773
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2774
					continue;
2775
				}
2776
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2777 2778
				break;
			case MEMCG_PROT_NONE:
2779 2780 2781 2782 2783 2784 2785
				/*
				 * All protection thresholds breached. We may
				 * still choose to vary the scan pressure
				 * applied based on by how much the cgroup in
				 * question has exceeded its protection
				 * thresholds (see get_scan_count).
				 */
R
Roman Gushchin 已提交
2786
				break;
2787 2788
			}

2789
			reclaimed = sc->nr_reclaimed;
2790
			scanned = sc->nr_scanned;
2791
			shrink_node_memcg(pgdat, memcg, sc);
2792

2793 2794
			shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
					sc->priority);
2795

2796 2797 2798 2799 2800
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2801
		} while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
2802

2803 2804 2805
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2806 2807
		}

2808 2809
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2810 2811 2812
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2813 2814 2815
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2859 2860 2861 2862 2863 2864 2865 2866
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2867 2868 2869 2870 2871 2872 2873
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2874 2875
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2876

2877
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2878
					 sc));
2879

2880 2881 2882 2883 2884 2885 2886 2887 2888
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2889
	return reclaimable;
2890 2891
}

2892
/*
2893 2894 2895
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2896
 */
2897
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2898
{
M
Mel Gorman 已提交
2899
	unsigned long watermark;
2900
	enum compact_result suitable;
2901

2902 2903 2904 2905 2906 2907 2908
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2909

2910
	/*
2911 2912 2913 2914 2915 2916 2917
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2918
	 */
2919
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2920

2921
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2922 2923
}

L
Linus Torvalds 已提交
2924 2925 2926 2927 2928 2929 2930 2931
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2932
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2933
{
2934
	struct zoneref *z;
2935
	struct zone *zone;
2936 2937
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2938
	gfp_t orig_mask;
2939
	pg_data_t *last_pgdat = NULL;
2940

2941 2942 2943 2944 2945
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2946
	orig_mask = sc->gfp_mask;
2947
	if (buffer_heads_over_limit) {
2948
		sc->gfp_mask |= __GFP_HIGHMEM;
2949
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2950
	}
2951

2952
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2953
					sc->reclaim_idx, sc->nodemask) {
2954 2955 2956 2957
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2958
		if (global_reclaim(sc)) {
2959 2960
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2961
				continue;
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2974
			    compaction_ready(zone, sc)) {
2975 2976
				sc->compaction_ready = true;
				continue;
2977
			}
2978

2979 2980 2981 2982 2983 2984 2985 2986 2987
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2988 2989 2990 2991 2992 2993 2994
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2995
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2996 2997 2998 2999
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
3000
			/* need some check for avoid more shrink_zone() */
3001
		}
3002

3003 3004 3005 3006
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
3007
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
3008
	}
3009

3010 3011 3012 3013 3014
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
3015
}
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3027
		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
3028 3029 3030 3031
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
3032 3033 3034 3035 3036 3037 3038 3039
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3040 3041 3042 3043
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3044 3045 3046
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3047
 */
3048
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3049
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3050
{
3051
	int initial_priority = sc->priority;
3052 3053 3054
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3055
retry:
3056 3057
	delayacct_freepages_start();

3058
	if (global_reclaim(sc))
3059
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3060

3061
	do {
3062 3063
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3064
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3065
		shrink_zones(zonelist, sc);
3066

3067
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3068 3069 3070 3071
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3072

3073 3074 3075 3076 3077 3078
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3079
	} while (--sc->priority >= 0);
3080

3081 3082 3083 3084 3085 3086 3087
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3088
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3089 3090
	}

3091 3092
	delayacct_freepages_end();

3093 3094 3095
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3096
	/* Aborted reclaim to try compaction? don't OOM, then */
3097
	if (sc->compaction_ready)
3098 3099
		return 1;

3100
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3101
	if (sc->memcg_low_skipped) {
3102
		sc->priority = initial_priority;
3103 3104
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3105 3106 3107
		goto retry;
	}

3108
	return 0;
L
Linus Torvalds 已提交
3109 3110
}

3111
static bool allow_direct_reclaim(pg_data_t *pgdat)
3112 3113 3114 3115 3116 3117 3118
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3119 3120 3121
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3122 3123
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3124 3125 3126 3127
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3128 3129
			continue;

3130 3131 3132 3133
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3134 3135 3136 3137
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3138 3139 3140 3141
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3142
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3154 3155 3156 3157
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3158
 */
3159
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3160 3161
					nodemask_t *nodemask)
{
3162
	struct zoneref *z;
3163
	struct zone *zone;
3164
	pg_data_t *pgdat = NULL;
3165 3166 3167 3168 3169 3170 3171 3172 3173

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3174 3175 3176 3177 3178 3179 3180 3181
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3182

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3198
					gfp_zone(gfp_mask), nodemask) {
3199 3200 3201 3202 3203
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3204
		if (allow_direct_reclaim(pgdat))
3205 3206 3207 3208 3209 3210
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3211
		goto out;
3212

3213 3214 3215
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3226
			allow_direct_reclaim(pgdat), HZ);
3227 3228

		goto check_pending;
3229 3230 3231 3232
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3233
		allow_direct_reclaim(pgdat));
3234 3235 3236 3237 3238 3239 3240

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3241 3242
}

3243
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3244
				gfp_t gfp_mask, nodemask_t *nodemask)
3245
{
3246
	unsigned long nr_reclaimed;
3247
	struct scan_control sc = {
3248
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3249
		.gfp_mask = current_gfp_context(gfp_mask),
3250
		.reclaim_idx = gfp_zone(gfp_mask),
3251 3252 3253
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3254
		.may_writepage = !laptop_mode,
3255
		.may_unmap = 1,
3256
		.may_swap = 1,
3257 3258
	};

G
Greg Thelen 已提交
3259 3260 3261 3262 3263 3264 3265 3266
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3267
	/*
3268 3269 3270
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3271
	 */
3272
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3273 3274
		return 1;

3275
	set_task_reclaim_state(current, &sc.reclaim_state);
3276
	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3277

3278
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3279 3280

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3281
	set_task_reclaim_state(current, NULL);
3282 3283

	return nr_reclaimed;
3284 3285
}

A
Andrew Morton 已提交
3286
#ifdef CONFIG_MEMCG
3287

3288
/* Only used by soft limit reclaim. Do not reuse for anything else. */
3289
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3290
						gfp_t gfp_mask, bool noswap,
3291
						pg_data_t *pgdat,
3292
						unsigned long *nr_scanned)
3293 3294
{
	struct scan_control sc = {
3295
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3296
		.target_mem_cgroup = memcg,
3297 3298
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3299
		.reclaim_idx = MAX_NR_ZONES - 1,
3300 3301
		.may_swap = !noswap,
	};
3302

3303 3304
	WARN_ON_ONCE(!current->reclaim_state);

3305 3306
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3307

3308
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3309
						      sc.gfp_mask);
3310

3311 3312 3313
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3314
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3315 3316 3317
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3318
	shrink_node_memcg(pgdat, memcg, &sc);
3319 3320 3321

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3322
	*nr_scanned = sc.nr_scanned;
3323

3324 3325 3326
	return sc.nr_reclaimed;
}

3327
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3328
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3329
					   gfp_t gfp_mask,
3330
					   bool may_swap)
3331
{
3332
	unsigned long nr_reclaimed;
3333
	unsigned long pflags;
3334
	unsigned int noreclaim_flag;
3335
	struct scan_control sc = {
3336
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3337
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3338
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3339
		.reclaim_idx = MAX_NR_ZONES - 1,
3340 3341 3342 3343
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3344
		.may_swap = may_swap,
3345
	};
3346
	/*
3347 3348 3349
	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
	 * equal pressure on all the nodes. This is based on the assumption that
	 * the reclaim does not bail out early.
3350
	 */
3351
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3352

3353
	set_task_reclaim_state(current, &sc.reclaim_state);
3354

3355
	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3356

3357
	psi_memstall_enter(&pflags);
3358
	noreclaim_flag = memalloc_noreclaim_save();
3359

3360
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3361

3362
	memalloc_noreclaim_restore(noreclaim_flag);
3363
	psi_memstall_leave(&pflags);
3364 3365

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3366
	set_task_reclaim_state(current, NULL);
3367 3368

	return nr_reclaimed;
3369 3370 3371
}
#endif

3372
static void age_active_anon(struct pglist_data *pgdat,
3373
				struct scan_control *sc)
3374
{
3375
	struct mem_cgroup *memcg;
3376

3377 3378 3379 3380 3381
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3382
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3383

3384
		if (inactive_list_is_low(lruvec, false, sc, true))
3385
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3386
					   sc, LRU_ACTIVE_ANON);
3387 3388 3389

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3390 3391
}

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
	for (i = classzone_idx; i >= 0; i--) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3416 3417 3418 3419 3420
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3421
{
3422 3423 3424
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3425

3426 3427 3428 3429
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3430 3431
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3432

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3450 3451
}

3452 3453 3454 3455 3456 3457 3458 3459
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3460 3461 3462 3463 3464 3465
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3466
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3467
{
3468
	/*
3469
	 * The throttled processes are normally woken up in balance_pgdat() as
3470
	 * soon as allow_direct_reclaim() is true. But there is a potential
3471 3472 3473 3474 3475 3476 3477 3478 3479
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3480
	 */
3481 3482
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3483

3484 3485 3486 3487
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3488 3489 3490
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3491 3492
	}

3493
	return false;
3494 3495
}

3496
/*
3497 3498
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3499 3500
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3501 3502
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3503
 */
3504
static bool kswapd_shrink_node(pg_data_t *pgdat,
3505
			       struct scan_control *sc)
3506
{
3507 3508
	struct zone *zone;
	int z;
3509

3510 3511
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3512
	for (z = 0; z <= sc->reclaim_idx; z++) {
3513
		zone = pgdat->node_zones + z;
3514
		if (!managed_zone(zone))
3515
			continue;
3516

3517 3518
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3519 3520

	/*
3521 3522
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3523
	 */
3524
	shrink_node(pgdat, sc);
3525

3526
	/*
3527 3528 3529 3530 3531
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3532
	 */
3533
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3534
		sc->order = 0;
3535

3536
	return sc->nr_scanned >= sc->nr_to_reclaim;
3537 3538
}

L
Linus Torvalds 已提交
3539
/*
3540 3541 3542
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3543
 *
3544
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3545 3546
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3547
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3548
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3549 3550
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3551
 */
3552
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3553 3554
{
	int i;
3555 3556
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3557
	unsigned long pflags;
3558 3559 3560
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3561
	struct zone *zone;
3562 3563
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3564
		.order = order,
3565
		.may_unmap = 1,
3566
	};
3567

3568
	set_task_reclaim_state(current, &sc.reclaim_state);
3569
	psi_memstall_enter(&pflags);
3570 3571
	__fs_reclaim_acquire();

3572
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3573

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3592
	do {
3593
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3594
		bool raise_priority = true;
3595
		bool balanced;
3596
		bool ret;
3597

3598
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3599

3600
		/*
3601 3602 3603 3604 3605 3606 3607 3608
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3609 3610 3611 3612
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3613
				if (!managed_zone(zone))
3614
					continue;
3615

3616
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3617
				break;
L
Linus Torvalds 已提交
3618 3619
			}
		}
3620

3621
		/*
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3638
		 */
3639
		if (!nr_boost_reclaim && balanced)
3640
			goto out;
A
Andrew Morton 已提交
3641

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;

3655 3656 3657 3658 3659 3660
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3661
		age_active_anon(pgdat, &sc);
3662

3663 3664 3665 3666
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3667
		if (sc.priority < DEF_PRIORITY - 2)
3668 3669
			sc.may_writepage = 1;

3670 3671 3672
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3673
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3674 3675 3676
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3677
		/*
3678 3679 3680
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3681
		 */
3682
		if (kswapd_shrink_node(pgdat, &sc))
3683
			raise_priority = false;
3684 3685 3686 3687 3688 3689 3690

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3691
				allow_direct_reclaim(pgdat))
3692
			wake_up_all(&pgdat->pfmemalloc_wait);
3693

3694
		/* Check if kswapd should be suspending */
3695 3696 3697 3698
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3699
			break;
3700

3701
		/*
3702 3703
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3704
		 */
3705
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3716
		if (raise_priority || !nr_reclaimed)
3717
			sc.priority--;
3718
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3719

3720 3721 3722
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3723
out:
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

		for (i = 0; i <= classzone_idx; i++) {
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
	}

3746
	snapshot_refaults(NULL, pgdat);
3747
	__fs_reclaim_release();
3748
	psi_memstall_leave(&pflags);
3749
	set_task_reclaim_state(current, NULL);
3750

3751
	/*
3752 3753 3754 3755
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3756
	 */
3757
	return sc.order;
L
Linus Torvalds 已提交
3758 3759
}

3760
/*
3761 3762 3763 3764 3765
 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
 * after previous reclaim attempt (node is still unbalanced). In that case
 * return the zone index of the previous kswapd reclaim cycle.
3766 3767
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3768
					   enum zone_type prev_classzone_idx)
3769 3770
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3771 3772
		return prev_classzone_idx;
	return pgdat->kswapd_classzone_idx;
3773 3774
}

3775 3776
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3777 3778 3779 3780 3781 3782 3783 3784 3785
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3786 3787 3788 3789 3790 3791 3792
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3793
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3806
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3807

3808
		remaining = schedule_timeout(HZ/10);
3809 3810 3811 3812 3813 3814 3815

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3816
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3817 3818 3819
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3820 3821 3822 3823 3824 3825 3826 3827
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3828 3829
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3841 3842 3843 3844

		if (!kthread_should_stop())
			schedule();

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3855 3856
/*
 * The background pageout daemon, started as a kernel thread
3857
 * from the init process.
L
Linus Torvalds 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3870 3871
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3872 3873
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3874
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3875

R
Rusty Russell 已提交
3876
	if (!cpumask_empty(cpumask))
3877
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3891
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3892
	set_freezable();
L
Linus Torvalds 已提交
3893

3894 3895
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3896
	for ( ; ; ) {
3897
		bool ret;
3898

3899 3900 3901
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3902 3903 3904
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3905

3906 3907
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3908
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3909
		pgdat->kswapd_order = 0;
3910
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3911

3912 3913 3914 3915 3916 3917 3918 3919
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3931 3932
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3933 3934 3935
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3936
	}
3937

3938 3939
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);

L
Linus Torvalds 已提交
3940 3941 3942 3943
	return 0;
}

/*
3944 3945 3946 3947 3948
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3949
 */
3950 3951
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3952 3953 3954
{
	pg_data_t *pgdat;

3955
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3956 3957
		return;

3958
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3959
		return;
3960
	pgdat = zone->zone_pgdat;
3961 3962 3963 3964 3965 3966

	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		pgdat->kswapd_classzone_idx = classzone_idx;
	else
		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
						  classzone_idx);
3967
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3968
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3969
		return;
3970

3971 3972
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3973 3974
	    (pgdat_balanced(pgdat, order, classzone_idx) &&
	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3975 3976 3977 3978 3979 3980 3981 3982 3983
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3984
		return;
3985
	}
3986

3987 3988
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3989
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3990 3991
}

3992
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3993
/*
3994
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3995 3996 3997 3998 3999
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
4000
 */
4001
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
4002
{
4003
	struct scan_control sc = {
4004
		.nr_to_reclaim = nr_to_reclaim,
4005
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4006
		.reclaim_idx = MAX_NR_ZONES - 1,
4007
		.priority = DEF_PRIORITY,
4008
		.may_writepage = 1,
4009 4010
		.may_unmap = 1,
		.may_swap = 1,
4011
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
4012
	};
4013
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4014
	unsigned long nr_reclaimed;
4015
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
4016

4017
	fs_reclaim_acquire(sc.gfp_mask);
4018
	noreclaim_flag = memalloc_noreclaim_save();
4019
	set_task_reclaim_state(current, &sc.reclaim_state);
4020

4021
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4022

4023
	set_task_reclaim_state(current, NULL);
4024
	memalloc_noreclaim_restore(noreclaim_flag);
4025
	fs_reclaim_release(sc.gfp_mask);
4026

4027
	return nr_reclaimed;
L
Linus Torvalds 已提交
4028
}
4029
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
4035
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
4036
{
4037
	int nid;
L
Linus Torvalds 已提交
4038

4039 4040 4041
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
4042

4043
		mask = cpumask_of_node(pgdat->node_id);
4044

4045 4046 4047
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
4048
	}
4049
	return 0;
L
Linus Torvalds 已提交
4050 4051
}

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4067
		BUG_ON(system_state < SYSTEM_RUNNING);
4068 4069
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4070
		pgdat->kswapd = NULL;
4071 4072 4073 4074
	}
	return ret;
}

4075
/*
4076
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4077
 * hold mem_hotplug_begin/end().
4078 4079 4080 4081 4082
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4083
	if (kswapd) {
4084
		kthread_stop(kswapd);
4085 4086
		NODE_DATA(nid)->kswapd = NULL;
	}
4087 4088
}

L
Linus Torvalds 已提交
4089 4090
static int __init kswapd_init(void)
{
4091
	int nid, ret;
4092

L
Linus Torvalds 已提交
4093
	swap_setup();
4094
	for_each_node_state(nid, N_MEMORY)
4095
 		kswapd_run(nid);
4096 4097 4098 4099
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
4100 4101 4102 4103
	return 0;
}

module_init(kswapd_init)
4104 4105 4106

#ifdef CONFIG_NUMA
/*
4107
 * Node reclaim mode
4108
 *
4109
 * If non-zero call node_reclaim when the number of free pages falls below
4110 4111
 * the watermarks.
 */
4112
int node_reclaim_mode __read_mostly;
4113

4114
#define RECLAIM_OFF 0
4115
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4116
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4117
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4118

4119
/*
4120
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4121 4122 4123
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4124
#define NODE_RECLAIM_PRIORITY 4
4125

4126
/*
4127
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4128 4129 4130 4131
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4132 4133 4134 4135 4136 4137
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4138
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4139
{
4140 4141 4142
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4153
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4154
{
4155 4156
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4157 4158

	/*
4159
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4160
	 * potentially reclaimable. Otherwise, we have to worry about
4161
	 * pages like swapcache and node_unmapped_file_pages() provides
4162 4163
	 * a better estimate
	 */
4164 4165
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4166
	else
4167
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4168 4169

	/* If we can't clean pages, remove dirty pages from consideration */
4170 4171
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4172 4173 4174 4175 4176 4177 4178 4179

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4180
/*
4181
 * Try to free up some pages from this node through reclaim.
4182
 */
4183
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4184
{
4185
	/* Minimum pages needed in order to stay on node */
4186
	const unsigned long nr_pages = 1 << order;
4187
	struct task_struct *p = current;
4188
	unsigned int noreclaim_flag;
4189
	struct scan_control sc = {
4190
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4191
		.gfp_mask = current_gfp_context(gfp_mask),
4192
		.order = order,
4193 4194 4195
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4196
		.may_swap = 1,
4197
		.reclaim_idx = gfp_zone(gfp_mask),
4198
	};
4199

4200 4201 4202
	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
					   sc.gfp_mask);

4203
	cond_resched();
4204
	fs_reclaim_acquire(sc.gfp_mask);
4205
	/*
4206
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4207
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4208
	 * and RECLAIM_UNMAP.
4209
	 */
4210 4211
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4212
	set_task_reclaim_state(p, &sc.reclaim_state);
4213

4214
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4215
		/*
4216
		 * Free memory by calling shrink node with increasing
4217 4218 4219
		 * priorities until we have enough memory freed.
		 */
		do {
4220
			shrink_node(pgdat, &sc);
4221
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4222
	}
4223

4224
	set_task_reclaim_state(p, NULL);
4225 4226
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4227
	fs_reclaim_release(sc.gfp_mask);
4228 4229 4230

	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);

4231
	return sc.nr_reclaimed >= nr_pages;
4232
}
4233

4234
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4235
{
4236
	int ret;
4237 4238

	/*
4239
	 * Node reclaim reclaims unmapped file backed pages and
4240
	 * slab pages if we are over the defined limits.
4241
	 *
4242 4243
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4244 4245
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4246
	 * unmapped file backed pages.
4247
	 */
4248
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4249
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4250
		return NODE_RECLAIM_FULL;
4251 4252

	/*
4253
	 * Do not scan if the allocation should not be delayed.
4254
	 */
4255
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4256
		return NODE_RECLAIM_NOSCAN;
4257 4258

	/*
4259
	 * Only run node reclaim on the local node or on nodes that do not
4260 4261 4262 4263
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4264 4265
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4266

4267 4268
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4269

4270 4271
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4272

4273 4274 4275
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4276
	return ret;
4277
}
4278
#endif
L
Lee Schermerhorn 已提交
4279 4280 4281 4282 4283 4284

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4285
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4286 4287
 *
 * Reasons page might not be evictable:
4288
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4289
 * (2) page is part of an mlocked VMA
4290
 *
L
Lee Schermerhorn 已提交
4291
 */
4292
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4293
{
4294 4295 4296 4297 4298 4299 4300
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4301
}
4302 4303

/**
4304 4305 4306
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4307
 *
4308 4309 4310
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4311
 */
4312
void check_move_unevictable_pages(struct pagevec *pvec)
4313
{
4314
	struct lruvec *lruvec;
4315
	struct pglist_data *pgdat = NULL;
4316 4317 4318
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4319

4320 4321
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4322
		struct pglist_data *pagepgdat = page_pgdat(page);
4323

4324
		pgscanned++;
4325 4326 4327 4328 4329
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4330
		}
4331
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4332

4333 4334
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4335

4336
		if (page_evictable(page)) {
4337 4338
			enum lru_list lru = page_lru_base_type(page);

4339
			VM_BUG_ON_PAGE(PageActive(page), page);
4340
			ClearPageUnevictable(page);
4341 4342
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4343
			pgrescued++;
4344
		}
4345
	}
4346

4347
	if (pgdat) {
4348 4349
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4350
		spin_unlock_irq(&pgdat->lru_lock);
4351 4352
	}
}
4353
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);