vmscan.c 110.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
L
Linus Torvalds 已提交
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68

69
	/* Allocation order */
A
Andy Whitcroft 已提交
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86 87 88 89 90 91 92 93 94
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

95 96 97
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

98 99 100 101 102 103 104 105 106 107
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
142 143 144 145 146
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
147 148 149 150

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
151
#ifdef CONFIG_MEMCG
152 153
static bool global_reclaim(struct scan_control *sc)
{
154
	return !sc->target_mem_cgroup;
155
}
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
177
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 179 180 181
		return true;
#endif
	return false;
}
182
#else
183 184 185 186
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
187 188 189 190 191

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
192 193
#endif

M
Mel Gorman 已提交
194 195 196 197 198
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
M
Michal Hocko 已提交
199
unsigned long zone_reclaimable_pages(struct zone *zone)
200
{
201
	unsigned long nr;
202

M
Mel Gorman 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216
	nr = zone_page_state_snapshot(zone, NR_ZONE_LRU_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_LRU_ANON);

	return nr;
}

unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
217 218

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
219 220 221
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
222 223 224 225

	return nr;
}

M
Mel Gorman 已提交
226
bool pgdat_reclaimable(struct pglist_data *pgdat)
227
{
M
Mel Gorman 已提交
228 229
	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
		pgdat_reclaimable_pages(pgdat) * 6;
230 231
}

232
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
233
{
234
	if (!mem_cgroup_disabled())
235
		return mem_cgroup_get_lru_size(lruvec, lru);
236

M
Mel Gorman 已提交
237
	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
238 239
}

L
Linus Torvalds 已提交
240
/*
G
Glauber Costa 已提交
241
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
242
 */
G
Glauber Costa 已提交
243
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
244
{
G
Glauber Costa 已提交
245 246 247 248 249 250 251 252 253
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

254 255 256
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
257
	return 0;
L
Linus Torvalds 已提交
258
}
259
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
260 261 262 263

/*
 * Remove one
 */
264
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
265 266 267 268
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
269
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
270
}
271
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
272 273

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
274

275 276 277 278
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
279 280 281 282
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
283
	long freeable;
G
Glauber Costa 已提交
284 285 286 287 288 289
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

290 291
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
292 293 294 295 296 297 298 299 300 301
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
302
	delta = (4 * nr_scanned) / shrinker->seeks;
303
	delta *= freeable;
304
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
305 306
	total_scan += delta;
	if (total_scan < 0) {
307
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
308
		       shrinker->scan_objects, total_scan);
309
		total_scan = freeable;
G
Glauber Costa 已提交
310 311 312 313 314 315 316 317
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
318
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
319 320 321 322 323
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
324 325
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
326 327 328 329 330 331

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
332 333
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
334 335

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
336 337
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
338

339 340 341 342 343 344 345 346 347 348 349
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
350
	 * than the total number of objects on slab (freeable), we must be
351 352 353 354
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
355
	       total_scan >= freeable) {
D
Dave Chinner 已提交
356
		unsigned long ret;
357
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
358

359
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
360 361 362 363
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
364

365 366
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

382
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
383
	return freed;
384 385
}

386
/**
387
 * shrink_slab - shrink slab caches
388 389
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
390
 * @memcg: memory cgroup whose slab caches to target
391 392
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
393
 *
394
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
395
 *
396 397
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
398
 *
399 400
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
401 402
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
403
 *
404 405 406 407 408 409 410
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
411
 *
412
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
413
 */
414 415 416 417
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
418 419
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
420
	unsigned long freed = 0;
L
Linus Torvalds 已提交
421

422
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
423 424
		return 0;

425 426
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
427

428
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
429 430 431 432 433 434 435
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
436 437
		goto out;
	}
L
Linus Torvalds 已提交
438 439

	list_for_each_entry(shrinker, &shrinker_list, list) {
440 441 442
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
443
			.memcg = memcg,
444
		};
445

446 447 448 449 450 451 452
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
453 454
			continue;

455 456
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
457

458
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
459
	}
460

L
Linus Torvalds 已提交
461
	up_read(&shrinker_rwsem);
462 463
out:
	cond_resched();
D
Dave Chinner 已提交
464
	return freed;
L
Linus Torvalds 已提交
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
490 491
static inline int is_page_cache_freeable(struct page *page)
{
492 493 494 495 496
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
497
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
498 499
}

500
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
501
{
502
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
503
		return 1;
504
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
505
		return 1;
506
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
526
	lock_page(page);
527 528
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
529 530 531
	unlock_page(page);
}

532 533 534 535 536 537 538 539 540 541 542 543
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
544
/*
A
Andrew Morton 已提交
545 546
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
547
 */
548
static pageout_t pageout(struct page *page, struct address_space *mapping,
549
			 struct scan_control *sc)
L
Linus Torvalds 已提交
550 551 552 553 554 555 556 557
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
558
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
574
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
575 576
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
577
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
578 579 580 581 582 583 584
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
585
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
586 587 588 589 590 591 592
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
593 594
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
595 596 597 598 599 600 601
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
602
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
603 604 605
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
606

L
Linus Torvalds 已提交
607 608 609 610
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
611
		trace_mm_vmscan_writepage(page);
612
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
613 614 615 616 617 618
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

619
/*
N
Nick Piggin 已提交
620 621
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
622
 */
623 624
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
625
{
626 627
	unsigned long flags;

628 629
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
630

631
	spin_lock_irqsave(&mapping->tree_lock, flags);
632
	/*
N
Nick Piggin 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
652
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
653 654 655
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
656
	 */
657
	if (!page_ref_freeze(page, 2))
658
		goto cannot_free;
N
Nick Piggin 已提交
659 660
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
661
		page_ref_unfreeze(page, 2);
662
		goto cannot_free;
N
Nick Piggin 已提交
663
	}
664 665 666

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
667
		mem_cgroup_swapout(page, swap);
668
		__delete_from_swap_cache(page);
669
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
670
		swapcache_free(swap);
N
Nick Piggin 已提交
671
	} else {
672
		void (*freepage)(struct page *);
673
		void *shadow = NULL;
674 675

		freepage = mapping->a_ops->freepage;
676 677 678 679 680 681 682 683 684
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
685 686 687 688 689 690
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
691 692
		 */
		if (reclaimed && page_is_file_cache(page) &&
693
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
694
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
695
		__delete_from_page_cache(page, shadow);
696
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
697 698 699

		if (freepage != NULL)
			freepage(page);
700 701 702 703 704
	}

	return 1;

cannot_free:
705
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
706 707 708
	return 0;
}

N
Nick Piggin 已提交
709 710 711 712 713 714 715 716
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
717
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
718 719 720 721 722
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
723
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
724 725 726 727 728
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
729 730 731 732 733 734 735 736 737 738 739
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
740
	bool is_unevictable;
741
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
742

743
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
744 745 746 747

redo:
	ClearPageUnevictable(page);

748
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
749 750 751 752 753 754
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
755
		is_unevictable = false;
756
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
757 758 759 760 761
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
762
		is_unevictable = true;
L
Lee Schermerhorn 已提交
763
		add_page_to_unevictable_list(page);
764
		/*
765 766 767
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
768
		 * isolation/check_move_unevictable_pages,
769
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
770 771
		 * the page back to the evictable list.
		 *
772
		 * The other side is TestClearPageMlocked() or shmem_lock().
773 774
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
775 776 777 778 779 780 781
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
782
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
783 784 785 786 787 788 789 790 791 792
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

793
	if (was_unevictable && !is_unevictable)
794
		count_vm_event(UNEVICTABLE_PGRESCUED);
795
	else if (!was_unevictable && is_unevictable)
796 797
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
798 799 800
	put_page(page);		/* drop ref from isolate */
}

801 802 803
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
804
	PAGEREF_KEEP,
805 806 807 808 809 810
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
811
	int referenced_ptes, referenced_page;
812 813
	unsigned long vm_flags;

814 815
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
816
	referenced_page = TestClearPageReferenced(page);
817 818 819 820 821 822 823 824

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

825
	if (referenced_ptes) {
826
		if (PageSwapBacked(page))
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

844
		if (referenced_page || referenced_ptes > 1)
845 846
			return PAGEREF_ACTIVATE;

847 848 849 850 851 852
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

853 854
		return PAGEREF_KEEP;
	}
855 856

	/* Reclaim if clean, defer dirty pages to writeback */
857
	if (referenced_page && !PageSwapBacked(page))
858 859 860
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
861 862
}

863 864 865 866
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
867 868
	struct address_space *mapping;

869 870 871 872 873 874 875 876 877 878 879 880 881
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
882 883 884 885 886 887 888 889

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
890 891
}

L
Linus Torvalds 已提交
892
/*
A
Andrew Morton 已提交
893
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
894
 */
A
Andrew Morton 已提交
895
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
896
				      struct pglist_data *pgdat,
897
				      struct scan_control *sc,
898
				      enum ttu_flags ttu_flags,
899
				      unsigned long *ret_nr_dirty,
900
				      unsigned long *ret_nr_unqueued_dirty,
901
				      unsigned long *ret_nr_congested,
902
				      unsigned long *ret_nr_writeback,
903
				      unsigned long *ret_nr_immediate,
904
				      bool force_reclaim)
L
Linus Torvalds 已提交
905 906
{
	LIST_HEAD(ret_pages);
907
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
908
	int pgactivate = 0;
909
	unsigned long nr_unqueued_dirty = 0;
910 911
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
912
	unsigned long nr_reclaimed = 0;
913
	unsigned long nr_writeback = 0;
914
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
915 916 917 918 919 920 921

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
922
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
923
		bool dirty, writeback;
M
Minchan Kim 已提交
924 925
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
926 927 928 929 930 931

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
932
		if (!trylock_page(page))
L
Linus Torvalds 已提交
933 934
			goto keep;

935
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
936 937

		sc->nr_scanned++;
938

939
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
940
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
941

942
		if (!sc->may_unmap && page_mapped(page))
943 944
			goto keep_locked;

L
Linus Torvalds 已提交
945 946 947 948
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

949 950 951
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

952 953 954 955 956 957 958 959 960 961 962 963 964
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

965 966 967 968 969 970
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
971
		mapping = page_mapping(page);
972
		if (((dirty || writeback) && mapping &&
973
		     inode_write_congested(mapping->host)) ||
974
		    (writeback && PageReclaim(page)))
975 976
			nr_congested++;

977 978 979 980 981 982 983 984 985 986 987
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
988 989
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
990
		 *
991
		 * 2) Global or new memcg reclaim encounters a page that is
992 993 994
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
995
		 *    reclaim and continue scanning.
996
		 *
997 998
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
999 1000 1001 1002 1003
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1004
		 * 3) Legacy memcg encounters a page that is already marked
1005 1006 1007 1008 1009
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
1010
		if (PageWriteback(page)) {
1011 1012 1013
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1014
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1015 1016
				nr_immediate++;
				goto keep_locked;
1017 1018

			/* Case 2 above */
1019
			} else if (sane_reclaim(sc) ||
1020
			    !PageReclaim(page) || !may_enter_fs) {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1033
				nr_writeback++;
1034
				goto keep_locked;
1035 1036 1037

			/* Case 3 above */
			} else {
1038
				unlock_page(page);
1039
				wait_on_page_writeback(page);
1040 1041 1042
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1043
			}
1044
		}
L
Linus Torvalds 已提交
1045

1046 1047 1048
		if (!force_reclaim)
			references = page_check_references(page, sc);

1049 1050
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1051
			goto activate_locked;
1052 1053
		case PAGEREF_KEEP:
			goto keep_locked;
1054 1055 1056 1057
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1058 1059 1060 1061 1062

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1063
		if (PageAnon(page) && !PageSwapCache(page)) {
1064 1065
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1066
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1067
				goto activate_locked;
M
Minchan Kim 已提交
1068
			lazyfree = true;
1069
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1070

1071 1072
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1073 1074 1075 1076
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1077
		}
L
Linus Torvalds 已提交
1078

1079 1080
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1081 1082 1083 1084 1085
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1086 1087 1088
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1089 1090 1091 1092
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1093 1094
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1095 1096
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1097 1098 1099 1100 1101 1102
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1103 1104
			/*
			 * Only kswapd can writeback filesystem pages to
1105 1106
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1107
			 */
1108
			if (page_is_file_cache(page) &&
1109
					(!current_is_kswapd() ||
M
Mel Gorman 已提交
1110
					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1111 1112 1113 1114 1115 1116 1117 1118 1119
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1120 1121 1122
				goto keep_locked;
			}

1123
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1124
				goto keep_locked;
1125
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1126
				goto keep_locked;
1127
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1128 1129
				goto keep_locked;

1130 1131 1132 1133 1134 1135
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1136
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1137 1138 1139 1140 1141
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1142
				if (PageWriteback(page))
1143
					goto keep;
1144
				if (PageDirty(page))
L
Linus Torvalds 已提交
1145
					goto keep;
1146

L
Linus Torvalds 已提交
1147 1148 1149 1150
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1151
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1171
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1182
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1183 1184
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1201 1202
		}

M
Minchan Kim 已提交
1203
lazyfree:
1204
		if (!mapping || !__remove_mapping(mapping, page, true))
1205
			goto keep_locked;
L
Linus Torvalds 已提交
1206

N
Nick Piggin 已提交
1207 1208 1209 1210 1211 1212 1213
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1214
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1215
free_it:
M
Minchan Kim 已提交
1216 1217 1218
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1219
		nr_reclaimed++;
1220 1221 1222 1223 1224 1225

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1226 1227
		continue;

N
Nick Piggin 已提交
1228
cull_mlocked:
1229 1230
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1231
		unlock_page(page);
1232
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1233 1234
		continue;

L
Linus Torvalds 已提交
1235
activate_locked:
1236
		/* Not a candidate for swapping, so reclaim swap space. */
1237
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1238
			try_to_free_swap(page);
1239
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1240 1241 1242 1243 1244 1245
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1246
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1247
	}
1248

1249
	mem_cgroup_uncharge_list(&free_pages);
1250
	try_to_unmap_flush();
1251
	free_hot_cold_page_list(&free_pages, true);
1252

L
Linus Torvalds 已提交
1253
	list_splice(&ret_pages, page_list);
1254
	count_vm_events(PGACTIVATE, pgactivate);
1255

1256 1257
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1258
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1259
	*ret_nr_writeback += nr_writeback;
1260
	*ret_nr_immediate += nr_immediate;
1261
	return nr_reclaimed;
L
Linus Torvalds 已提交
1262 1263
}

1264 1265 1266 1267 1268 1269 1270 1271
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1272
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1273 1274 1275 1276
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1277
		if (page_is_file_cache(page) && !PageDirty(page) &&
1278
		    !__PageMovable(page)) {
1279 1280 1281 1282 1283
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1284
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1285 1286
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1287
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1288
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1289 1290 1291
	return ret;
}

A
Andy Whitcroft 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1302
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1303 1304 1305 1306 1307 1308 1309
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1310 1311
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1312 1313
		return ret;

A
Andy Whitcroft 已提交
1314
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1349

1350 1351 1352
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1366
/*
1367
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1377
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1378
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1379
 * @nr_scanned:	The number of pages that were scanned.
1380
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1381
 * @mode:	One of the LRU isolation modes
1382
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1383 1384 1385
 *
 * returns how many pages were moved onto *@dst.
 */
1386
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1387
		struct lruvec *lruvec, struct list_head *dst,
1388
		unsigned long *nr_scanned, struct scan_control *sc,
1389
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1390
{
H
Hugh Dickins 已提交
1391
	struct list_head *src = &lruvec->lists[lru];
1392
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1393 1394
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
	unsigned long scan, nr_pages;
L
Linus Torvalds 已提交
1395

1396 1397
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
					!list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1398 1399
		struct page *page;

L
Linus Torvalds 已提交
1400 1401 1402
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1403
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1404

1405
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1406
		case 0:
M
Mel Gorman 已提交
1407 1408 1409
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1410 1411 1412 1413 1414 1415 1416
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1417

A
Andy Whitcroft 已提交
1418 1419 1420
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1421 1422
	}

H
Hugh Dickins 已提交
1423
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1424 1425
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
M
Mel Gorman 已提交
1426 1427 1428 1429 1430 1431 1432
	for (scan = 0; scan < MAX_NR_ZONES; scan++) {
		nr_pages = nr_zone_taken[scan];
		if (!nr_pages)
			continue;

		update_lru_size(lruvec, lru, scan, -nr_pages);
	}
L
Linus Torvalds 已提交
1433 1434 1435
	return nr_taken;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1447 1448 1449
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1465
	VM_BUG_ON_PAGE(!page_count(page), page);
1466
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1467

1468 1469
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1470
		struct lruvec *lruvec;
1471

1472
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1473
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1474
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1475
			int lru = page_lru(page);
1476
			get_page(page);
1477
			ClearPageLRU(page);
1478 1479
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1480
		}
1481
		spin_unlock_irq(zone_lru_lock(zone));
1482 1483 1484 1485
	}
	return ret;
}

1486
/*
F
Fengguang Wu 已提交
1487 1488 1489 1490 1491
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1492
 */
M
Mel Gorman 已提交
1493
static int too_many_isolated(struct pglist_data *pgdat, int file,
1494 1495 1496 1497 1498 1499 1500
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1501
	if (!sane_reclaim(sc))
1502 1503 1504
		return 0;

	if (file) {
M
Mel Gorman 已提交
1505 1506
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1507
	} else {
M
Mel Gorman 已提交
1508 1509
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1510 1511
	}

1512 1513 1514 1515 1516
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1517
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1518 1519
		inactive >>= 3;

1520 1521 1522
	return isolated > inactive;
}

1523
static noinline_for_stack void
H
Hugh Dickins 已提交
1524
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1525
{
1526
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1527
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1528
	LIST_HEAD(pages_to_free);
1529 1530 1531 1532 1533

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1534
		struct page *page = lru_to_page(page_list);
1535
		int lru;
1536

1537
		VM_BUG_ON_PAGE(PageLRU(page), page);
1538
		list_del(&page->lru);
1539
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1540
			spin_unlock_irq(&pgdat->lru_lock);
1541
			putback_lru_page(page);
M
Mel Gorman 已提交
1542
			spin_lock_irq(&pgdat->lru_lock);
1543 1544
			continue;
		}
1545

M
Mel Gorman 已提交
1546
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1547

1548
		SetPageLRU(page);
1549
		lru = page_lru(page);
1550 1551
		add_page_to_lru_list(page, lruvec, lru);

1552 1553
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1554 1555
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1556
		}
1557 1558 1559
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1560
			del_page_from_lru_list(page, lruvec, lru);
1561 1562

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1563
				spin_unlock_irq(&pgdat->lru_lock);
1564
				mem_cgroup_uncharge(page);
1565
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1566
				spin_lock_irq(&pgdat->lru_lock);
1567 1568
			} else
				list_add(&page->lru, &pages_to_free);
1569 1570 1571
		}
	}

1572 1573 1574 1575
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1576 1577
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1591
/*
A
Andrew Morton 已提交
1592 1593
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1594
 */
1595
static noinline_for_stack unsigned long
1596
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1597
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1598 1599
{
	LIST_HEAD(page_list);
1600
	unsigned long nr_scanned;
1601
	unsigned long nr_reclaimed = 0;
1602
	unsigned long nr_taken;
1603 1604
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1605
	unsigned long nr_unqueued_dirty = 0;
1606
	unsigned long nr_writeback = 0;
1607
	unsigned long nr_immediate = 0;
1608
	isolate_mode_t isolate_mode = 0;
1609
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1610
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1611
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1612

M
Mel Gorman 已提交
1613
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1614
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1615 1616 1617 1618 1619 1620

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1621
	lru_add_drain();
1622 1623

	if (!sc->may_unmap)
1624
		isolate_mode |= ISOLATE_UNMAPPED;
1625
	if (!sc->may_writepage)
1626
		isolate_mode |= ISOLATE_CLEAN;
1627

M
Mel Gorman 已提交
1628
	spin_lock_irq(&pgdat->lru_lock);
1629

1630 1631
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1632

M
Mel Gorman 已提交
1633
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1634
	reclaim_stat->recent_scanned[file] += nr_taken;
1635

1636
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
1637
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1638
		if (current_is_kswapd())
M
Mel Gorman 已提交
1639
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1640
		else
M
Mel Gorman 已提交
1641
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1642
	}
M
Mel Gorman 已提交
1643
	spin_unlock_irq(&pgdat->lru_lock);
1644

1645
	if (nr_taken == 0)
1646
		return 0;
A
Andy Whitcroft 已提交
1647

M
Mel Gorman 已提交
1648
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1649 1650 1651
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1652

M
Mel Gorman 已提交
1653
	spin_lock_irq(&pgdat->lru_lock);
1654

Y
Ying Han 已提交
1655 1656
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1657
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1658
		else
M
Mel Gorman 已提交
1659
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1660
	}
N
Nick Piggin 已提交
1661

1662
	putback_inactive_pages(lruvec, &page_list);
1663

M
Mel Gorman 已提交
1664
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1665

M
Mel Gorman 已提交
1666
	spin_unlock_irq(&pgdat->lru_lock);
1667

1668
	mem_cgroup_uncharge_list(&page_list);
1669
	free_hot_cold_page_list(&page_list, true);
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1681 1682 1683
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1684
	 */
1685
	if (nr_writeback && nr_writeback == nr_taken)
M
Mel Gorman 已提交
1686
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1687

1688
	/*
1689 1690
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1691
	 */
1692
	if (sane_reclaim(sc)) {
1693 1694 1695 1696 1697
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
M
Mel Gorman 已提交
1698
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1699

1700 1701 1702
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
M
Mel Gorman 已提交
1703
		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
J
Johannes Weiner 已提交
1704
		 * reclaim context.
1705 1706
		 */
		if (nr_unqueued_dirty == nr_taken)
M
Mel Gorman 已提交
1707
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1708 1709

		/*
1710 1711 1712
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1713 1714
		 * they are written so also forcibly stall.
		 */
1715
		if (nr_immediate && current_may_throttle())
1716
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1717
	}
1718

1719 1720 1721 1722 1723
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1724 1725
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1726
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1727

M
Mel Gorman 已提交
1728 1729
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1730
			sc->priority, file);
1731
	return nr_reclaimed;
L
Linus Torvalds 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1741
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1742
 * the pages are mapped, the processing is slow (page_referenced()) so we
1743
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1744 1745 1746 1747
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1748
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1749 1750
 * But we had to alter page->flags anyway.
 */
1751

1752
static void move_active_pages_to_lru(struct lruvec *lruvec,
1753
				     struct list_head *list,
1754
				     struct list_head *pages_to_free,
1755 1756
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1757
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1758 1759
	unsigned long pgmoved = 0;
	struct page *page;
1760
	int nr_pages;
1761 1762 1763

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1764
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1765

1766
		VM_BUG_ON_PAGE(PageLRU(page), page);
1767 1768
		SetPageLRU(page);

1769
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1770
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1771
		list_move(&page->lru, &lruvec->lists[lru]);
1772
		pgmoved += nr_pages;
1773

1774 1775 1776
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1777
			del_page_from_lru_list(page, lruvec, lru);
1778 1779

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1780
				spin_unlock_irq(&pgdat->lru_lock);
1781
				mem_cgroup_uncharge(page);
1782
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1783
				spin_lock_irq(&pgdat->lru_lock);
1784 1785
			} else
				list_add(&page->lru, pages_to_free);
1786 1787
		}
	}
1788

1789 1790 1791
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1792

H
Hugh Dickins 已提交
1793
static void shrink_active_list(unsigned long nr_to_scan,
1794
			       struct lruvec *lruvec,
1795
			       struct scan_control *sc,
1796
			       enum lru_list lru)
L
Linus Torvalds 已提交
1797
{
1798
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1799
	unsigned long nr_scanned;
1800
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1801
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1802
	LIST_HEAD(l_active);
1803
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1804
	struct page *page;
1805
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1806
	unsigned long nr_rotated = 0;
1807
	isolate_mode_t isolate_mode = 0;
1808
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1809
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1810 1811

	lru_add_drain();
1812 1813

	if (!sc->may_unmap)
1814
		isolate_mode |= ISOLATE_UNMAPPED;
1815
	if (!sc->may_writepage)
1816
		isolate_mode |= ISOLATE_CLEAN;
1817

M
Mel Gorman 已提交
1818
	spin_lock_irq(&pgdat->lru_lock);
1819

1820 1821
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1822

M
Mel Gorman 已提交
1823
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1824
	reclaim_stat->recent_scanned[file] += nr_taken;
1825

1826
	if (global_reclaim(sc))
M
Mel Gorman 已提交
1827 1828
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
	__count_vm_events(PGREFILL, nr_scanned);
1829

M
Mel Gorman 已提交
1830
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1831 1832 1833 1834 1835

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1836

1837
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1838 1839 1840 1841
			putback_lru_page(page);
			continue;
		}

1842 1843 1844 1845 1846 1847 1848 1849
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1850 1851
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1852
			nr_rotated += hpage_nr_pages(page);
1853 1854 1855 1856 1857 1858 1859 1860 1861
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1862
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1863 1864 1865 1866
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1867

1868
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1869 1870 1871
		list_add(&page->lru, &l_inactive);
	}

1872
	/*
1873
	 * Move pages back to the lru list.
1874
	 */
M
Mel Gorman 已提交
1875
	spin_lock_irq(&pgdat->lru_lock);
1876
	/*
1877 1878 1879
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1880
	 * get_scan_count.
1881
	 */
1882
	reclaim_stat->recent_rotated[file] += nr_rotated;
1883

1884 1885
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
1886 1887
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
1888

1889
	mem_cgroup_uncharge_list(&l_hold);
1890
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1891 1892
}

1893 1894 1895
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
1896
 *
1897 1898 1899
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
1900
 *
1901 1902
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
1903
 *
1904 1905 1906
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1907
 *
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
1918
 */
1919
static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
1920
{
1921
	unsigned long inactive_ratio;
1922 1923
	unsigned long inactive;
	unsigned long active;
1924
	unsigned long gb;
1925

1926 1927 1928 1929 1930 1931
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
1932

1933 1934
	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
1935

1936 1937 1938
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
1939
	else
1940 1941 1942
		inactive_ratio = 1;

	return inactive * inactive_ratio < active;
1943 1944
}

1945
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1946
				 struct lruvec *lruvec, struct scan_control *sc)
1947
{
1948
	if (is_active_lru(lru)) {
1949
		if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1950
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1951 1952 1953
		return 0;
	}

1954
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1955 1956
}

1957 1958 1959 1960 1961 1962 1963
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1964 1965 1966 1967 1968 1969
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1970 1971
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1972
 */
1973
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1974 1975
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
1976
{
1977
	int swappiness = mem_cgroup_swappiness(memcg);
1978 1979 1980
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
1981
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1982
	unsigned long anon_prio, file_prio;
1983
	enum scan_balance scan_balance;
1984
	unsigned long anon, file;
1985
	bool force_scan = false;
1986
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1987
	enum lru_list lru;
1988 1989
	bool some_scanned;
	int pass;
1990

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2001
	if (current_is_kswapd()) {
M
Mel Gorman 已提交
2002
		if (!pgdat_reclaimable(pgdat))
2003
			force_scan = true;
2004
		if (!mem_cgroup_online(memcg))
2005 2006
			force_scan = true;
	}
2007
	if (!global_reclaim(sc))
2008
		force_scan = true;
2009 2010

	/* If we have no swap space, do not bother scanning anon pages. */
2011
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2012
		scan_balance = SCAN_FILE;
2013 2014
		goto out;
	}
2015

2016 2017 2018 2019 2020 2021 2022
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2023
	if (!global_reclaim(sc) && !swappiness) {
2024
		scan_balance = SCAN_FILE;
2025 2026 2027 2028 2029 2030 2031 2032
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2033
	if (!sc->priority && swappiness) {
2034
		scan_balance = SCAN_EQUAL;
2035 2036 2037
		goto out;
	}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2048 2049 2050 2051
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2052

M
Mel Gorman 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
			if (!populated_zone(zone))
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2064

M
Mel Gorman 已提交
2065
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2066 2067 2068 2069 2070
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2071
	/*
2072 2073 2074 2075 2076 2077 2078
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2079
	 */
2080
	if (!inactive_list_is_low(lruvec, true) &&
2081
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2082
		scan_balance = SCAN_FILE;
2083 2084 2085
		goto out;
	}

2086 2087
	scan_balance = SCAN_FRACT;

2088 2089 2090 2091
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2092
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2093
	file_prio = 200 - anon_prio;
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2106

2107 2108 2109 2110
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2111

M
Mel Gorman 已提交
2112
	spin_lock_irq(&pgdat->lru_lock);
2113 2114 2115
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2116 2117
	}

2118 2119 2120
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2121 2122 2123
	}

	/*
2124 2125 2126
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2127
	 */
2128
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2129
	ap /= reclaim_stat->recent_rotated[0] + 1;
2130

2131
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2132
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2133
	spin_unlock_irq(&pgdat->lru_lock);
2134

2135 2136 2137 2138
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2139 2140 2141
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2142
		*lru_pages = 0;
2143 2144 2145 2146
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2147

2148
			size = lruvec_lru_size(lruvec, lru);
2149
			scan = size >> sc->priority;
2150

2151 2152
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2169 2170
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2171
					scan = 0;
2172
				}
2173 2174 2175 2176 2177
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2178 2179

			*lru_pages += size;
2180
			nr[lru] = scan;
2181

2182
			/*
2183 2184
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2185
			 */
2186
			some_scanned |= !!scan;
2187
		}
2188
	}
2189
}
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
static void init_tlb_ubc(void)
{
	/*
	 * This deliberately does not clear the cpumask as it's expensive
	 * and unnecessary. If there happens to be data in there then the
	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
	 * then will be cleared.
	 */
	current->tlb_ubc.flush_required = false;
}
#else
static inline void init_tlb_ubc(void)
{
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */

2208 2209 2210
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2211 2212
static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
			      struct scan_control *sc, unsigned long *lru_pages)
2213
{
2214
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2215
	unsigned long nr[NR_LRU_LISTS];
2216
	unsigned long targets[NR_LRU_LISTS];
2217 2218 2219 2220 2221
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2222
	bool scan_adjusted;
2223

2224
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2225

2226 2227 2228
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2243 2244
	init_tlb_ubc();

2245 2246 2247
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2248 2249 2250
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2251 2252 2253 2254 2255 2256 2257 2258 2259
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2260 2261 2262 2263 2264 2265

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2266
		 * requested. Ensure that the anon and file LRUs are scanned
2267 2268 2269 2270 2271 2272 2273
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2274 2275 2276 2277 2278 2279 2280 2281 2282
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2314 2315 2316 2317 2318 2319 2320 2321
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2322
	if (inactive_list_is_low(lruvec, false))
2323 2324 2325 2326 2327 2328
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2329
/* Use reclaim/compaction for costly allocs or under memory pressure */
2330
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2331
{
2332
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2333
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2334
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2335 2336 2337 2338 2339
		return true;

	return false;
}

2340
/*
M
Mel Gorman 已提交
2341 2342 2343 2344 2345
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2346
 */
2347
static inline bool should_continue_reclaim(struct zone *zone,
2348 2349 2350 2351 2352 2353 2354 2355
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2356
	if (!in_reclaim_compaction(sc))
2357 2358
		return false;

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2381 2382 2383 2384 2385 2386

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
M
Mel Gorman 已提交
2387
	inactive_lru_pages = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE);
2388
	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
2389
		inactive_lru_pages += node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
2390 2391 2392 2393 2394
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2395
	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2396 2397 2398 2399 2400 2401 2402 2403
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2404 2405
static bool shrink_zone(struct zone *zone, struct scan_control *sc,
			bool is_classzone)
L
Linus Torvalds 已提交
2406
{
2407
	struct reclaim_state *reclaim_state = current->reclaim_state;
2408
	unsigned long nr_reclaimed, nr_scanned;
2409
	bool reclaimable = false;
L
Linus Torvalds 已提交
2410

2411 2412 2413 2414 2415 2416
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2417
		unsigned long zone_lru_pages = 0;
2418
		struct mem_cgroup *memcg;
2419

2420 2421
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2422

2423 2424
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2425
			unsigned long lru_pages;
2426
			unsigned long reclaimed;
2427
			unsigned long scanned;
2428

2429 2430 2431 2432 2433 2434
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2435
			reclaimed = sc->nr_reclaimed;
2436
			scanned = sc->nr_scanned;
2437

2438
			shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2439
			zone_lru_pages += lru_pages;
2440

2441 2442 2443 2444 2445
			if (memcg && is_classzone)
				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2446 2447 2448 2449 2450
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2451
			/*
2452 2453
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2454
			 * zone.
2455 2456 2457 2458 2459
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2460
			 */
2461 2462
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2463 2464 2465
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2466
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2467

2468 2469 2470 2471
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2472 2473 2474 2475 2476 2477 2478 2479
		if (global_reclaim(sc) && is_classzone)
			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
				    sc->nr_scanned - nr_scanned,
				    zone_lru_pages);

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2480 2481
		}

2482 2483
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2484 2485 2486
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2487 2488 2489
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2490 2491
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2492 2493

	return reclaimable;
2494 2495
}

2496 2497 2498 2499
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2500
static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx)
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2511 2512
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2513
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2514
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx);
2515 2516 2517 2518 2519

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2520
	if (compaction_deferred(zone, order))
2521 2522
		return watermark_ok;

2523 2524 2525 2526
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2527
	if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED)
2528 2529 2530 2531 2532
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2533 2534 2535 2536 2537
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2538 2539
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2540 2541
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2542 2543 2544
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2545 2546 2547 2548
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2549
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2550
{
2551
	struct zoneref *z;
2552
	struct zone *zone;
2553 2554
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2555
	gfp_t orig_mask;
2556
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2557

2558 2559 2560 2561 2562
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2563
	orig_mask = sc->gfp_mask;
2564 2565 2566
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2567
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2568
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2569 2570
		enum zone_type classzone_idx;

2571
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2572
			continue;
2573 2574 2575 2576 2577 2578

		classzone_idx = requested_highidx;
		while (!populated_zone(zone->zone_pgdat->node_zones +
							classzone_idx))
			classzone_idx--;

2579 2580 2581 2582
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2583
		if (global_reclaim(sc)) {
2584 2585
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2586
				continue;
2587

2588
			if (sc->priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
2589
			    !pgdat_reclaimable(zone->zone_pgdat))
2590
				continue;	/* Let kswapd poll it */
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
2604
			    compaction_ready(zone, sc->order, requested_highidx)) {
2605 2606
				sc->compaction_ready = true;
				continue;
2607
			}
2608

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2621
			/* need some check for avoid more shrink_zone() */
2622
		}
2623

M
Michal Hocko 已提交
2624
		shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
L
Linus Torvalds 已提交
2625
	}
2626

2627 2628 2629 2630 2631
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2632
}
2633

L
Linus Torvalds 已提交
2634 2635 2636 2637 2638 2639 2640 2641
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2642 2643 2644 2645
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2646 2647 2648
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2649
 */
2650
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2651
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2652
{
2653
	int initial_priority = sc->priority;
2654
	unsigned long total_scanned = 0;
2655
	unsigned long writeback_threshold;
2656
retry:
2657 2658
	delayacct_freepages_start();

2659
	if (global_reclaim(sc))
2660
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2661

2662
	do {
2663 2664
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2665
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2666
		shrink_zones(zonelist, sc);
2667

2668
		total_scanned += sc->nr_scanned;
2669
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2670 2671 2672 2673
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2674

2675 2676 2677 2678 2679 2680 2681
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2682 2683 2684 2685 2686 2687 2688
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2689 2690
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2691 2692
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2693
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2694
		}
2695
	} while (--sc->priority >= 0);
2696

2697 2698
	delayacct_freepages_end();

2699 2700 2701
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2702
	/* Aborted reclaim to try compaction? don't OOM, then */
2703
	if (sc->compaction_ready)
2704 2705
		return 1;

2706 2707 2708 2709 2710 2711 2712
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2713
	return 0;
L
Linus Torvalds 已提交
2714 2715
}

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2726
		if (!populated_zone(zone) ||
M
Mel Gorman 已提交
2727
		    pgdat_reclaimable_pages(pgdat) == 0)
2728 2729
			continue;

2730 2731 2732 2733
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2734 2735 2736 2737
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2754 2755 2756 2757
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2758
 */
2759
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2760 2761
					nodemask_t *nodemask)
{
2762
	struct zoneref *z;
2763
	struct zone *zone;
2764
	pg_data_t *pgdat = NULL;
2765 2766 2767 2768 2769 2770 2771 2772 2773

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2774 2775 2776 2777 2778 2779 2780 2781
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2782

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2798
					gfp_zone(gfp_mask), nodemask) {
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2811
		goto out;
2812

2813 2814 2815
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2827 2828

		goto check_pending;
2829 2830 2831 2832 2833
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2834 2835 2836 2837 2838 2839 2840

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2841 2842
}

2843
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2844
				gfp_t gfp_mask, nodemask_t *nodemask)
2845
{
2846
	unsigned long nr_reclaimed;
2847
	struct scan_control sc = {
2848
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2849
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2850 2851 2852
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2853
		.may_writepage = !laptop_mode,
2854
		.may_unmap = 1,
2855
		.may_swap = 1,
2856 2857
	};

2858
	/*
2859 2860 2861
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2862
	 */
2863
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2864 2865
		return 1;

2866 2867 2868 2869
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2870
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2871 2872 2873 2874

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2875 2876
}

A
Andrew Morton 已提交
2877
#ifdef CONFIG_MEMCG
2878

2879
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2880
						gfp_t gfp_mask, bool noswap,
2881 2882
						struct zone *zone,
						unsigned long *nr_scanned)
2883 2884
{
	struct scan_control sc = {
2885
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2886
		.target_mem_cgroup = memcg,
2887 2888 2889 2890
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2891
	unsigned long lru_pages;
2892

2893 2894
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2895

2896
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2897 2898 2899
						      sc.may_writepage,
						      sc.gfp_mask);

2900 2901 2902 2903 2904 2905 2906
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2907
	shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2908 2909 2910

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2911
	*nr_scanned = sc.nr_scanned;
2912 2913 2914
	return sc.nr_reclaimed;
}

2915
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2916
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2917
					   gfp_t gfp_mask,
2918
					   bool may_swap)
2919
{
2920
	struct zonelist *zonelist;
2921
	unsigned long nr_reclaimed;
2922
	int nid;
2923
	struct scan_control sc = {
2924
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2925 2926
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2927 2928 2929 2930
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2931
		.may_swap = may_swap,
2932
	};
2933

2934 2935 2936 2937 2938
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2939
	nid = mem_cgroup_select_victim_node(memcg);
2940 2941

	zonelist = NODE_DATA(nid)->node_zonelists;
2942 2943 2944 2945 2946

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2947
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2948 2949 2950 2951

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2952 2953 2954
}
#endif

2955
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2956
{
2957
	struct mem_cgroup *memcg;
2958

2959 2960 2961 2962 2963
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2964
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2965

2966
		if (inactive_list_is_low(lruvec, false))
2967
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2968
					   sc, LRU_ACTIVE_ANON);
2969 2970 2971

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2972 2973
}

2974 2975
static bool zone_balanced(struct zone *zone, int order, bool highorder,
			unsigned long balance_gap, int classzone_idx)
2976
{
2977
	unsigned long mark = high_wmark_pages(zone) + balance_gap;
2978

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	/*
	 * When checking from pgdat_balanced(), kswapd should stop and sleep
	 * when it reaches the high order-0 watermark and let kcompactd take
	 * over. Other callers such as wakeup_kswapd() want to determine the
	 * true high-order watermark.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
		mark += (1UL << order);
		order = 0;
	}
2989

2990
	return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
2991 2992
}

2993
/*
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
3004 3005 3006 3007
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
3008
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
3009 3010 3011 3012
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
3013
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3014
{
3015
	unsigned long managed_pages = 0;
3016
	unsigned long balanced_pages = 0;
3017 3018
	int i;

3019 3020 3021
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
3022

3023 3024 3025
		if (!populated_zone(zone))
			continue;

3026
		managed_pages += zone->managed_pages;
3027 3028 3029 3030 3031 3032 3033 3034

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
M
Mel Gorman 已提交
3035
		if (!pgdat_reclaimable(zone->zone_pgdat)) {
3036
			balanced_pages += zone->managed_pages;
3037 3038 3039
			continue;
		}

3040
		if (zone_balanced(zone, order, false, 0, i))
3041
			balanced_pages += zone->managed_pages;
3042 3043 3044 3045 3046
		else if (!order)
			return false;
	}

	if (order)
3047
		return balanced_pages >= (managed_pages >> 2);
3048 3049
	else
		return true;
3050 3051
}

3052 3053 3054 3055 3056 3057 3058
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3059
					int classzone_idx)
3060 3061 3062
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
3063 3064 3065
		return false;

	/*
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3077
	 */
3078 3079
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3080

3081
	return pgdat_balanced(pgdat, order, classzone_idx);
3082 3083
}

3084 3085 3086
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
3087 3088
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3089 3090
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3091
 */
3092
static bool kswapd_shrink_zone(struct zone *zone,
3093
			       int classzone_idx,
3094
			       struct scan_control *sc)
3095
{
3096 3097
	unsigned long balance_gap;
	bool lowmem_pressure;
M
Mel Gorman 已提交
3098
	struct pglist_data *pgdat = zone->zone_pgdat;
3099 3100 3101

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3102 3103 3104 3105 3106 3107 3108

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
3109 3110
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3111 3112 3113 3114 3115 3116

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3117
	if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
3118 3119 3120
						balance_gap, classzone_idx))
		return true;

3121
	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3122

M
Mel Gorman 已提交
3123 3124
	/* TODO: ANOMALY */
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3125

3126 3127 3128 3129 3130 3131
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
M
Mel Gorman 已提交
3132
	if (pgdat_reclaimable(zone->zone_pgdat) &&
3133
	    zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
M
Mel Gorman 已提交
3134 3135
		clear_bit(PGDAT_CONGESTED, &pgdat->flags);
		clear_bit(PGDAT_DIRTY, &pgdat->flags);
3136 3137
	}

3138
	return sc->nr_scanned >= sc->nr_to_reclaim;
3139 3140
}

L
Linus Torvalds 已提交
3141 3142
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
3143
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
3144
 *
3145
 * Returns the highest zone idx kswapd was reclaiming at
L
Linus Torvalds 已提交
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3156 3157 3158 3159 3160
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
3161
 */
3162
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3163 3164
{
	int i;
3165
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3166 3167
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3168 3169
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3170
		.order = order,
3171
		.priority = DEF_PRIORITY,
3172
		.may_writepage = !laptop_mode,
3173
		.may_unmap = 1,
3174
		.may_swap = 1,
3175
	};
3176
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3177

3178
	do {
3179 3180 3181
		bool raise_priority = true;

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3182

3183 3184 3185 3186 3187 3188
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3189

3190 3191
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3192

3193
			if (sc.priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
3194
			    !pgdat_reclaimable(zone->zone_pgdat))
3195
				continue;
L
Linus Torvalds 已提交
3196

3197 3198 3199 3200
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3201
			age_active_anon(zone, &sc);
3202

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3214
			if (!zone_balanced(zone, order, false, 0, 0)) {
3215
				end_zone = i;
A
Andrew Morton 已提交
3216
				break;
3217
			} else {
3218 3219 3220
				/*
				 * If balanced, clear the dirty and congested
				 * flags
M
Mel Gorman 已提交
3221 3222
				 *
				 * TODO: ANOMALY
3223
				 */
M
Mel Gorman 已提交
3224 3225
				clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
				clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
L
Linus Torvalds 已提交
3226 3227
			}
		}
3228

3229
		if (i < 0)
A
Andrew Morton 已提交
3230 3231
			goto out;

3232 3233 3234 3235 3236 3237 3238
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3251
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3252 3253
				continue;

3254
			if (sc.priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
3255
			    !pgdat_reclaimable(zone->zone_pgdat))
L
Linus Torvalds 已提交
3256 3257 3258
				continue;

			sc.nr_scanned = 0;
3259

3260 3261 3262 3263 3264 3265 3266 3267 3268
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3269
			/*
3270 3271 3272 3273
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3274
			 */
3275
			if (kswapd_shrink_zone(zone, end_zone, &sc))
3276
				raise_priority = false;
L
Linus Torvalds 已提交
3277
		}
3278 3279 3280 3281 3282 3283 3284 3285

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3286
			wake_up_all(&pgdat->pfmemalloc_wait);
3287

3288 3289 3290
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3291

3292
		/*
3293 3294
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3295
		 */
3296 3297
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3298
	} while (sc.priority >= 1 &&
3299
			!pgdat_balanced(pgdat, order, classzone_idx));
L
Linus Torvalds 已提交
3300

3301
out:
3302
	/*
3303 3304
	 * Return the highest zone idx we were reclaiming at so
	 * prepare_kswapd_sleep() makes the same decisions as here.
3305
	 */
3306
	return end_zone;
L
Linus Torvalds 已提交
3307 3308
}

3309 3310
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
				int classzone_idx, int balanced_classzone_idx)
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3321 3322
	if (prepare_kswapd_sleep(pgdat, order, remaining,
						balanced_classzone_idx)) {
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
		wakeup_kcompactd(pgdat, order, classzone_idx);

3337 3338 3339 3340 3341 3342 3343 3344 3345
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3346 3347
	if (prepare_kswapd_sleep(pgdat, order, remaining,
						balanced_classzone_idx)) {
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3359 3360 3361 3362

		if (!kthread_should_stop())
			schedule();

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3373 3374
/*
 * The background pageout daemon, started as a kernel thread
3375
 * from the init process.
L
Linus Torvalds 已提交
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3388 3389
	unsigned long order, new_order;
	int classzone_idx, new_classzone_idx;
3390
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3391 3392
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3393

L
Linus Torvalds 已提交
3394 3395 3396
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3397
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3398

3399 3400
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3401
	if (!cpumask_empty(cpumask))
3402
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3417
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3418
	set_freezable();
L
Linus Torvalds 已提交
3419

3420 3421
	order = new_order = 0;
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3422
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3423
	for ( ; ; ) {
3424
		bool ret;
3425

3426
		/*
3427 3428
		 * While we were reclaiming, there might have been another
		 * wakeup, so check the values.
3429
		 */
3430 3431 3432 3433
		new_order = pgdat->kswapd_max_order;
		new_classzone_idx = pgdat->classzone_idx;
		pgdat->kswapd_max_order =  0;
		pgdat->classzone_idx = pgdat->nr_zones - 1;
3434

3435
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3436 3437
			/*
			 * Don't sleep if someone wants a larger 'order'
3438
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3439 3440
			 */
			order = new_order;
3441
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3442
		} else {
3443
			kswapd_try_to_sleep(pgdat, order, classzone_idx,
3444
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3445
			order = pgdat->kswapd_max_order;
3446
			classzone_idx = pgdat->classzone_idx;
3447 3448
			new_order = order;
			new_classzone_idx = classzone_idx;
3449
			pgdat->kswapd_max_order = 0;
3450
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3451 3452
		}

3453 3454 3455 3456 3457 3458 3459 3460
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3461 3462
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3463 3464
			balanced_classzone_idx = balance_pgdat(pgdat, order,
								classzone_idx);
3465
		}
L
Linus Torvalds 已提交
3466
	}
3467

3468
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3469
	current->reclaim_state = NULL;
3470 3471
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3472 3473 3474 3475 3476 3477
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3478
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3479 3480 3481
{
	pg_data_t *pgdat;

3482
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3483 3484
		return;

3485
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3486
		return;
3487
	pgdat = zone->zone_pgdat;
3488
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3489
		pgdat->kswapd_max_order = order;
3490 3491
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3492
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3493
		return;
3494
	if (zone_balanced(zone, order, true, 0, 0))
3495 3496 3497
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3498
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3499 3500
}

3501
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3502
/*
3503
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3504 3505 3506 3507 3508
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3509
 */
3510
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3511
{
3512 3513
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3514
		.nr_to_reclaim = nr_to_reclaim,
3515
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3516
		.priority = DEF_PRIORITY,
3517
		.may_writepage = 1,
3518 3519
		.may_unmap = 1,
		.may_swap = 1,
3520
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3521
	};
3522
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3523 3524
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3525

3526 3527 3528 3529
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3530

3531
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3532

3533 3534 3535
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3536

3537
	return nr_reclaimed;
L
Linus Torvalds 已提交
3538
}
3539
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3540 3541 3542 3543 3544

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3545 3546
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3547
{
3548
	int nid;
L
Linus Torvalds 已提交
3549

3550
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3551
		for_each_node_state(nid, N_MEMORY) {
3552
			pg_data_t *pgdat = NODE_DATA(nid);
3553 3554 3555
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3556

3557
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3558
				/* One of our CPUs online: restore mask */
3559
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564
		}
	}
	return NOTIFY_OK;
}

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3581 3582
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3583
		pgdat->kswapd = NULL;
3584 3585 3586 3587
	}
	return ret;
}

3588
/*
3589
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3590
 * hold mem_hotplug_begin/end().
3591 3592 3593 3594 3595
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3596
	if (kswapd) {
3597
		kthread_stop(kswapd);
3598 3599
		NODE_DATA(nid)->kswapd = NULL;
	}
3600 3601
}

L
Linus Torvalds 已提交
3602 3603
static int __init kswapd_init(void)
{
3604
	int nid;
3605

L
Linus Torvalds 已提交
3606
	swap_setup();
3607
	for_each_node_state(nid, N_MEMORY)
3608
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3609 3610 3611 3612 3613
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3624
#define RECLAIM_OFF 0
3625
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3626
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3627
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3628

3629 3630 3631 3632 3633 3634 3635
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3636 3637 3638 3639 3640 3641
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3642 3643 3644 3645 3646 3647
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3648 3649 3650
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
M
Mel Gorman 已提交
3651 3652
	unsigned long file_lru = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
		node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE);
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3663
static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3664
{
3665 3666
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3667 3668

	/*
3669
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3670 3671 3672 3673
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
3674
	if (zone_reclaim_mode & RECLAIM_UNMAP)
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3690 3691 3692
/*
 * Try to free up some pages from this zone through reclaim.
 */
3693
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3694
{
3695
	/* Minimum pages needed in order to stay on node */
3696
	const unsigned long nr_pages = 1 << order;
3697 3698
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3699
	struct scan_control sc = {
3700
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3701
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3702
		.order = order,
3703
		.priority = ZONE_RECLAIM_PRIORITY,
3704
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3705
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3706
		.may_swap = 1,
3707
	};
3708 3709

	cond_resched();
3710
	/*
3711
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3712
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3713
	 * and RECLAIM_UNMAP.
3714 3715
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3716
	lockdep_set_current_reclaim_state(gfp_mask);
3717 3718
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3719

3720
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3721 3722 3723 3724 3725
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3726
			shrink_zone(zone, &sc, true);
3727
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3728
	}
3729

3730
	p->reclaim_state = NULL;
3731
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3732
	lockdep_clear_current_reclaim_state();
3733
	return sc.nr_reclaimed >= nr_pages;
3734
}
3735 3736 3737 3738

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3739
	int ret;
3740 3741

	/*
3742 3743
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3744
	 *
3745 3746 3747 3748 3749
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3750
	 */
3751 3752
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3753
		return ZONE_RECLAIM_FULL;
3754

M
Mel Gorman 已提交
3755
	if (!pgdat_reclaimable(zone->zone_pgdat))
3756
		return ZONE_RECLAIM_FULL;
3757

3758
	/*
3759
	 * Do not scan if the allocation should not be delayed.
3760
	 */
3761
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3762
		return ZONE_RECLAIM_NOSCAN;
3763 3764 3765 3766 3767 3768 3769

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3770
	node_id = zone_to_nid(zone);
3771
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3772
		return ZONE_RECLAIM_NOSCAN;
3773

J
Johannes Weiner 已提交
3774
	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3775 3776
		return ZONE_RECLAIM_NOSCAN;

3777
	ret = __zone_reclaim(zone, gfp_mask, order);
J
Johannes Weiner 已提交
3778
	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3779

3780 3781 3782
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3783
	return ret;
3784
}
3785
#endif
L
Lee Schermerhorn 已提交
3786 3787 3788 3789 3790 3791

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3792
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3793 3794
 *
 * Reasons page might not be evictable:
3795
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3796
 * (2) page is part of an mlocked VMA
3797
 *
L
Lee Schermerhorn 已提交
3798
 */
3799
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3800
{
3801
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3802
}
3803

3804
#ifdef CONFIG_SHMEM
3805
/**
3806 3807 3808
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3809
 *
3810
 * Checks pages for evictability and moves them to the appropriate lru list.
3811 3812
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3813
 */
3814
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3815
{
3816
	struct lruvec *lruvec;
3817 3818 3819 3820
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3821

3822 3823 3824
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3825

3826 3827 3828 3829
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
3830
				spin_unlock_irq(zone_lru_lock(zone));
3831
			zone = pagezone;
3832
			spin_lock_irq(zone_lru_lock(zone));
3833
		}
M
Mel Gorman 已提交
3834
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
3835

3836 3837
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3838

3839
		if (page_evictable(page)) {
3840 3841
			enum lru_list lru = page_lru_base_type(page);

3842
			VM_BUG_ON_PAGE(PageActive(page), page);
3843
			ClearPageUnevictable(page);
3844 3845
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3846
			pgrescued++;
3847
		}
3848
	}
3849

3850 3851 3852
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3853
		spin_unlock_irq(zone_lru_lock(zone));
3854 3855
	}
}
3856
#endif /* CONFIG_SHMEM */