vmscan.c 110.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16
#include <linux/mm.h>
17
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
18
#include <linux/module.h>
19
#include <linux/gfp.h>
L
Linus Torvalds 已提交
20 21 22 23 24
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
25
#include <linux/vmpressure.h>
26
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
38
#include <linux/compaction.h>
L
Linus Torvalds 已提交
39 40
#include <linux/notifier.h>
#include <linux/rwsem.h>
41
#include <linux/delay.h>
42
#include <linux/kthread.h>
43
#include <linux/freezer.h>
44
#include <linux/memcontrol.h>
45
#include <linux/delayacct.h>
46
#include <linux/sysctl.h>
47
#include <linux/oom.h>
48
#include <linux/prefetch.h>
49
#include <linux/printk.h>
50
#include <linux/dax.h>
L
Linus Torvalds 已提交
51 52 53 54 55

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
56
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
57

58 59
#include "internal.h"

60 61 62
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
63
struct scan_control {
64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
67
	/* This context's GFP mask */
A
Al Viro 已提交
68
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
69

70
	/* Allocation order */
A
Andy Whitcroft 已提交
71
	int order;
72

73 74 75 76 77
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
78

79 80 81 82 83
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
84

85 86 87
	/* Scan (total_size >> priority) pages at once */
	int priority;

88 89 90
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

91
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 93 94 95 96 97 98 99
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

100 101 102
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

103 104 105 106 107 108 109 110 111 112
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
147 148 149 150 151
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
152 153 154 155

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
156
#ifdef CONFIG_MEMCG
157 158
static bool global_reclaim(struct scan_control *sc)
{
159
	return !sc->target_mem_cgroup;
160
}
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
182
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
183 184 185 186
		return true;
#endif
	return false;
}
187
#else
188 189 190 191
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
192 193 194 195 196

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
197 198
#endif

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
217 218 219 220 221 222 223
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
224 225

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
226 227 228
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
229 230 231 232

	return nr;
}

233 234 235 236 237 238 239
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
240
{
241 242 243
	unsigned long lru_size;
	int zid;

244
	if (!mem_cgroup_disabled())
245 246 247
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
248

249 250 251
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
252

253 254 255 256 257 258 259 260 261 262 263 264
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
265 266 267

}

L
Linus Torvalds 已提交
268
/*
G
Glauber Costa 已提交
269
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
270
 */
G
Glauber Costa 已提交
271
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
272
{
G
Glauber Costa 已提交
273 274 275 276 277 278 279 280 281
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

282 283 284
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
285
	return 0;
L
Linus Torvalds 已提交
286
}
287
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
288 289 290 291

/*
 * Remove one
 */
292
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
293 294 295 296
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
297
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
298
}
299
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
300 301

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
302

303 304 305 306
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
307 308 309 310
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
311
	long freeable;
G
Glauber Costa 已提交
312 313 314 315 316
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
317
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
318

319 320
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
321 322 323 324 325 326 327 328 329 330
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
331
	delta = (4 * nr_scanned) / shrinker->seeks;
332
	delta *= freeable;
333
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
334 335
	total_scan += delta;
	if (total_scan < 0) {
336
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
337
		       shrinker->scan_objects, total_scan);
338
		total_scan = freeable;
339 340 341
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
342 343 344 345 346 347 348

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
349
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
350 351 352 353 354
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
355 356
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
357 358 359 360 361 362

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
363 364
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
365 366

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
367 368
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
369

370 371 372 373 374 375 376 377 378 379 380
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
381
	 * than the total number of objects on slab (freeable), we must be
382 383 384 385
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
386
	       total_scan >= freeable) {
D
Dave Chinner 已提交
387
		unsigned long ret;
388
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
389

390
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
391 392 393 394
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
395

396 397
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
398
		scanned += nr_to_scan;
G
Glauber Costa 已提交
399 400 401 402

		cond_resched();
	}

403 404 405 406
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
407 408 409 410 411
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
412 413
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
414 415 416 417
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

418
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
419
	return freed;
420 421
}

422
/**
423
 * shrink_slab - shrink slab caches
424 425
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
426
 * @memcg: memory cgroup whose slab caches to target
427 428
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
429
 *
430
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
431
 *
432 433
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
434
 *
435 436
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
437 438
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
439
 *
440 441 442 443 444 445 446
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
447
 *
448
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
449
 */
450 451 452 453
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
454 455
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
456
	unsigned long freed = 0;
L
Linus Torvalds 已提交
457

458
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
459 460
		return 0;

461 462
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
463

464
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
465 466 467 468 469 470 471
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
472 473
		goto out;
	}
L
Linus Torvalds 已提交
474 475

	list_for_each_entry(shrinker, &shrinker_list, list) {
476 477 478
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
479
			.memcg = memcg,
480
		};
481

482 483 484 485 486 487 488
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
489 490
			continue;

491 492
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
493

494
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
495
	}
496

L
Linus Torvalds 已提交
497
	up_read(&shrinker_rwsem);
498 499
out:
	cond_resched();
D
Dave Chinner 已提交
500
	return freed;
L
Linus Torvalds 已提交
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
526 527
static inline int is_page_cache_freeable(struct page *page)
{
528 529 530 531 532
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
533
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
534 535
}

536
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
537
{
538
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
539
		return 1;
540
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
541
		return 1;
542
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
562
	lock_page(page);
563 564
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
565 566 567
	unlock_page(page);
}

568 569 570 571 572 573 574 575 576 577 578 579
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
580
/*
A
Andrew Morton 已提交
581 582
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
583
 */
584
static pageout_t pageout(struct page *page, struct address_space *mapping,
585
			 struct scan_control *sc)
L
Linus Torvalds 已提交
586 587 588 589 590 591 592 593
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
594
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
610
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
611 612
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
613
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
614 615 616 617 618 619 620
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
621
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
622 623 624 625 626 627 628
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
629 630
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
631 632 633 634 635 636 637
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
638
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
639 640 641
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
642

L
Linus Torvalds 已提交
643 644 645 646
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
647
		trace_mm_vmscan_writepage(page);
648
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
649 650 651 652 653 654
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

655
/*
N
Nick Piggin 已提交
656 657
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
658
 */
659 660
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
661
{
662 663
	unsigned long flags;

664 665
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
666

667
	spin_lock_irqsave(&mapping->tree_lock, flags);
668
	/*
N
Nick Piggin 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
688
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
689 690 691
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
692
	 */
693
	if (!page_ref_freeze(page, 2))
694
		goto cannot_free;
N
Nick Piggin 已提交
695 696
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
697
		page_ref_unfreeze(page, 2);
698
		goto cannot_free;
N
Nick Piggin 已提交
699
	}
700 701 702

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
703
		mem_cgroup_swapout(page, swap);
704
		__delete_from_swap_cache(page);
705
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
706
		swapcache_free(swap);
N
Nick Piggin 已提交
707
	} else {
708
		void (*freepage)(struct page *);
709
		void *shadow = NULL;
710 711

		freepage = mapping->a_ops->freepage;
712 713 714 715 716 717 718 719 720
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
721 722 723 724 725 726
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
727 728
		 */
		if (reclaimed && page_is_file_cache(page) &&
729
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
730
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
731
		__delete_from_page_cache(page, shadow);
732
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
733 734 735

		if (freepage != NULL)
			freepage(page);
736 737 738 739 740
	}

	return 1;

cannot_free:
741
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
742 743 744
	return 0;
}

N
Nick Piggin 已提交
745 746 747 748 749 750 751 752
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
753
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
754 755 756 757 758
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
759
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
760 761 762 763 764
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
765 766 767 768 769 770 771 772 773 774 775
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
776
	bool is_unevictable;
777
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
778

779
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
780 781 782 783

redo:
	ClearPageUnevictable(page);

784
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
785 786 787 788 789 790
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
791
		is_unevictable = false;
792
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
793 794 795 796 797
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
798
		is_unevictable = true;
L
Lee Schermerhorn 已提交
799
		add_page_to_unevictable_list(page);
800
		/*
801 802 803
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
804
		 * isolation/check_move_unevictable_pages,
805
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
806 807
		 * the page back to the evictable list.
		 *
808
		 * The other side is TestClearPageMlocked() or shmem_lock().
809 810
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
811 812 813 814 815 816 817
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
818
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
819 820 821 822 823 824 825 826 827 828
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

829
	if (was_unevictable && !is_unevictable)
830
		count_vm_event(UNEVICTABLE_PGRESCUED);
831
	else if (!was_unevictable && is_unevictable)
832 833
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
834 835 836
	put_page(page);		/* drop ref from isolate */
}

837 838 839
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
840
	PAGEREF_KEEP,
841 842 843 844 845 846
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
847
	int referenced_ptes, referenced_page;
848 849
	unsigned long vm_flags;

850 851
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
852
	referenced_page = TestClearPageReferenced(page);
853 854 855 856 857 858 859 860

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

861
	if (referenced_ptes) {
862
		if (PageSwapBacked(page))
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

880
		if (referenced_page || referenced_ptes > 1)
881 882
			return PAGEREF_ACTIVATE;

883 884 885 886 887 888
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

889 890
		return PAGEREF_KEEP;
	}
891 892

	/* Reclaim if clean, defer dirty pages to writeback */
893
	if (referenced_page && !PageSwapBacked(page))
894 895 896
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
897 898
}

899 900 901 902
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
903 904
	struct address_space *mapping;

905 906 907 908 909 910 911 912 913 914 915 916 917
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
918 919 920 921 922 923 924 925

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
926 927
}

928 929 930 931 932 933
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
934 935 936
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
937 938
};

L
Linus Torvalds 已提交
939
/*
A
Andrew Morton 已提交
940
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
941
 */
A
Andrew Morton 已提交
942
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
943
				      struct pglist_data *pgdat,
944
				      struct scan_control *sc,
945
				      enum ttu_flags ttu_flags,
946
				      struct reclaim_stat *stat,
947
				      bool force_reclaim)
L
Linus Torvalds 已提交
948 949
{
	LIST_HEAD(ret_pages);
950
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
951
	int pgactivate = 0;
952 953 954 955 956 957
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
958 959
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
960 961 962 963 964 965 966

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
967
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
968
		bool dirty, writeback;
M
Minchan Kim 已提交
969 970
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
971 972 973 974 975 976

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
977
		if (!trylock_page(page))
L
Linus Torvalds 已提交
978 979
			goto keep;

980
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
981 982

		sc->nr_scanned++;
983

984
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
985
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
986

987
		if (!sc->may_unmap && page_mapped(page))
988 989
			goto keep_locked;

L
Linus Torvalds 已提交
990 991 992 993
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

994 995 996
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1010 1011 1012 1013 1014 1015
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1016
		mapping = page_mapping(page);
1017
		if (((dirty || writeback) && mapping &&
1018
		     inode_write_congested(mapping->host)) ||
1019
		    (writeback && PageReclaim(page)))
1020 1021
			nr_congested++;

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1033 1034
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1035
		 *
1036
		 * 2) Global or new memcg reclaim encounters a page that is
1037 1038 1039
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1040
		 *    reclaim and continue scanning.
1041
		 *
1042 1043
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1044 1045 1046 1047 1048
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1049
		 * 3) Legacy memcg encounters a page that is already marked
1050 1051 1052 1053
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1054 1055 1056 1057 1058 1059 1060 1061 1062
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1063
		 */
1064
		if (PageWriteback(page)) {
1065 1066 1067
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1068
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1069
				nr_immediate++;
1070
				goto activate_locked;
1071 1072

			/* Case 2 above */
1073
			} else if (sane_reclaim(sc) ||
1074
			    !PageReclaim(page) || !may_enter_fs) {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1087
				nr_writeback++;
1088
				goto activate_locked;
1089 1090 1091

			/* Case 3 above */
			} else {
1092
				unlock_page(page);
1093
				wait_on_page_writeback(page);
1094 1095 1096
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1097
			}
1098
		}
L
Linus Torvalds 已提交
1099

1100 1101 1102
		if (!force_reclaim)
			references = page_check_references(page, sc);

1103 1104
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1105
			goto activate_locked;
1106
		case PAGEREF_KEEP:
1107
			nr_ref_keep++;
1108
			goto keep_locked;
1109 1110 1111 1112
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1113 1114 1115 1116 1117

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1118
		if (PageAnon(page) && !PageSwapCache(page)) {
1119 1120
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1121
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1122
				goto activate_locked;
M
Minchan Kim 已提交
1123
			lazyfree = true;
1124
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1125

1126 1127
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1128 1129 1130 1131
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1132
		}
L
Linus Torvalds 已提交
1133

1134 1135
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1136 1137 1138 1139 1140
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1141 1142 1143
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1144
			case SWAP_FAIL:
1145
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1146 1147 1148
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1149 1150
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1151 1152
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1153 1154 1155 1156 1157 1158
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1159
			/*
1160 1161 1162 1163 1164 1165 1166 1167
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1168
			 */
1169
			if (page_is_file_cache(page) &&
1170 1171
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1172 1173 1174 1175 1176 1177
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1178
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1179 1180
				SetPageReclaim(page);

1181
				goto activate_locked;
1182 1183
			}

1184
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1185
				goto keep_locked;
1186
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1187
				goto keep_locked;
1188
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1189 1190
				goto keep_locked;

1191 1192 1193 1194 1195 1196
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1197
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1198 1199 1200 1201 1202
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1203
				if (PageWriteback(page))
1204
					goto keep;
1205
				if (PageDirty(page))
L
Linus Torvalds 已提交
1206
					goto keep;
1207

L
Linus Torvalds 已提交
1208 1209 1210 1211
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1212
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1232
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1243
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1244 1245
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1262 1263
		}

M
Minchan Kim 已提交
1264
lazyfree:
1265
		if (!mapping || !__remove_mapping(mapping, page, true))
1266
			goto keep_locked;
L
Linus Torvalds 已提交
1267

N
Nick Piggin 已提交
1268 1269 1270 1271 1272 1273 1274
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1275
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1276
free_it:
M
Minchan Kim 已提交
1277 1278 1279
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1280
		nr_reclaimed++;
1281 1282 1283 1284 1285 1286

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1287 1288
		continue;

N
Nick Piggin 已提交
1289
cull_mlocked:
1290 1291
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1292
		unlock_page(page);
1293
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1294 1295
		continue;

L
Linus Torvalds 已提交
1296
activate_locked:
1297
		/* Not a candidate for swapping, so reclaim swap space. */
1298
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1299
			try_to_free_swap(page);
1300
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1301 1302 1303 1304 1305 1306
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1307
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1308
	}
1309

1310
	mem_cgroup_uncharge_list(&free_pages);
1311
	try_to_unmap_flush();
1312
	free_hot_cold_page_list(&free_pages, true);
1313

L
Linus Torvalds 已提交
1314
	list_splice(&ret_pages, page_list);
1315
	count_vm_events(PGACTIVATE, pgactivate);
1316

1317 1318 1319 1320 1321 1322
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1323 1324 1325
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1326
	}
1327
	return nr_reclaimed;
L
Linus Torvalds 已提交
1328 1329
}

1330 1331 1332 1333 1334 1335 1336 1337
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1338
	unsigned long ret;
1339 1340 1341 1342
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1343
		if (page_is_file_cache(page) && !PageDirty(page) &&
1344
		    !__PageMovable(page)) {
1345 1346 1347 1348 1349
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1350
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1351
			TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1352
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1353
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1354 1355 1356
	return ret;
}

A
Andy Whitcroft 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1367
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1368 1369 1370 1371 1372 1373 1374
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1375 1376
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1377 1378
		return ret;

A
Andy Whitcroft 已提交
1379
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1380

1381 1382 1383 1384 1385 1386 1387 1388
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1389
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1407

1408 1409 1410
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1424 1425 1426 1427 1428 1429

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1430
			enum lru_list lru, unsigned long *nr_zone_taken)
1431 1432 1433 1434 1435 1436 1437 1438 1439
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1440
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1441
#endif
1442 1443
	}

1444 1445
}

L
Linus Torvalds 已提交
1446
/*
1447
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1457
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1458
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1459
 * @nr_scanned:	The number of pages that were scanned.
1460
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1461
 * @mode:	One of the LRU isolation modes
1462
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1463 1464 1465
 *
 * returns how many pages were moved onto *@dst.
 */
1466
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1467
		struct lruvec *lruvec, struct list_head *dst,
1468
		unsigned long *nr_scanned, struct scan_control *sc,
1469
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1470
{
H
Hugh Dickins 已提交
1471
	struct list_head *src = &lruvec->lists[lru];
1472
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1473
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1474
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1475
	unsigned long skipped = 0;
M
Mel Gorman 已提交
1476
	unsigned long scan, nr_pages;
1477
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1478

1479
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1480
					!list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1481 1482
		struct page *page;

L
Linus Torvalds 已提交
1483 1484 1485
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1486
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1487

1488 1489
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1490
			nr_skipped[page_zonenum(page)]++;
1491 1492 1493
			continue;
		}

1494
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1495
		case 0:
M
Mel Gorman 已提交
1496 1497 1498
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1499 1500 1501 1502 1503 1504 1505
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1506

A
Andy Whitcroft 已提交
1507 1508 1509
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1510 1511
	}

1512 1513 1514 1515 1516 1517 1518
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1519 1520 1521
	if (!list_empty(&pages_skipped)) {
		int zid;

1522
		list_splice(&pages_skipped, src);
1523 1524 1525 1526 1527
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1528
			skipped += nr_skipped[zid];
1529 1530
		}
	}
1531
	*nr_scanned = scan;
1532
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1533
				    scan, skipped, nr_taken, mode, lru);
1534
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1535 1536 1537
	return nr_taken;
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1549 1550 1551
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1567
	VM_BUG_ON_PAGE(!page_count(page), page);
1568
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1569

1570 1571
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1572
		struct lruvec *lruvec;
1573

1574
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1575
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1576
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1577
			int lru = page_lru(page);
1578
			get_page(page);
1579
			ClearPageLRU(page);
1580 1581
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1582
		}
1583
		spin_unlock_irq(zone_lru_lock(zone));
1584 1585 1586 1587
	}
	return ret;
}

1588
/*
F
Fengguang Wu 已提交
1589 1590 1591 1592 1593
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1594
 */
M
Mel Gorman 已提交
1595
static int too_many_isolated(struct pglist_data *pgdat, int file,
1596 1597 1598 1599 1600 1601 1602
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1603
	if (!sane_reclaim(sc))
1604 1605 1606
		return 0;

	if (file) {
M
Mel Gorman 已提交
1607 1608
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1609
	} else {
M
Mel Gorman 已提交
1610 1611
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1612 1613
	}

1614 1615 1616 1617 1618
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1619
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1620 1621
		inactive >>= 3;

1622 1623 1624
	return isolated > inactive;
}

1625
static noinline_for_stack void
H
Hugh Dickins 已提交
1626
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1627
{
1628
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1629
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1630
	LIST_HEAD(pages_to_free);
1631 1632 1633 1634 1635

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1636
		struct page *page = lru_to_page(page_list);
1637
		int lru;
1638

1639
		VM_BUG_ON_PAGE(PageLRU(page), page);
1640
		list_del(&page->lru);
1641
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1642
			spin_unlock_irq(&pgdat->lru_lock);
1643
			putback_lru_page(page);
M
Mel Gorman 已提交
1644
			spin_lock_irq(&pgdat->lru_lock);
1645 1646
			continue;
		}
1647

M
Mel Gorman 已提交
1648
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1649

1650
		SetPageLRU(page);
1651
		lru = page_lru(page);
1652 1653
		add_page_to_lru_list(page, lruvec, lru);

1654 1655
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1656 1657
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1658
		}
1659 1660 1661
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1662
			del_page_from_lru_list(page, lruvec, lru);
1663 1664

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1665
				spin_unlock_irq(&pgdat->lru_lock);
1666
				mem_cgroup_uncharge(page);
1667
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1668
				spin_lock_irq(&pgdat->lru_lock);
1669 1670
			} else
				list_add(&page->lru, &pages_to_free);
1671 1672 1673
		}
	}

1674 1675 1676 1677
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1678 1679
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1693
/*
1694
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1695
 * of reclaimed pages
L
Linus Torvalds 已提交
1696
 */
1697
static noinline_for_stack unsigned long
1698
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1699
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1700 1701
{
	LIST_HEAD(page_list);
1702
	unsigned long nr_scanned;
1703
	unsigned long nr_reclaimed = 0;
1704
	unsigned long nr_taken;
1705
	struct reclaim_stat stat = {};
1706
	isolate_mode_t isolate_mode = 0;
1707
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1708
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1709
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1710

M
Mel Gorman 已提交
1711
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1712
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1713 1714 1715 1716 1717 1718

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1719
	lru_add_drain();
1720 1721

	if (!sc->may_unmap)
1722
		isolate_mode |= ISOLATE_UNMAPPED;
1723

M
Mel Gorman 已提交
1724
	spin_lock_irq(&pgdat->lru_lock);
1725

1726 1727
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1728

M
Mel Gorman 已提交
1729
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1730
	reclaim_stat->recent_scanned[file] += nr_taken;
1731

1732
	if (global_reclaim(sc)) {
1733
		if (current_is_kswapd())
M
Mel Gorman 已提交
1734
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1735
		else
M
Mel Gorman 已提交
1736
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1737
	}
M
Mel Gorman 已提交
1738
	spin_unlock_irq(&pgdat->lru_lock);
1739

1740
	if (nr_taken == 0)
1741
		return 0;
A
Andy Whitcroft 已提交
1742

M
Mel Gorman 已提交
1743
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1744
				&stat, false);
1745

M
Mel Gorman 已提交
1746
	spin_lock_irq(&pgdat->lru_lock);
1747

Y
Ying Han 已提交
1748 1749
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1750
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1751
		else
M
Mel Gorman 已提交
1752
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1753
	}
N
Nick Piggin 已提交
1754

1755
	putback_inactive_pages(lruvec, &page_list);
1756

M
Mel Gorman 已提交
1757
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1758

M
Mel Gorman 已提交
1759
	spin_unlock_irq(&pgdat->lru_lock);
1760

1761
	mem_cgroup_uncharge_list(&page_list);
1762
	free_hot_cold_page_list(&page_list, true);
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1774 1775 1776
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1777
	 */
1778
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1779
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1780

1781
	/*
1782 1783
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1784
	 */
1785
	if (sane_reclaim(sc)) {
1786 1787 1788 1789
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1790
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1791
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1792

1793 1794
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1795 1796 1797 1798 1799 1800 1801 1802 1803
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1804
		 */
1805 1806
		if (stat.nr_unqueued_dirty == nr_taken) {
			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1807
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1808
		}
1809 1810

		/*
1811 1812 1813
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1814 1815
		 * they are written so also forcibly stall.
		 */
1816
		if (stat.nr_immediate && current_may_throttle())
1817
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1818
	}
1819

1820 1821 1822 1823 1824
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1825 1826
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1827
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1828

M
Mel Gorman 已提交
1829 1830
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1831 1832 1833 1834
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1835
			sc->priority, file);
1836
	return nr_reclaimed;
L
Linus Torvalds 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1846
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1847
 * the pages are mapped, the processing is slow (page_referenced()) so we
1848
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1849 1850 1851 1852
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1853
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1854
 * But we had to alter page->flags anyway.
1855 1856
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1857
 */
1858

1859
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1860
				     struct list_head *list,
1861
				     struct list_head *pages_to_free,
1862 1863
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1864
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1865
	struct page *page;
1866
	int nr_pages;
1867
	int nr_moved = 0;
1868 1869 1870

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1871
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1872

1873
		VM_BUG_ON_PAGE(PageLRU(page), page);
1874 1875
		SetPageLRU(page);

1876
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1877
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1878
		list_move(&page->lru, &lruvec->lists[lru]);
1879

1880 1881 1882
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1883
			del_page_from_lru_list(page, lruvec, lru);
1884 1885

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1886
				spin_unlock_irq(&pgdat->lru_lock);
1887
				mem_cgroup_uncharge(page);
1888
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1889
				spin_lock_irq(&pgdat->lru_lock);
1890 1891
			} else
				list_add(&page->lru, pages_to_free);
1892 1893
		} else {
			nr_moved += nr_pages;
1894 1895
		}
	}
1896

1897
	if (!is_active_lru(lru))
1898
		__count_vm_events(PGDEACTIVATE, nr_moved);
1899 1900

	return nr_moved;
1901
}
1902

H
Hugh Dickins 已提交
1903
static void shrink_active_list(unsigned long nr_to_scan,
1904
			       struct lruvec *lruvec,
1905
			       struct scan_control *sc,
1906
			       enum lru_list lru)
L
Linus Torvalds 已提交
1907
{
1908
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1909
	unsigned long nr_scanned;
1910
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1911
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1912
	LIST_HEAD(l_active);
1913
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1914
	struct page *page;
1915
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1916 1917
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1918
	isolate_mode_t isolate_mode = 0;
1919
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1920
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1921 1922

	lru_add_drain();
1923 1924

	if (!sc->may_unmap)
1925
		isolate_mode |= ISOLATE_UNMAPPED;
1926

M
Mel Gorman 已提交
1927
	spin_lock_irq(&pgdat->lru_lock);
1928

1929 1930
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1931

M
Mel Gorman 已提交
1932
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1933
	reclaim_stat->recent_scanned[file] += nr_taken;
1934

M
Mel Gorman 已提交
1935
	__count_vm_events(PGREFILL, nr_scanned);
1936

M
Mel Gorman 已提交
1937
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1943

1944
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1945 1946 1947 1948
			putback_lru_page(page);
			continue;
		}

1949 1950 1951 1952 1953 1954 1955 1956
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1957 1958
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1959
			nr_rotated += hpage_nr_pages(page);
1960 1961 1962 1963 1964 1965 1966 1967 1968
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1969
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1970 1971 1972 1973
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1974

1975
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1976 1977 1978
		list_add(&page->lru, &l_inactive);
	}

1979
	/*
1980
	 * Move pages back to the lru list.
1981
	 */
M
Mel Gorman 已提交
1982
	spin_lock_irq(&pgdat->lru_lock);
1983
	/*
1984 1985 1986
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1987
	 * get_scan_count.
1988
	 */
1989
	reclaim_stat->recent_rotated[file] += nr_rotated;
1990

1991 1992
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
1993 1994
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
1995

1996
	mem_cgroup_uncharge_list(&l_hold);
1997
	free_hot_cold_page_list(&l_hold, true);
1998 1999
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2000 2001
}

2002 2003 2004
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2005
 *
2006 2007 2008
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2009
 *
2010 2011
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2012
 *
2013 2014 2015
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2016
 *
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2027
 */
2028
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2029
						struct scan_control *sc, bool trace)
2030
{
2031
	unsigned long inactive_ratio;
2032 2033 2034
	unsigned long inactive, active;
	enum lru_list inactive_lru = file * LRU_FILE;
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2035
	unsigned long gb;
2036

2037 2038 2039 2040 2041 2042
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2043

2044 2045
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2046

2047 2048 2049
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2050
	else
2051 2052
		inactive_ratio = 1;

2053
	if (trace)
2054
		trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2055
				sc->reclaim_idx,
2056 2057 2058 2059
				lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
				lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
				inactive_ratio, file);

2060
	return inactive * inactive_ratio < active;
2061 2062
}

2063
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2064
				 struct lruvec *lruvec, struct scan_control *sc)
2065
{
2066
	if (is_active_lru(lru)) {
2067
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2068
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2069 2070 2071
		return 0;
	}

2072
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2073 2074
}

2075 2076 2077 2078 2079 2080 2081
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2082 2083 2084 2085 2086 2087
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2088 2089
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2090
 */
2091
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2092 2093
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2094
{
2095
	int swappiness = mem_cgroup_swappiness(memcg);
2096 2097 2098
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2099
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2100
	unsigned long anon_prio, file_prio;
2101
	enum scan_balance scan_balance;
2102
	unsigned long anon, file;
2103
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2104
	enum lru_list lru;
2105 2106

	/* If we have no swap space, do not bother scanning anon pages. */
2107
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2108
		scan_balance = SCAN_FILE;
2109 2110
		goto out;
	}
2111

2112 2113 2114 2115 2116 2117 2118
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2119
	if (!global_reclaim(sc) && !swappiness) {
2120
		scan_balance = SCAN_FILE;
2121 2122 2123 2124 2125 2126 2127 2128
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2129
	if (!sc->priority && swappiness) {
2130
		scan_balance = SCAN_EQUAL;
2131 2132 2133
		goto out;
	}

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2144 2145 2146 2147
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2148

M
Mel Gorman 已提交
2149 2150 2151 2152 2153 2154
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2155
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2156 2157 2158 2159
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2160

M
Mel Gorman 已提交
2161
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2162 2163 2164 2165 2166
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2167
	/*
2168 2169 2170 2171 2172 2173 2174
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2175
	 */
2176
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2177
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2178
		scan_balance = SCAN_FILE;
2179 2180 2181
		goto out;
	}

2182 2183
	scan_balance = SCAN_FRACT;

2184 2185 2186 2187
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2188
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2189
	file_prio = 200 - anon_prio;
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2202

2203 2204 2205 2206
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2207

M
Mel Gorman 已提交
2208
	spin_lock_irq(&pgdat->lru_lock);
2209 2210 2211
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2212 2213
	}

2214 2215 2216
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2217 2218 2219
	}

	/*
2220 2221 2222
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2223
	 */
2224
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2225
	ap /= reclaim_stat->recent_rotated[0] + 1;
2226

2227
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2228
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2229
	spin_unlock_irq(&pgdat->lru_lock);
2230

2231 2232 2233 2234
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2235 2236 2237 2238 2239
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2240

2241 2242 2243 2244 2245 2246 2247 2248
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2249

2250 2251 2252 2253 2254
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2255
			/*
2256 2257
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2258
			 */
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2273
		}
2274 2275 2276

		*lru_pages += size;
		nr[lru] = scan;
2277
	}
2278
}
2279

2280
/*
2281
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2282
 */
2283
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2284
			      struct scan_control *sc, unsigned long *lru_pages)
2285
{
2286
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2287
	unsigned long nr[NR_LRU_LISTS];
2288
	unsigned long targets[NR_LRU_LISTS];
2289 2290 2291 2292 2293
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2294
	bool scan_adjusted;
2295

2296
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2297

2298 2299 2300
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2315 2316 2317
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2318 2319 2320
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2321 2322 2323 2324 2325 2326 2327 2328 2329
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2330

2331 2332
		cond_resched();

2333 2334 2335 2336 2337
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2338
		 * requested. Ensure that the anon and file LRUs are scanned
2339 2340 2341 2342 2343 2344 2345
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2346 2347 2348 2349 2350 2351 2352 2353 2354
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2386 2387 2388 2389 2390 2391 2392 2393
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2394
	if (inactive_list_is_low(lruvec, false, sc, true))
2395 2396 2397 2398
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2399
/* Use reclaim/compaction for costly allocs or under memory pressure */
2400
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2401
{
2402
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2403
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2404
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2405 2406 2407 2408 2409
		return true;

	return false;
}

2410
/*
M
Mel Gorman 已提交
2411 2412 2413 2414 2415
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2416
 */
2417
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2418 2419 2420 2421 2422 2423
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2424
	int z;
2425 2426

	/* If not in reclaim/compaction mode, stop */
2427
	if (!in_reclaim_compaction(sc))
2428 2429
		return false;

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2452 2453 2454 2455 2456

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2457
	pages_for_compaction = compact_gap(sc->order);
2458
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2459
	if (get_nr_swap_pages() > 0)
2460
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2461 2462 2463 2464 2465
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2466 2467
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2468
		if (!managed_zone(zone))
2469 2470 2471
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2472
		case COMPACT_SUCCESS:
2473 2474 2475 2476 2477 2478
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2479
	}
2480
	return true;
2481 2482
}

2483
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2484
{
2485
	struct reclaim_state *reclaim_state = current->reclaim_state;
2486
	unsigned long nr_reclaimed, nr_scanned;
2487
	bool reclaimable = false;
L
Linus Torvalds 已提交
2488

2489 2490 2491
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2492
			.pgdat = pgdat,
2493 2494
			.priority = sc->priority,
		};
2495
		unsigned long node_lru_pages = 0;
2496
		struct mem_cgroup *memcg;
2497

2498 2499
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2500

2501 2502
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2503
			unsigned long lru_pages;
2504
			unsigned long reclaimed;
2505
			unsigned long scanned;
2506

2507 2508 2509 2510 2511 2512
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2513
			reclaimed = sc->nr_reclaimed;
2514
			scanned = sc->nr_scanned;
2515

2516 2517
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2518

2519
			if (memcg)
2520
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2521 2522 2523
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2524 2525 2526 2527 2528
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2529
			/*
2530 2531
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2532
			 * node.
2533 2534 2535 2536 2537
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2538
			 */
2539 2540
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2541 2542 2543
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2544
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2545

2546 2547 2548 2549
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2550
		if (global_reclaim(sc))
2551
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2552
				    sc->nr_scanned - nr_scanned,
2553
				    node_lru_pages);
2554 2555 2556 2557

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2558 2559
		}

2560 2561
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2562 2563 2564
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2565 2566 2567
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2568
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2569
					 sc->nr_scanned - nr_scanned, sc));
2570

2571 2572 2573 2574 2575 2576 2577 2578 2579
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2580
	return reclaimable;
2581 2582
}

2583
/*
2584 2585 2586
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2587
 */
2588
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2589
{
M
Mel Gorman 已提交
2590
	unsigned long watermark;
2591
	enum compact_result suitable;
2592

2593 2594 2595 2596 2597 2598 2599
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2600

2601
	/*
2602 2603 2604 2605 2606 2607 2608
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2609
	 */
2610
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2611

2612
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2613 2614
}

L
Linus Torvalds 已提交
2615 2616 2617 2618 2619 2620 2621 2622
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2623
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2624
{
2625
	struct zoneref *z;
2626
	struct zone *zone;
2627 2628
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2629
	gfp_t orig_mask;
2630
	pg_data_t *last_pgdat = NULL;
2631

2632 2633 2634 2635 2636
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2637
	orig_mask = sc->gfp_mask;
2638
	if (buffer_heads_over_limit) {
2639
		sc->gfp_mask |= __GFP_HIGHMEM;
2640
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2641
	}
2642

2643
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2644
					sc->reclaim_idx, sc->nodemask) {
2645 2646 2647 2648
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2649
		if (global_reclaim(sc)) {
2650 2651
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2652
				continue;
2653

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2665
			    compaction_ready(zone, sc)) {
2666 2667
				sc->compaction_ready = true;
				continue;
2668
			}
2669

2670 2671 2672 2673 2674 2675 2676 2677 2678
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2679 2680 2681 2682 2683 2684 2685
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2686
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2687 2688 2689 2690
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2691
			/* need some check for avoid more shrink_zone() */
2692
		}
2693

2694 2695 2696 2697
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2698
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2699
	}
2700

2701 2702 2703 2704 2705
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2706
}
2707

L
Linus Torvalds 已提交
2708 2709 2710 2711 2712 2713 2714 2715
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2716 2717 2718 2719
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2720 2721 2722
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2723
 */
2724
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2725
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2726
{
2727 2728
	int initial_priority = sc->priority;
retry:
2729 2730
	delayacct_freepages_start();

2731
	if (global_reclaim(sc))
2732
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2733

2734
	do {
2735 2736
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2737
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2738
		shrink_zones(zonelist, sc);
2739

2740
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2741 2742 2743 2744
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2745

2746 2747 2748 2749 2750 2751
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2752
	} while (--sc->priority >= 0);
2753

2754 2755
	delayacct_freepages_end();

2756 2757 2758
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2759
	/* Aborted reclaim to try compaction? don't OOM, then */
2760
	if (sc->compaction_ready)
2761 2762
		return 1;

2763 2764 2765 2766 2767 2768 2769
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2770
	return 0;
L
Linus Torvalds 已提交
2771 2772
}

2773
static bool allow_direct_reclaim(pg_data_t *pgdat)
2774 2775 2776 2777 2778 2779 2780
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2781 2782 2783
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2784 2785
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2786 2787 2788 2789
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2790 2791
			continue;

2792 2793 2794 2795
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2796 2797 2798 2799
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2800 2801 2802 2803
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2804
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2816 2817 2818 2819
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2820
 */
2821
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2822 2823
					nodemask_t *nodemask)
{
2824
	struct zoneref *z;
2825
	struct zone *zone;
2826
	pg_data_t *pgdat = NULL;
2827 2828 2829 2830 2831 2832 2833 2834 2835

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2836 2837 2838 2839 2840 2841 2842 2843
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2860
					gfp_zone(gfp_mask), nodemask) {
2861 2862 2863 2864 2865
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
2866
		if (allow_direct_reclaim(pgdat))
2867 2868 2869 2870 2871 2872
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2873
		goto out;
2874

2875 2876 2877
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2888
			allow_direct_reclaim(pgdat), HZ);
2889 2890

		goto check_pending;
2891 2892 2893 2894
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2895
		allow_direct_reclaim(pgdat));
2896 2897 2898 2899 2900 2901 2902

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2903 2904
}

2905
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2906
				gfp_t gfp_mask, nodemask_t *nodemask)
2907
{
2908
	unsigned long nr_reclaimed;
2909
	struct scan_control sc = {
2910
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2911
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2912
		.reclaim_idx = gfp_zone(gfp_mask),
2913 2914 2915
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2916
		.may_writepage = !laptop_mode,
2917
		.may_unmap = 1,
2918
		.may_swap = 1,
2919 2920
	};

2921
	/*
2922 2923 2924
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2925
	 */
2926
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2927 2928
		return 1;

2929 2930
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2931 2932
				gfp_mask,
				sc.reclaim_idx);
2933

2934
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2935 2936 2937 2938

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2939 2940
}

A
Andrew Morton 已提交
2941
#ifdef CONFIG_MEMCG
2942

2943
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2944
						gfp_t gfp_mask, bool noswap,
2945
						pg_data_t *pgdat,
2946
						unsigned long *nr_scanned)
2947 2948
{
	struct scan_control sc = {
2949
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2950
		.target_mem_cgroup = memcg,
2951 2952
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2953
		.reclaim_idx = MAX_NR_ZONES - 1,
2954 2955
		.may_swap = !noswap,
	};
2956
	unsigned long lru_pages;
2957

2958 2959
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2960

2961
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2962
						      sc.may_writepage,
2963 2964
						      sc.gfp_mask,
						      sc.reclaim_idx);
2965

2966 2967 2968
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
2969
	 * if we don't reclaim here, the shrink_node from balance_pgdat
2970 2971 2972
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2973
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2974 2975 2976

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2977
	*nr_scanned = sc.nr_scanned;
2978 2979 2980
	return sc.nr_reclaimed;
}

2981
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2982
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2983
					   gfp_t gfp_mask,
2984
					   bool may_swap)
2985
{
2986
	struct zonelist *zonelist;
2987
	unsigned long nr_reclaimed;
2988
	int nid;
2989
	struct scan_control sc = {
2990
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2991 2992
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2993
		.reclaim_idx = MAX_NR_ZONES - 1,
2994 2995 2996 2997
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2998
		.may_swap = may_swap,
2999
	};
3000

3001 3002 3003 3004 3005
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3006
	nid = mem_cgroup_select_victim_node(memcg);
3007

3008
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3009 3010 3011

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3012 3013
					    sc.gfp_mask,
					    sc.reclaim_idx);
3014

3015
	current->flags |= PF_MEMALLOC;
3016
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3017
	current->flags &= ~PF_MEMALLOC;
3018 3019 3020 3021

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3022 3023 3024
}
#endif

3025
static void age_active_anon(struct pglist_data *pgdat,
3026
				struct scan_control *sc)
3027
{
3028
	struct mem_cgroup *memcg;
3029

3030 3031 3032 3033 3034
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3035
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3036

3037
		if (inactive_list_is_low(lruvec, false, sc, true))
3038
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3039
					   sc, LRU_ACTIVE_ANON);
3040 3041 3042

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3043 3044
}

M
Mel Gorman 已提交
3045
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3046
{
M
Mel Gorman 已提交
3047
	unsigned long mark = high_wmark_pages(zone);
3048

3049 3050 3051 3052 3053 3054 3055 3056 3057
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3058
	clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3059 3060

	return true;
3061 3062
}

3063 3064 3065 3066 3067 3068
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3069
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3070
{
3071 3072
	int i;

3073
	/*
3074
	 * The throttled processes are normally woken up in balance_pgdat() as
3075
	 * soon as allow_direct_reclaim() is true. But there is a potential
3076 3077 3078 3079 3080 3081 3082 3083 3084
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3085
	 */
3086 3087
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3088

3089 3090 3091 3092
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3093 3094 3095
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

3096
		if (!managed_zone(zone))
3097 3098
			continue;

3099 3100
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3101 3102
	}

3103
	return true;
3104 3105
}

3106
/*
3107 3108
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3109 3110
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3111 3112
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3113
 */
3114
static bool kswapd_shrink_node(pg_data_t *pgdat,
3115
			       struct scan_control *sc)
3116
{
3117 3118
	struct zone *zone;
	int z;
3119

3120 3121
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3122
	for (z = 0; z <= sc->reclaim_idx; z++) {
3123
		zone = pgdat->node_zones + z;
3124
		if (!managed_zone(zone))
3125
			continue;
3126

3127 3128
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3129 3130

	/*
3131 3132
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3133
	 */
3134
	shrink_node(pgdat, sc);
3135

3136
	/*
3137 3138 3139 3140 3141
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3142
	 */
3143
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3144
		sc->order = 0;
3145

3146
	return sc->nr_scanned >= sc->nr_to_reclaim;
3147 3148
}

L
Linus Torvalds 已提交
3149
/*
3150 3151 3152
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3153
 *
3154
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3155 3156
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3157
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3158 3159 3160
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3161
 */
3162
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3163 3164
{
	int i;
3165 3166
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3167
	struct zone *zone;
3168 3169
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3170
		.order = order,
3171
		.priority = DEF_PRIORITY,
3172
		.may_writepage = !laptop_mode,
3173
		.may_unmap = 1,
3174
		.may_swap = 1,
3175
	};
3176
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3177

3178
	do {
3179
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3180 3181
		bool raise_priority = true;

3182
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3183

3184
		/*
3185 3186 3187 3188 3189 3190 3191 3192
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3193 3194 3195 3196
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3197
				if (!managed_zone(zone))
3198
					continue;
3199

3200
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3201
				break;
L
Linus Torvalds 已提交
3202 3203
			}
		}
3204

3205 3206 3207 3208 3209 3210
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
3211 3212 3213
		 * overall node may be congested. Note that sc.reclaim_idx
		 * is not used as buffer_heads_over_limit may have adjusted
		 * it.
3214
		 */
3215
		for (i = classzone_idx; i >= 0; i--) {
3216
			zone = pgdat->node_zones + i;
3217
			if (!managed_zone(zone))
3218 3219
				continue;

3220
			if (zone_balanced(zone, sc.order, classzone_idx))
3221 3222
				goto out;
		}
A
Andrew Morton 已提交
3223

3224 3225 3226 3227 3228 3229
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3230
		age_active_anon(pgdat, &sc);
3231

3232 3233 3234 3235
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3236
		if (sc.priority < DEF_PRIORITY - 2)
3237 3238
			sc.may_writepage = 1;

3239 3240 3241
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3242
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3243 3244 3245
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3246
		/*
3247 3248 3249
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3250
		 */
3251
		if (kswapd_shrink_node(pgdat, &sc))
3252
			raise_priority = false;
3253 3254 3255 3256 3257 3258 3259

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3260
				allow_direct_reclaim(pgdat))
3261
			wake_up_all(&pgdat->pfmemalloc_wait);
3262

3263 3264 3265
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3266

3267
		/*
3268 3269
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3270
		 */
3271 3272
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3273
			sc.priority--;
3274
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3275

3276 3277 3278
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3279
out:
3280
	/*
3281 3282 3283 3284
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3285
	 */
3286
	return sc.order;
L
Linus Torvalds 已提交
3287 3288
}

3289 3290
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3301
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3314
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3315

3316
		remaining = schedule_timeout(HZ/10);
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3328 3329 3330 3331 3332 3333 3334 3335
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3336 3337
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3349 3350 3351 3352

		if (!kthread_should_stop())
			schedule();

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3363 3364
/*
 * The background pageout daemon, started as a kernel thread
3365
 * from the init process.
L
Linus Torvalds 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3378
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3379 3380
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3381

L
Linus Torvalds 已提交
3382 3383 3384
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3385
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3386

3387 3388
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3389
	if (!cpumask_empty(cpumask))
3390
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3405
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3406
	set_freezable();
L
Linus Torvalds 已提交
3407

3408 3409
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3410
	for ( ; ; ) {
3411
		bool ret;
3412

3413 3414 3415
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3416

3417 3418 3419 3420 3421
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3422

3423 3424 3425 3426 3427 3428 3429 3430
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3442 3443
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3444 3445 3446
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3447

3448 3449
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3450
	}
3451

3452
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3453
	current->reclaim_state = NULL;
3454 3455
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3456 3457 3458 3459 3460 3461
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3462
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3463 3464
{
	pg_data_t *pgdat;
3465
	int z;
L
Linus Torvalds 已提交
3466

3467
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3468 3469
		return;

3470
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3471
		return;
3472
	pgdat = zone->zone_pgdat;
3473 3474
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3475
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3476
		return;
3477

3478 3479 3480 3481
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return;

3482 3483 3484
	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
3485
		if (!managed_zone(zone))
3486 3487 3488 3489 3490
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3491 3492

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3493
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3494 3495
}

3496
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3497
/*
3498
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3499 3500 3501 3502 3503
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3504
 */
3505
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3506
{
3507 3508
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3509
		.nr_to_reclaim = nr_to_reclaim,
3510
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3511
		.reclaim_idx = MAX_NR_ZONES - 1,
3512
		.priority = DEF_PRIORITY,
3513
		.may_writepage = 1,
3514 3515
		.may_unmap = 1,
		.may_swap = 1,
3516
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3517
	};
3518
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3519 3520
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3521

3522 3523 3524 3525
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3526

3527
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3528

3529 3530 3531
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3532

3533
	return nr_reclaimed;
L
Linus Torvalds 已提交
3534
}
3535
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3536 3537 3538 3539 3540

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3541
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3542
{
3543
	int nid;
L
Linus Torvalds 已提交
3544

3545 3546 3547
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3548

3549
		mask = cpumask_of_node(pgdat->node_id);
3550

3551 3552 3553
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3554
	}
3555
	return 0;
L
Linus Torvalds 已提交
3556 3557
}

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3574 3575
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3576
		pgdat->kswapd = NULL;
3577 3578 3579 3580
	}
	return ret;
}

3581
/*
3582
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3583
 * hold mem_hotplug_begin/end().
3584 3585 3586 3587 3588
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3589
	if (kswapd) {
3590
		kthread_stop(kswapd);
3591 3592
		NODE_DATA(nid)->kswapd = NULL;
	}
3593 3594
}

L
Linus Torvalds 已提交
3595 3596
static int __init kswapd_init(void)
{
3597
	int nid, ret;
3598

L
Linus Torvalds 已提交
3599
	swap_setup();
3600
	for_each_node_state(nid, N_MEMORY)
3601
 		kswapd_run(nid);
3602 3603 3604 3605
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3606 3607 3608 3609
	return 0;
}

module_init(kswapd_init)
3610 3611 3612

#ifdef CONFIG_NUMA
/*
3613
 * Node reclaim mode
3614
 *
3615
 * If non-zero call node_reclaim when the number of free pages falls below
3616 3617
 * the watermarks.
 */
3618
int node_reclaim_mode __read_mostly;
3619

3620
#define RECLAIM_OFF 0
3621
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3622
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3623
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3624

3625
/*
3626
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3627 3628 3629
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3630
#define NODE_RECLAIM_PRIORITY 4
3631

3632
/*
3633
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3634 3635 3636 3637
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3638 3639 3640 3641 3642 3643
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3644
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3645
{
3646 3647 3648
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3659
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3660
{
3661 3662
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3663 3664

	/*
3665
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3666
	 * potentially reclaimable. Otherwise, we have to worry about
3667
	 * pages like swapcache and node_unmapped_file_pages() provides
3668 3669
	 * a better estimate
	 */
3670 3671
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3672
	else
3673
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3674 3675

	/* If we can't clean pages, remove dirty pages from consideration */
3676 3677
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3678 3679 3680 3681 3682 3683 3684 3685

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3686
/*
3687
 * Try to free up some pages from this node through reclaim.
3688
 */
3689
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3690
{
3691
	/* Minimum pages needed in order to stay on node */
3692
	const unsigned long nr_pages = 1 << order;
3693 3694
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3695
	int classzone_idx = gfp_zone(gfp_mask);
3696
	struct scan_control sc = {
3697
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3698
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3699
		.order = order,
3700 3701 3702
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3703
		.may_swap = 1,
3704
		.reclaim_idx = classzone_idx,
3705
	};
3706 3707

	cond_resched();
3708
	/*
3709
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3710
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3711
	 * and RECLAIM_UNMAP.
3712 3713
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3714
	lockdep_set_current_reclaim_state(gfp_mask);
3715 3716
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3717

3718
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3719 3720 3721 3722 3723
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3724
			shrink_node(pgdat, &sc);
3725
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3726
	}
3727

3728
	p->reclaim_state = NULL;
3729
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3730
	lockdep_clear_current_reclaim_state();
3731
	return sc.nr_reclaimed >= nr_pages;
3732
}
3733

3734
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3735
{
3736
	int ret;
3737 3738

	/*
3739
	 * Node reclaim reclaims unmapped file backed pages and
3740
	 * slab pages if we are over the defined limits.
3741
	 *
3742 3743
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3744 3745
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3746
	 * unmapped file backed pages.
3747
	 */
3748 3749 3750
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3751 3752

	/*
3753
	 * Do not scan if the allocation should not be delayed.
3754
	 */
3755
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3756
		return NODE_RECLAIM_NOSCAN;
3757 3758

	/*
3759
	 * Only run node reclaim on the local node or on nodes that do not
3760 3761 3762 3763
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3764 3765
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3766

3767 3768
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3769

3770 3771
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3772

3773 3774 3775
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3776
	return ret;
3777
}
3778
#endif
L
Lee Schermerhorn 已提交
3779 3780 3781 3782 3783 3784

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3785
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3786 3787
 *
 * Reasons page might not be evictable:
3788
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3789
 * (2) page is part of an mlocked VMA
3790
 *
L
Lee Schermerhorn 已提交
3791
 */
3792
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3793
{
3794
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3795
}
3796

3797
#ifdef CONFIG_SHMEM
3798
/**
3799 3800 3801
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3802
 *
3803
 * Checks pages for evictability and moves them to the appropriate lru list.
3804 3805
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3806
 */
3807
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3808
{
3809
	struct lruvec *lruvec;
3810
	struct pglist_data *pgdat = NULL;
3811 3812 3813
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3814

3815 3816
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3817
		struct pglist_data *pagepgdat = page_pgdat(page);
3818

3819
		pgscanned++;
3820 3821 3822 3823 3824
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3825
		}
3826
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3827

3828 3829
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3830

3831
		if (page_evictable(page)) {
3832 3833
			enum lru_list lru = page_lru_base_type(page);

3834
			VM_BUG_ON_PAGE(PageActive(page), page);
3835
			ClearPageUnevictable(page);
3836 3837
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3838
			pgrescued++;
3839
		}
3840
	}
3841

3842
	if (pgdat) {
3843 3844
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3845
		spin_unlock_irq(&pgdat->lru_lock);
3846 3847
	}
}
3848
#endif /* CONFIG_SHMEM */