vmscan.c 121.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 84 85 86 87 88 89 90
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

91 92 93
	/* e.g. boosted watermark reclaim leaves slabs alone */
	unsigned int may_shrinkslab:1;

94 95 96 97 98 99 100
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
101

102 103 104 105 106
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
107 108 109 110 111 112 113 114 115 116 117 118
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

119 120 121 122 123
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
124 125 126 127 128 129 130 131 132 133

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
168 169 170 171 172
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
173 174 175 176

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

177
#ifdef CONFIG_MEMCG_KMEM
178 179 180 181 182 183 184 185 186 187 188 189 190 191

/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

192 193 194 195 196 197 198 199 200
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
201
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 203 204
	if (id < 0)
		goto unlock;

205 206 207 208 209 210
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

211
		shrinker_nr_max = id + 1;
212
	}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

A
Andrew Morton 已提交
241
#ifdef CONFIG_MEMCG
242 243
static bool global_reclaim(struct scan_control *sc)
{
244
	return !sc->target_mem_cgroup;
245
}
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
267
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 269 270 271
		return true;
#endif
	return false;
}
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
295
#else
296 297 298 299
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
300 301 302 303 304

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
305 306 307 308 309 310 311 312 313 314 315 316

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
317 318
#endif

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

337 338 339 340 341 342 343
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344
{
345 346 347
	unsigned long lru_size;
	int zid;

348
	if (!mem_cgroup_disabled())
349
		lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
350 351
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352

353 354 355
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
356

357 358 359 360 361 362 363 364 365 366 367 368
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
369 370 371

}

L
Linus Torvalds 已提交
372
/*
G
Glauber Costa 已提交
373
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
374
 */
375
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
376
{
377
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
378 379 380 381 382 383 384

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
385 386 387 388 389 390

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

391
	return 0;
392 393 394 395 396

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
397 398 399 400
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
401 402 403 404 405 406
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

407 408 409
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
410

411 412
void register_shrinker_prepared(struct shrinker *shrinker)
{
413 414
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
415
#ifdef CONFIG_MEMCG_KMEM
416 417
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418
#endif
419
	up_write(&shrinker_rwsem);
420 421 422 423 424 425 426 427 428
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
429
	return 0;
L
Linus Torvalds 已提交
430
}
431
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
432 433 434 435

/*
 * Remove one
 */
436
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
437
{
438 439
	if (!shrinker->nr_deferred)
		return;
440 441
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
442 443 444
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
445
	kfree(shrinker->nr_deferred);
446
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
447
}
448
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
449 450

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
451

452
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
454 455 456 457
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
458
	long freeable;
G
Glauber Costa 已提交
459 460 461 462 463
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
464
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
465

466 467 468
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

469
	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 471
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
472 473 474 475 476 477 478 479 480

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
481 482 483 484 485 486 487 488 489 490 491 492
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
493

G
Glauber Costa 已提交
494 495
	total_scan += delta;
	if (total_scan < 0) {
496
		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
497
		       shrinker->scan_objects, total_scan);
498
		total_scan = freeable;
499 500 501
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
502 503 504 505 506 507 508

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
509
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
510 511 512 513 514
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
515 516
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
517 518 519 520 521 522

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
523 524
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
525 526

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
528

529 530 531 532 533 534 535 536 537 538 539
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
540
	 * than the total number of objects on slab (freeable), we must be
541 542 543 544
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
545
	       total_scan >= freeable) {
D
Dave Chinner 已提交
546
		unsigned long ret;
547
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
548

549
		shrinkctl->nr_to_scan = nr_to_scan;
550
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
551 552 553 554
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
555

556 557 558
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
559 560 561 562

		cond_resched();
	}

563 564 565 566
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
567 568 569 570 571
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
572 573
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
574 575 576 577
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

578
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
579
	return freed;
580 581
}

582 583 584 585 586
#ifdef CONFIG_MEMCG_KMEM
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
587 588
	unsigned long ret, freed = 0;
	int i;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
610 611 612
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
613 614 615 616
			continue;
		}

		ret = do_shrink_slab(&sc, shrinker, priority);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
#else /* CONFIG_MEMCG_KMEM */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG_KMEM */

660
/**
661
 * shrink_slab - shrink slab caches
662 663
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
664
 * @memcg: memory cgroup whose slab caches to target
665
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
666
 *
667
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
668
 *
669 670
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
671
 *
672 673
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
674
 *
675 676
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
677
 *
678
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
679
 */
680 681
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
682
				 int priority)
L
Linus Torvalds 已提交
683
{
684
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
685 686
	struct shrinker *shrinker;

687
	if (!mem_cgroup_is_root(memcg))
688
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
689

690
	if (!down_read_trylock(&shrinker_rwsem))
691
		goto out;
L
Linus Torvalds 已提交
692 693

	list_for_each_entry(shrinker, &shrinker_list, list) {
694 695 696
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
697
			.memcg = memcg,
698
		};
699

700 701 702 703
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
704 705 706 707 708 709 710 711 712
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
713
	}
714

L
Linus Torvalds 已提交
715
	up_read(&shrinker_rwsem);
716 717
out:
	cond_resched();
D
Dave Chinner 已提交
718
	return freed;
L
Linus Torvalds 已提交
719 720
}

721 722 723 724 725 726 727 728
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
729
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
730
		do {
731
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 733 734 735 736 737 738 739 740 741 742 743
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
744 745
static inline int is_page_cache_freeable(struct page *page)
{
746 747
	/*
	 * A freeable page cache page is referenced only by the caller
748 749
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
750
	 */
751
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752
		HPAGE_PMD_NR : 1;
753
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
754 755
}

756
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
757
{
758
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
759
		return 1;
760
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
761
		return 1;
762
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
782
	lock_page(page);
783 784
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
785 786 787
	unlock_page(page);
}

788 789 790 791 792 793 794 795 796 797 798 799
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
800
/*
A
Andrew Morton 已提交
801 802
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
803
 */
804
static pageout_t pageout(struct page *page, struct address_space *mapping,
805
			 struct scan_control *sc)
L
Linus Torvalds 已提交
806 807 808 809 810 811 812 813
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
814
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
830
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
831 832
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
833
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
834 835 836 837 838 839 840
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
841
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
842 843 844 845 846 847 848
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
849 850
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
851 852 853 854 855 856 857
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
858
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
859 860 861
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
862

L
Linus Torvalds 已提交
863 864 865 866
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
867
		trace_mm_vmscan_writepage(page);
868
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
869 870 871 872 873 874
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

875
/*
N
Nick Piggin 已提交
876 877
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
878
 */
879 880
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
881
{
882
	unsigned long flags;
883
	int refcount;
884

885 886
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
887

M
Matthew Wilcox 已提交
888
	xa_lock_irqsave(&mapping->i_pages, flags);
889
	/*
N
Nick Piggin 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
910 911
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
912
	 * and thus under the i_pages lock, then this ordering is not required.
913
	 */
914 915 916 917 918
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
919
		goto cannot_free;
920
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
921
	if (unlikely(PageDirty(page))) {
922
		page_ref_unfreeze(page, refcount);
923
		goto cannot_free;
N
Nick Piggin 已提交
924
	}
925 926 927

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
928
		mem_cgroup_swapout(page, swap);
929
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
930
		xa_unlock_irqrestore(&mapping->i_pages, flags);
931
		put_swap_page(page, swap);
N
Nick Piggin 已提交
932
	} else {
933
		void (*freepage)(struct page *);
934
		void *shadow = NULL;
935 936

		freepage = mapping->a_ops->freepage;
937 938 939 940 941 942 943 944 945
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
946 947 948 949 950
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
951
		 * same address_space.
952 953
		 */
		if (reclaimed && page_is_file_cache(page) &&
954
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
955
			shadow = workingset_eviction(page);
J
Johannes Weiner 已提交
956
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
957
		xa_unlock_irqrestore(&mapping->i_pages, flags);
958 959 960

		if (freepage != NULL)
			freepage(page);
961 962 963 964 965
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
966
	xa_unlock_irqrestore(&mapping->i_pages, flags);
967 968 969
	return 0;
}

N
Nick Piggin 已提交
970 971 972 973 974 975 976 977
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
978
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
979 980 981 982 983
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
984
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
985 986 987 988 989
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
990 991 992 993 994 995 996 997 998 999 1000
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
1001
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
1002 1003 1004
	put_page(page);		/* drop ref from isolate */
}

1005 1006 1007
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1008
	PAGEREF_KEEP,
1009 1010 1011 1012 1013 1014
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1015
	int referenced_ptes, referenced_page;
1016 1017
	unsigned long vm_flags;

1018 1019
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1020
	referenced_page = TestClearPageReferenced(page);
1021 1022 1023 1024 1025 1026 1027 1028

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1029
	if (referenced_ptes) {
1030
		if (PageSwapBacked(page))
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1048
		if (referenced_page || referenced_ptes > 1)
1049 1050
			return PAGEREF_ACTIVATE;

1051 1052 1053 1054 1055 1056
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1057 1058
		return PAGEREF_KEEP;
	}
1059 1060

	/* Reclaim if clean, defer dirty pages to writeback */
1061
	if (referenced_page && !PageSwapBacked(page))
1062 1063 1064
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1065 1066
}

1067 1068 1069 1070
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1071 1072
	struct address_space *mapping;

1073 1074 1075 1076
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1077 1078
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1079 1080 1081 1082 1083 1084 1085 1086
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1087 1088 1089 1090 1091 1092 1093 1094

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 1096
}

L
Linus Torvalds 已提交
1097
/*
A
Andrew Morton 已提交
1098
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1099
 */
A
Andrew Morton 已提交
1100
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1101
				      struct pglist_data *pgdat,
1102
				      struct scan_control *sc,
1103
				      enum ttu_flags ttu_flags,
1104
				      struct reclaim_stat *stat,
1105
				      bool force_reclaim)
L
Linus Torvalds 已提交
1106 1107
{
	LIST_HEAD(ret_pages);
1108
	LIST_HEAD(free_pages);
1109
	unsigned nr_reclaimed = 0;
1110
	unsigned pgactivate = 0;
L
Linus Torvalds 已提交
1111

1112
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1113 1114 1115 1116 1117 1118
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1119
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1120
		bool dirty, writeback;
L
Linus Torvalds 已提交
1121 1122 1123 1124 1125 1126

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1127
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1128 1129
			goto keep;

1130
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1131 1132

		sc->nr_scanned++;
1133

1134
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1135
			goto activate_locked;
L
Lee Schermerhorn 已提交
1136

1137
		if (!sc->may_unmap && page_mapped(page))
1138 1139
			goto keep_locked;

L
Linus Torvalds 已提交
1140
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1141 1142
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1143 1144
			sc->nr_scanned++;

1145 1146 1147
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1148
		/*
1149
		 * The number of dirty pages determines if a node is marked
1150 1151 1152 1153 1154 1155
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1156
			stat->nr_dirty++;
1157 1158

		if (dirty && !writeback)
1159
			stat->nr_unqueued_dirty++;
1160

1161 1162 1163 1164 1165 1166
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1167
		mapping = page_mapping(page);
1168
		if (((dirty || writeback) && mapping &&
1169
		     inode_write_congested(mapping->host)) ||
1170
		    (writeback && PageReclaim(page)))
1171
			stat->nr_congested++;
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1184 1185
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1186
		 *
1187
		 * 2) Global or new memcg reclaim encounters a page that is
1188 1189 1190
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1191
		 *    reclaim and continue scanning.
1192
		 *
1193 1194
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1195 1196 1197 1198 1199
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1200
		 * 3) Legacy memcg encounters a page that is already marked
1201 1202 1203 1204
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1205 1206 1207 1208 1209 1210 1211 1212 1213
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1214
		 */
1215
		if (PageWriteback(page)) {
1216 1217 1218
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1219
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1220
				stat->nr_immediate++;
1221
				goto activate_locked;
1222 1223

			/* Case 2 above */
1224
			} else if (sane_reclaim(sc) ||
1225
			    !PageReclaim(page) || !may_enter_fs) {
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1238
				stat->nr_writeback++;
1239
				goto activate_locked;
1240 1241 1242

			/* Case 3 above */
			} else {
1243
				unlock_page(page);
1244
				wait_on_page_writeback(page);
1245 1246 1247
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1248
			}
1249
		}
L
Linus Torvalds 已提交
1250

1251 1252 1253
		if (!force_reclaim)
			references = page_check_references(page, sc);

1254 1255
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1256
			goto activate_locked;
1257
		case PAGEREF_KEEP:
1258
			stat->nr_ref_keep++;
1259
			goto keep_locked;
1260 1261 1262 1263
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1264 1265 1266 1267

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1268
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1269
		 */
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1295 1296 1297
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1298 1299 1300
					if (!add_to_swap(page))
						goto activate_locked;
				}
1301

1302
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1303

1304 1305 1306
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1307 1308 1309 1310
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1311
		}
L
Linus Torvalds 已提交
1312 1313 1314 1315 1316

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1317
		if (page_mapped(page)) {
1318 1319 1320 1321 1322
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1323
				stat->nr_unmap_fail++;
L
Linus Torvalds 已提交
1324 1325 1326 1327 1328
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1329
			/*
1330 1331 1332 1333 1334 1335 1336 1337
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1338
			 */
1339
			if (page_is_file_cache(page) &&
1340 1341
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1342 1343 1344 1345 1346 1347
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1348
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1349 1350
				SetPageReclaim(page);

1351
				goto activate_locked;
1352 1353
			}

1354
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1355
				goto keep_locked;
1356
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1357
				goto keep_locked;
1358
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1359 1360
				goto keep_locked;

1361 1362 1363 1364 1365 1366
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1367
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1373
				if (PageWriteback(page))
1374
					goto keep;
1375
				if (PageDirty(page))
L
Linus Torvalds 已提交
1376
					goto keep;
1377

L
Linus Torvalds 已提交
1378 1379 1380 1381
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1382
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1402
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1413
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1414 1415
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1432 1433
		}

S
Shaohua Li 已提交
1434 1435 1436 1437 1438 1439 1440 1441
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1442

S
Shaohua Li 已提交
1443
			count_vm_event(PGLAZYFREED);
1444
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1445 1446
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
1447 1448

		unlock_page(page);
N
Nick Piggin 已提交
1449
free_it:
1450
		nr_reclaimed++;
1451 1452 1453 1454 1455

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1456 1457 1458 1459 1460
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1461 1462 1463
		continue;

activate_locked:
1464
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1465 1466
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1467
			try_to_free_swap(page);
1468
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1469
		if (!PageMlocked(page)) {
1470
			int type = page_is_file_cache(page);
M
Minchan Kim 已提交
1471
			SetPageActive(page);
1472 1473
			pgactivate++;
			stat->nr_activate[type] += hpage_nr_pages(page);
1474
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1475
		}
L
Linus Torvalds 已提交
1476 1477 1478 1479
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1480
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1481
	}
1482

1483
	mem_cgroup_uncharge_list(&free_pages);
1484
	try_to_unmap_flush();
1485
	free_unref_page_list(&free_pages);
1486

L
Linus Torvalds 已提交
1487
	list_splice(&ret_pages, page_list);
1488
	count_vm_events(PGACTIVATE, pgactivate);
1489

1490
	return nr_reclaimed;
L
Linus Torvalds 已提交
1491 1492
}

1493 1494 1495 1496 1497 1498 1499 1500
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1501
	struct reclaim_stat dummy_stat;
1502
	unsigned long ret;
1503 1504 1505 1506
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1507
		if (page_is_file_cache(page) && !PageDirty(page) &&
1508
		    !__PageMovable(page)) {
1509 1510 1511 1512 1513
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1514
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515
			TTU_IGNORE_ACCESS, &dummy_stat, true);
1516
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1517
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1518 1519 1520
	return ret;
}

A
Andy Whitcroft 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1531
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1532 1533 1534 1535 1536 1537 1538
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1539 1540
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1541 1542
		return ret;

A
Andy Whitcroft 已提交
1543
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1544

1545 1546 1547 1548 1549 1550 1551 1552
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1553
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1554 1555 1556 1557 1558 1559
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1560
			bool migrate_dirty;
1561 1562 1563 1564

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1565 1566 1567 1568 1569
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1570
			 */
1571 1572 1573
			if (!trylock_page(page))
				return ret;

1574
			mapping = page_mapping(page);
1575
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1576 1577
			unlock_page(page);
			if (!migrate_dirty)
1578 1579 1580
				return ret;
		}
	}
1581

1582 1583 1584
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1598 1599 1600 1601 1602 1603

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1604
			enum lru_list lru, unsigned long *nr_zone_taken)
1605 1606 1607 1608 1609 1610 1611 1612 1613
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1614
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1615
#endif
1616 1617
	}

1618 1619
}

1620 1621
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1622 1623 1624 1625 1626 1627 1628 1629
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1630
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1631
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1632
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1633
 * @nr_scanned:	The number of pages that were scanned.
1634
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1635
 * @mode:	One of the LRU isolation modes
1636
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1637 1638 1639
 *
 * returns how many pages were moved onto *@dst.
 */
1640
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1641
		struct lruvec *lruvec, struct list_head *dst,
1642
		unsigned long *nr_scanned, struct scan_control *sc,
1643
		enum lru_list lru)
L
Linus Torvalds 已提交
1644
{
H
Hugh Dickins 已提交
1645
	struct list_head *src = &lruvec->lists[lru];
1646
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1647
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1648
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1649
	unsigned long skipped = 0;
1650
	unsigned long scan, total_scan, nr_pages;
1651
	LIST_HEAD(pages_skipped);
1652
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1653

1654 1655 1656 1657
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1658 1659
		struct page *page;

L
Linus Torvalds 已提交
1660 1661 1662
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1663
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1664

1665 1666
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1667
			nr_skipped[page_zonenum(page)]++;
1668 1669 1670
			continue;
		}

1671 1672 1673 1674 1675 1676 1677
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1678
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1679
		case 0:
M
Mel Gorman 已提交
1680 1681 1682
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1683 1684 1685 1686 1687 1688 1689
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1690

A
Andy Whitcroft 已提交
1691 1692 1693
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1694 1695
	}

1696 1697 1698 1699 1700 1701 1702
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1703 1704 1705
	if (!list_empty(&pages_skipped)) {
		int zid;

1706
		list_splice(&pages_skipped, src);
1707 1708 1709 1710 1711
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1712
			skipped += nr_skipped[zid];
1713 1714
		}
	}
1715
	*nr_scanned = total_scan;
1716
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1717
				    total_scan, skipped, nr_taken, mode, lru);
1718
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1719 1720 1721
	return nr_taken;
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1733 1734 1735
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1736 1737 1738 1739 1740
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1741
 *
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1752
	VM_BUG_ON_PAGE(!page_count(page), page);
1753
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1754

1755
	if (PageLRU(page)) {
1756
		pg_data_t *pgdat = page_pgdat(page);
1757
		struct lruvec *lruvec;
1758

1759 1760
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1761
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1762
			int lru = page_lru(page);
1763
			get_page(page);
1764
			ClearPageLRU(page);
1765 1766
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1767
		}
1768
		spin_unlock_irq(&pgdat->lru_lock);
1769 1770 1771 1772
	}
	return ret;
}

1773
/*
F
Fengguang Wu 已提交
1774 1775 1776 1777 1778
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1779
 */
M
Mel Gorman 已提交
1780
static int too_many_isolated(struct pglist_data *pgdat, int file,
1781 1782 1783 1784 1785 1786 1787
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1788
	if (!sane_reclaim(sc))
1789 1790 1791
		return 0;

	if (file) {
M
Mel Gorman 已提交
1792 1793
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1794
	} else {
M
Mel Gorman 已提交
1795 1796
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1797 1798
	}

1799 1800 1801 1802 1803
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1804
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1805 1806
		inactive >>= 3;

1807 1808 1809
	return isolated > inactive;
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
/*
 * This moves pages from @list to corresponding LRU list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone_lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone_lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_refcount against each page.
 * But we had to alter page->flags anyway.
 *
 * Returns the number of pages moved to the given lruvec.
 */

static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
						     struct list_head *list)
1832
{
M
Mel Gorman 已提交
1833
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1834
	int nr_pages, nr_moved = 0;
1835
	LIST_HEAD(pages_to_free);
1836 1837
	struct page *page;
	enum lru_list lru;
1838

1839 1840
	while (!list_empty(list)) {
		page = lru_to_page(list);
1841
		VM_BUG_ON_PAGE(PageLRU(page), page);
1842
		if (unlikely(!page_evictable(page))) {
1843
			list_del(&page->lru);
M
Mel Gorman 已提交
1844
			spin_unlock_irq(&pgdat->lru_lock);
1845
			putback_lru_page(page);
M
Mel Gorman 已提交
1846
			spin_lock_irq(&pgdat->lru_lock);
1847 1848
			continue;
		}
M
Mel Gorman 已提交
1849
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1850

1851
		SetPageLRU(page);
1852
		lru = page_lru(page);
1853 1854 1855 1856

		nr_pages = hpage_nr_pages(page);
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
		list_move(&page->lru, &lruvec->lists[lru]);
1857

1858 1859 1860
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1861
			del_page_from_lru_list(page, lruvec, lru);
1862 1863

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1864
				spin_unlock_irq(&pgdat->lru_lock);
1865
				mem_cgroup_uncharge(page);
1866
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1867
				spin_lock_irq(&pgdat->lru_lock);
1868 1869
			} else
				list_add(&page->lru, &pages_to_free);
1870 1871
		} else {
			nr_moved += nr_pages;
1872 1873 1874
		}
	}

1875 1876 1877
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
1878 1879 1880
	list_splice(&pages_to_free, list);

	return nr_moved;
1881 1882
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1896
/*
1897
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1898
 * of reclaimed pages
L
Linus Torvalds 已提交
1899
 */
1900
static noinline_for_stack unsigned long
1901
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1902
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1903 1904
{
	LIST_HEAD(page_list);
1905
	unsigned long nr_scanned;
1906
	unsigned long nr_reclaimed = 0;
1907
	unsigned long nr_taken;
1908
	struct reclaim_stat stat;
1909
	int file = is_file_lru(lru);
1910
	enum vm_event_item item;
M
Mel Gorman 已提交
1911
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1912
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1913
	bool stalled = false;
1914

M
Mel Gorman 已提交
1915
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1916 1917 1918 1919 1920 1921
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1922 1923 1924 1925 1926 1927

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1928
	lru_add_drain();
1929

M
Mel Gorman 已提交
1930
	spin_lock_irq(&pgdat->lru_lock);
1931

1932
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1933
				     &nr_scanned, sc, lru);
1934

M
Mel Gorman 已提交
1935
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1936
	reclaim_stat->recent_scanned[file] += nr_taken;
1937

1938 1939 1940 1941
	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
	if (global_reclaim(sc))
		__count_vm_events(item, nr_scanned);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
M
Mel Gorman 已提交
1942
	spin_unlock_irq(&pgdat->lru_lock);
1943

1944
	if (nr_taken == 0)
1945
		return 0;
A
Andy Whitcroft 已提交
1946

S
Shaohua Li 已提交
1947
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1948
				&stat, false);
1949

M
Mel Gorman 已提交
1950
	spin_lock_irq(&pgdat->lru_lock);
1951

1952 1953 1954 1955
	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
	if (global_reclaim(sc))
		__count_vm_events(item, nr_reclaimed);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1956 1957
	reclaim_stat->recent_rotated[0] = stat.nr_activate[0];
	reclaim_stat->recent_rotated[1] = stat.nr_activate[1];
N
Nick Piggin 已提交
1958

1959
	move_pages_to_lru(lruvec, &page_list);
1960

M
Mel Gorman 已提交
1961
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1962

M
Mel Gorman 已提交
1963
	spin_unlock_irq(&pgdat->lru_lock);
1964

1965
	mem_cgroup_uncharge_list(&page_list);
1966
	free_unref_page_list(&page_list);
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1982 1983 1984 1985 1986 1987 1988 1989
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
1990

M
Mel Gorman 已提交
1991
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1992
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1993
	return nr_reclaimed;
L
Linus Torvalds 已提交
1994 1995
}

H
Hugh Dickins 已提交
1996
static void shrink_active_list(unsigned long nr_to_scan,
1997
			       struct lruvec *lruvec,
1998
			       struct scan_control *sc,
1999
			       enum lru_list lru)
L
Linus Torvalds 已提交
2000
{
2001
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2002
	unsigned long nr_scanned;
2003
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2004
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2005
	LIST_HEAD(l_active);
2006
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2007
	struct page *page;
2008
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2009 2010
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2011
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2012
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2013 2014

	lru_add_drain();
2015

M
Mel Gorman 已提交
2016
	spin_lock_irq(&pgdat->lru_lock);
2017

2018
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2019
				     &nr_scanned, sc, lru);
2020

M
Mel Gorman 已提交
2021
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2022
	reclaim_stat->recent_scanned[file] += nr_taken;
2023

M
Mel Gorman 已提交
2024
	__count_vm_events(PGREFILL, nr_scanned);
2025
	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2026

M
Mel Gorman 已提交
2027
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2028 2029 2030 2031 2032

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2033

2034
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2035 2036 2037 2038
			putback_lru_page(page);
			continue;
		}

2039 2040 2041 2042 2043 2044 2045 2046
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2047 2048
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2049
			nr_rotated += hpage_nr_pages(page);
2050 2051 2052 2053 2054 2055 2056 2057 2058
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2059
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2060 2061 2062 2063
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2064

2065
		ClearPageActive(page);	/* we are de-activating */
2066
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2067 2068 2069
		list_add(&page->lru, &l_inactive);
	}

2070
	/*
2071
	 * Move pages back to the lru list.
2072
	 */
M
Mel Gorman 已提交
2073
	spin_lock_irq(&pgdat->lru_lock);
2074
	/*
2075 2076 2077
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2078
	 * get_scan_count.
2079
	 */
2080
	reclaim_stat->recent_rotated[file] += nr_rotated;
2081

2082 2083
	nr_activate = move_pages_to_lru(lruvec, &l_active);
	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2084 2085
	/* Keep all free pages in l_active list */
	list_splice(&l_inactive, &l_active);
2086 2087 2088 2089

	__count_vm_events(PGDEACTIVATE, nr_deactivate);
	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);

M
Mel Gorman 已提交
2090 2091
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2092

2093 2094
	mem_cgroup_uncharge_list(&l_active);
	free_unref_page_list(&l_active);
2095 2096
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2097 2098
}

2099 2100 2101
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2102
 *
2103 2104 2105
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2106
 *
2107 2108
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2109
 *
2110 2111
 * If that fails and refaulting is observed, the inactive list grows.
 *
2112
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2113
 * on this LRU, maintained by the pageout code. An inactive_ratio
2114
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2115
 *
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2126
 */
2127
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2128
				 struct scan_control *sc, bool actual_reclaim)
2129
{
2130
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2131 2132 2133 2134 2135
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2136
	unsigned long gb;
2137

2138 2139 2140 2141 2142 2143
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2144

2145 2146
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2147

2148 2149 2150 2151 2152
	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
2153
	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2154 2155 2156 2157 2158 2159 2160 2161 2162
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2163

2164 2165 2166 2167 2168
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2169

2170
	return inactive * inactive_ratio < active;
2171 2172
}

2173
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2174
				 struct lruvec *lruvec, struct scan_control *sc)
2175
{
2176
	if (is_active_lru(lru)) {
2177
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2178
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2179 2180 2181
		return 0;
	}

2182
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2183 2184
}

2185 2186 2187 2188 2189 2190 2191
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2192 2193 2194 2195 2196 2197
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2198 2199
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2200
 */
2201
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2202 2203
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2204
{
2205
	int swappiness = mem_cgroup_swappiness(memcg);
2206 2207 2208
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2209
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2210
	unsigned long anon_prio, file_prio;
2211
	enum scan_balance scan_balance;
2212
	unsigned long anon, file;
2213
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2214
	enum lru_list lru;
2215 2216

	/* If we have no swap space, do not bother scanning anon pages. */
2217
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2218
		scan_balance = SCAN_FILE;
2219 2220
		goto out;
	}
2221

2222 2223 2224 2225 2226 2227 2228
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2229
	if (!global_reclaim(sc) && !swappiness) {
2230
		scan_balance = SCAN_FILE;
2231 2232 2233 2234 2235 2236 2237 2238
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2239
	if (!sc->priority && swappiness) {
2240
		scan_balance = SCAN_EQUAL;
2241 2242 2243
		goto out;
	}

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2254 2255 2256 2257
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2258

M
Mel Gorman 已提交
2259 2260 2261 2262 2263 2264
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2265
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2266 2267 2268 2269
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2270

M
Mel Gorman 已提交
2271
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2272 2273 2274 2275 2276
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
2277
			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2278 2279 2280 2281 2282
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2283 2284 2285
		}
	}

2286
	/*
2287 2288 2289 2290 2291 2292 2293
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2294
	 */
2295
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2296
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2297
		scan_balance = SCAN_FILE;
2298 2299 2300
		goto out;
	}

2301 2302
	scan_balance = SCAN_FRACT;

2303 2304 2305 2306
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2307
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2308
	file_prio = 200 - anon_prio;
2309

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2321

2322 2323 2324 2325
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2326

M
Mel Gorman 已提交
2327
	spin_lock_irq(&pgdat->lru_lock);
2328 2329 2330
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2331 2332
	}

2333 2334 2335
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2336 2337 2338
	}

	/*
2339 2340 2341
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2342
	 */
2343
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2344
	ap /= reclaim_stat->recent_rotated[0] + 1;
2345

2346
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2347
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2348
	spin_unlock_irq(&pgdat->lru_lock);
2349

2350 2351 2352 2353
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2354 2355 2356 2357 2358
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2359

2360 2361 2362 2363 2364 2365 2366 2367
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2368

2369 2370 2371 2372 2373
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2374
			/*
2375 2376
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2377 2378
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2379
			 */
2380 2381
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2394
		}
2395 2396 2397

		*lru_pages += size;
		nr[lru] = scan;
2398
	}
2399
}
2400

2401
/*
2402
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2403
 */
2404
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2405
			      struct scan_control *sc, unsigned long *lru_pages)
2406
{
2407
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2408
	unsigned long nr[NR_LRU_LISTS];
2409
	unsigned long targets[NR_LRU_LISTS];
2410 2411 2412 2413 2414
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2415
	bool scan_adjusted;
2416

2417
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2418

2419 2420 2421
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2436 2437 2438
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2439 2440 2441
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2442 2443 2444 2445 2446 2447
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2448
							    lruvec, sc);
2449 2450
			}
		}
2451

2452 2453
		cond_resched();

2454 2455 2456 2457 2458
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2459
		 * requested. Ensure that the anon and file LRUs are scanned
2460 2461 2462 2463 2464 2465 2466
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2467 2468 2469 2470 2471 2472 2473 2474 2475
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2507 2508 2509 2510 2511 2512 2513 2514
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2515
	if (inactive_list_is_low(lruvec, false, sc, true))
2516 2517 2518 2519
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2520
/* Use reclaim/compaction for costly allocs or under memory pressure */
2521
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2522
{
2523
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2524
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2525
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2526 2527 2528 2529 2530
		return true;

	return false;
}

2531
/*
M
Mel Gorman 已提交
2532 2533 2534 2535 2536
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2537
 */
2538
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2539 2540 2541 2542 2543 2544
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2545
	int z;
2546 2547

	/* If not in reclaim/compaction mode, stop */
2548
	if (!in_reclaim_compaction(sc))
2549 2550
		return false;

2551
	/* Consider stopping depending on scan and reclaim activity */
2552
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2553
		/*
2554
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2555 2556
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2557
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2558 2559 2560 2561 2562
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2563
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2564 2565 2566 2567 2568 2569 2570 2571 2572
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2573 2574 2575 2576 2577

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2578
	pages_for_compaction = compact_gap(sc->order);
2579
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2580
	if (get_nr_swap_pages() > 0)
2581
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2582 2583 2584 2585 2586
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2587 2588
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2589
		if (!managed_zone(zone))
2590 2591 2592
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2593
		case COMPACT_SUCCESS:
2594 2595 2596 2597 2598 2599
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2600
	}
2601
	return true;
2602 2603
}

2604 2605 2606 2607 2608 2609
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2610
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2611
{
2612
	struct reclaim_state *reclaim_state = current->reclaim_state;
2613
	unsigned long nr_reclaimed, nr_scanned;
2614
	bool reclaimable = false;
L
Linus Torvalds 已提交
2615

2616 2617 2618
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2619
			.pgdat = pgdat,
2620 2621
			.priority = sc->priority,
		};
2622
		unsigned long node_lru_pages = 0;
2623
		struct mem_cgroup *memcg;
2624

2625 2626
		memset(&sc->nr, 0, sizeof(sc->nr));

2627 2628
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2629

2630 2631
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2632
			unsigned long lru_pages;
2633
			unsigned long reclaimed;
2634
			unsigned long scanned;
2635

R
Roman Gushchin 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2650 2651
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2652
					continue;
2653
				}
2654
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2655 2656 2657
				break;
			case MEMCG_PROT_NONE:
				break;
2658 2659
			}

2660
			reclaimed = sc->nr_reclaimed;
2661
			scanned = sc->nr_scanned;
2662 2663
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2664

2665 2666
			if (sc->may_shrinkslab) {
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2667
				    memcg, sc->priority);
2668
			}
2669

2670 2671 2672 2673 2674
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2675
			/*
2676 2677
			 * Kswapd have to scan all memory cgroups to fulfill
			 * the overall scan target for the node.
2678 2679 2680 2681 2682
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2683
			 */
2684
			if (!current_is_kswapd() &&
2685
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2686 2687 2688
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2689
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2690

2691 2692 2693
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2694 2695
		}

2696 2697
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2698 2699 2700
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2701 2702 2703
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2747 2748 2749 2750 2751 2752 2753 2754
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2755 2756 2757 2758 2759 2760 2761
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2762 2763
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2764

2765
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2766
					 sc->nr_scanned - nr_scanned, sc));
2767

2768 2769 2770 2771 2772 2773 2774 2775 2776
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2777
	return reclaimable;
2778 2779
}

2780
/*
2781 2782 2783
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2784
 */
2785
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2786
{
M
Mel Gorman 已提交
2787
	unsigned long watermark;
2788
	enum compact_result suitable;
2789

2790 2791 2792 2793 2794 2795 2796
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2797

2798
	/*
2799 2800 2801 2802 2803 2804 2805
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2806
	 */
2807
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2808

2809
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2810 2811
}

L
Linus Torvalds 已提交
2812 2813 2814 2815 2816 2817 2818 2819
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2820
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2821
{
2822
	struct zoneref *z;
2823
	struct zone *zone;
2824 2825
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2826
	gfp_t orig_mask;
2827
	pg_data_t *last_pgdat = NULL;
2828

2829 2830 2831 2832 2833
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2834
	orig_mask = sc->gfp_mask;
2835
	if (buffer_heads_over_limit) {
2836
		sc->gfp_mask |= __GFP_HIGHMEM;
2837
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2838
	}
2839

2840
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2841
					sc->reclaim_idx, sc->nodemask) {
2842 2843 2844 2845
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2846
		if (global_reclaim(sc)) {
2847 2848
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2849
				continue;
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2862
			    compaction_ready(zone, sc)) {
2863 2864
				sc->compaction_ready = true;
				continue;
2865
			}
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2876 2877 2878 2879 2880 2881 2882
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2883
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2884 2885 2886 2887
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2888
			/* need some check for avoid more shrink_zone() */
2889
		}
2890

2891 2892 2893 2894
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2895
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2896
	}
2897

2898 2899 2900 2901 2902
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2903
}
2904

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2915
		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2916 2917 2918 2919
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925 2926 2927
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2928 2929 2930 2931
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2932 2933 2934
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2935
 */
2936
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2937
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2938
{
2939
	int initial_priority = sc->priority;
2940 2941 2942
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2943
retry:
2944 2945
	delayacct_freepages_start();

2946
	if (global_reclaim(sc))
2947
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2948

2949
	do {
2950 2951
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2952
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2953
		shrink_zones(zonelist, sc);
2954

2955
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2956 2957 2958 2959
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2960

2961 2962 2963 2964 2965 2966
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2967
	} while (--sc->priority >= 0);
2968

2969 2970 2971 2972 2973 2974 2975
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2976
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2977 2978
	}

2979 2980
	delayacct_freepages_end();

2981 2982 2983
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2984
	/* Aborted reclaim to try compaction? don't OOM, then */
2985
	if (sc->compaction_ready)
2986 2987
		return 1;

2988
	/* Untapped cgroup reserves?  Don't OOM, retry. */
2989
	if (sc->memcg_low_skipped) {
2990
		sc->priority = initial_priority;
2991 2992
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
2993 2994 2995
		goto retry;
	}

2996
	return 0;
L
Linus Torvalds 已提交
2997 2998
}

2999
static bool allow_direct_reclaim(pg_data_t *pgdat)
3000 3001 3002 3003 3004 3005 3006
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3007 3008 3009
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3010 3011
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3012 3013 3014 3015
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3016 3017
			continue;

3018 3019 3020 3021
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3022 3023 3024 3025
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3026 3027 3028 3029
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3030
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3042 3043 3044 3045
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3046
 */
3047
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3048 3049
					nodemask_t *nodemask)
{
3050
	struct zoneref *z;
3051
	struct zone *zone;
3052
	pg_data_t *pgdat = NULL;
3053 3054 3055 3056 3057 3058 3059 3060 3061

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3062 3063 3064 3065 3066 3067 3068 3069
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3070

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3086
					gfp_zone(gfp_mask), nodemask) {
3087 3088 3089 3090 3091
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3092
		if (allow_direct_reclaim(pgdat))
3093 3094 3095 3096 3097 3098
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3099
		goto out;
3100

3101 3102 3103
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3114
			allow_direct_reclaim(pgdat), HZ);
3115 3116

		goto check_pending;
3117 3118 3119 3120
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3121
		allow_direct_reclaim(pgdat));
3122 3123 3124 3125 3126 3127 3128

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3129 3130
}

3131
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3132
				gfp_t gfp_mask, nodemask_t *nodemask)
3133
{
3134
	unsigned long nr_reclaimed;
3135
	struct scan_control sc = {
3136
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3137
		.gfp_mask = current_gfp_context(gfp_mask),
3138
		.reclaim_idx = gfp_zone(gfp_mask),
3139 3140 3141
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3142
		.may_writepage = !laptop_mode,
3143
		.may_unmap = 1,
3144
		.may_swap = 1,
3145
		.may_shrinkslab = 1,
3146 3147
	};

G
Greg Thelen 已提交
3148 3149 3150 3151 3152 3153 3154 3155
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3156
	/*
3157 3158 3159
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3160
	 */
3161
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3162 3163
		return 1;

3164
	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3165

3166
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3167 3168 3169 3170

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3171 3172
}

A
Andrew Morton 已提交
3173
#ifdef CONFIG_MEMCG
3174

3175
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3176
						gfp_t gfp_mask, bool noswap,
3177
						pg_data_t *pgdat,
3178
						unsigned long *nr_scanned)
3179 3180
{
	struct scan_control sc = {
3181
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3182
		.target_mem_cgroup = memcg,
3183 3184
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3185
		.reclaim_idx = MAX_NR_ZONES - 1,
3186
		.may_swap = !noswap,
3187
		.may_shrinkslab = 1,
3188
	};
3189
	unsigned long lru_pages;
3190

3191 3192
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3193

3194
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3195
						      sc.gfp_mask);
3196

3197 3198 3199
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3200
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3201 3202 3203
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3204
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3205 3206 3207

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3208
	*nr_scanned = sc.nr_scanned;
3209 3210 3211
	return sc.nr_reclaimed;
}

3212
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3213
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3214
					   gfp_t gfp_mask,
3215
					   bool may_swap)
3216
{
3217
	struct zonelist *zonelist;
3218
	unsigned long nr_reclaimed;
3219
	unsigned long pflags;
3220
	int nid;
3221
	unsigned int noreclaim_flag;
3222
	struct scan_control sc = {
3223
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3224
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3225
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3226
		.reclaim_idx = MAX_NR_ZONES - 1,
3227 3228 3229 3230
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3231
		.may_swap = may_swap,
3232
		.may_shrinkslab = 1,
3233
	};
3234

3235 3236 3237 3238 3239
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3240
	nid = mem_cgroup_select_victim_node(memcg);
3241

3242
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3243

3244
	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3245

3246
	psi_memstall_enter(&pflags);
3247
	noreclaim_flag = memalloc_noreclaim_save();
3248

3249
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3250

3251
	memalloc_noreclaim_restore(noreclaim_flag);
3252
	psi_memstall_leave(&pflags);
3253 3254 3255 3256

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3257 3258 3259
}
#endif

3260
static void age_active_anon(struct pglist_data *pgdat,
3261
				struct scan_control *sc)
3262
{
3263
	struct mem_cgroup *memcg;
3264

3265 3266 3267 3268 3269
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3270
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3271

3272
		if (inactive_list_is_low(lruvec, false, sc, true))
3273
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3274
					   sc, LRU_ACTIVE_ANON);
3275 3276 3277

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3278 3279
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
	for (i = classzone_idx; i >= 0; i--) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3304 3305 3306 3307 3308
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3309
{
3310 3311 3312
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3313

3314 3315 3316 3317
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3318 3319
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3320

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3338 3339
}

3340 3341 3342 3343 3344 3345 3346 3347
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3348 3349 3350 3351 3352 3353
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3354
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3355
{
3356
	/*
3357
	 * The throttled processes are normally woken up in balance_pgdat() as
3358
	 * soon as allow_direct_reclaim() is true. But there is a potential
3359 3360 3361 3362 3363 3364 3365 3366 3367
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3368
	 */
3369 3370
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3371

3372 3373 3374 3375
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3376 3377 3378
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3379 3380
	}

3381
	return false;
3382 3383
}

3384
/*
3385 3386
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3387 3388
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3389 3390
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3391
 */
3392
static bool kswapd_shrink_node(pg_data_t *pgdat,
3393
			       struct scan_control *sc)
3394
{
3395 3396
	struct zone *zone;
	int z;
3397

3398 3399
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3400
	for (z = 0; z <= sc->reclaim_idx; z++) {
3401
		zone = pgdat->node_zones + z;
3402
		if (!managed_zone(zone))
3403
			continue;
3404

3405 3406
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3407 3408

	/*
3409 3410
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3411
	 */
3412
	shrink_node(pgdat, sc);
3413

3414
	/*
3415 3416 3417 3418 3419
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3420
	 */
3421
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3422
		sc->order = 0;
3423

3424
	return sc->nr_scanned >= sc->nr_to_reclaim;
3425 3426
}

L
Linus Torvalds 已提交
3427
/*
3428 3429 3430
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3431
 *
3432
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3433 3434
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3435
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3436
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3437 3438
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3439
 */
3440
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3441 3442
{
	int i;
3443 3444
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3445
	unsigned long pflags;
3446 3447 3448
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3449
	struct zone *zone;
3450 3451
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3452
		.order = order,
3453
		.may_unmap = 1,
3454
	};
3455

3456
	psi_memstall_enter(&pflags);
3457 3458
	__fs_reclaim_acquire();

3459
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3479
	do {
3480
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3481
		bool raise_priority = true;
3482
		bool balanced;
3483
		bool ret;
3484

3485
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3486

3487
		/*
3488 3489 3490 3491 3492 3493 3494 3495
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3496 3497 3498 3499
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3500
				if (!managed_zone(zone))
3501
					continue;
3502

3503
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3504
				break;
L
Linus Torvalds 已提交
3505 3506
			}
		}
3507

3508
		/*
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3525
		 */
3526
		if (!nr_boost_reclaim && balanced)
3527
			goto out;
A
Andrew Morton 已提交
3528

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;
		sc.may_shrinkslab = !nr_boost_reclaim;

3543 3544 3545 3546 3547 3548
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3549
		age_active_anon(pgdat, &sc);
3550

3551 3552 3553 3554
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3555
		if (sc.priority < DEF_PRIORITY - 2)
3556 3557
			sc.may_writepage = 1;

3558 3559 3560
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3561
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3562 3563 3564
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3565
		/*
3566 3567 3568
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3569
		 */
3570
		if (kswapd_shrink_node(pgdat, &sc))
3571
			raise_priority = false;
3572 3573 3574 3575 3576 3577 3578

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3579
				allow_direct_reclaim(pgdat))
3580
			wake_up_all(&pgdat->pfmemalloc_wait);
3581

3582
		/* Check if kswapd should be suspending */
3583 3584 3585 3586
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3587
			break;
3588

3589
		/*
3590 3591
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3592
		 */
3593
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3604
		if (raise_priority || !nr_reclaimed)
3605
			sc.priority--;
3606
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3607

3608 3609 3610
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3611
out:
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

		for (i = 0; i <= classzone_idx; i++) {
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
	}

3634
	snapshot_refaults(NULL, pgdat);
3635
	__fs_reclaim_release();
3636
	psi_memstall_leave(&pflags);
3637
	/*
3638 3639 3640 3641
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3642
	 */
3643
	return sc.order;
L
Linus Torvalds 已提交
3644 3645
}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3662 3663
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3664 3665 3666 3667 3668 3669 3670 3671 3672
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3673 3674 3675 3676 3677 3678 3679
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3680
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3693
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3694

3695
		remaining = schedule_timeout(HZ/10);
3696 3697 3698 3699 3700 3701 3702

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3703
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3704 3705 3706
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3707 3708 3709 3710 3711 3712 3713 3714
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3715 3716
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3728 3729 3730 3731

		if (!kthread_should_stop())
			schedule();

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3742 3743
/*
 * The background pageout daemon, started as a kernel thread
3744
 * from the init process.
L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3757 3758
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3759 3760
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3761

L
Linus Torvalds 已提交
3762 3763 3764
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3765
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3766

R
Rusty Russell 已提交
3767
	if (!cpumask_empty(cpumask))
3768
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3783
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3784
	set_freezable();
L
Linus Torvalds 已提交
3785

3786 3787
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3788
	for ( ; ; ) {
3789
		bool ret;
3790

3791 3792 3793
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3794 3795 3796
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3797

3798 3799
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3800
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3801
		pgdat->kswapd_order = 0;
3802
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3803

3804 3805 3806 3807 3808 3809 3810 3811
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3823 3824
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3825 3826 3827
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3828
	}
3829

3830
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3831
	current->reclaim_state = NULL;
3832

L
Linus Torvalds 已提交
3833 3834 3835 3836
	return 0;
}

/*
3837 3838 3839 3840 3841
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3842
 */
3843 3844
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3845 3846 3847
{
	pg_data_t *pgdat;

3848
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3849 3850
		return;

3851
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3852
		return;
3853
	pgdat = zone->zone_pgdat;
3854 3855
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3856
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3857
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3858
		return;
3859

3860 3861
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3862 3863
	    (pgdat_balanced(pgdat, order, classzone_idx) &&
	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3864 3865 3866 3867 3868 3869 3870 3871 3872
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3873
		return;
3874
	}
3875

3876 3877
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3878
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3879 3880
}

3881
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3882
/*
3883
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3884 3885 3886 3887 3888
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3889
 */
3890
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3891
{
3892 3893
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3894
		.nr_to_reclaim = nr_to_reclaim,
3895
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3896
		.reclaim_idx = MAX_NR_ZONES - 1,
3897
		.priority = DEF_PRIORITY,
3898
		.may_writepage = 1,
3899 3900
		.may_unmap = 1,
		.may_swap = 1,
3901
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3902
	};
3903
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3904 3905
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3906
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3907

3908
	fs_reclaim_acquire(sc.gfp_mask);
3909
	noreclaim_flag = memalloc_noreclaim_save();
3910 3911
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3912

3913
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3914

3915
	p->reclaim_state = NULL;
3916
	memalloc_noreclaim_restore(noreclaim_flag);
3917
	fs_reclaim_release(sc.gfp_mask);
3918

3919
	return nr_reclaimed;
L
Linus Torvalds 已提交
3920
}
3921
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3922 3923 3924 3925 3926

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3927
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3928
{
3929
	int nid;
L
Linus Torvalds 已提交
3930

3931 3932 3933
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3934

3935
		mask = cpumask_of_node(pgdat->node_id);
3936

3937 3938 3939
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3940
	}
3941
	return 0;
L
Linus Torvalds 已提交
3942 3943
}

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3959
		BUG_ON(system_state < SYSTEM_RUNNING);
3960 3961
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3962
		pgdat->kswapd = NULL;
3963 3964 3965 3966
	}
	return ret;
}

3967
/*
3968
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3969
 * hold mem_hotplug_begin/end().
3970 3971 3972 3973 3974
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3975
	if (kswapd) {
3976
		kthread_stop(kswapd);
3977 3978
		NODE_DATA(nid)->kswapd = NULL;
	}
3979 3980
}

L
Linus Torvalds 已提交
3981 3982
static int __init kswapd_init(void)
{
3983
	int nid, ret;
3984

L
Linus Torvalds 已提交
3985
	swap_setup();
3986
	for_each_node_state(nid, N_MEMORY)
3987
 		kswapd_run(nid);
3988 3989 3990 3991
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3992 3993 3994 3995
	return 0;
}

module_init(kswapd_init)
3996 3997 3998

#ifdef CONFIG_NUMA
/*
3999
 * Node reclaim mode
4000
 *
4001
 * If non-zero call node_reclaim when the number of free pages falls below
4002 4003
 * the watermarks.
 */
4004
int node_reclaim_mode __read_mostly;
4005

4006
#define RECLAIM_OFF 0
4007
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4008
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4009
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4010

4011
/*
4012
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4013 4014 4015
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4016
#define NODE_RECLAIM_PRIORITY 4
4017

4018
/*
4019
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4020 4021 4022 4023
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4024 4025 4026 4027 4028 4029
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4030
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4031
{
4032 4033 4034
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4045
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4046
{
4047 4048
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4049 4050

	/*
4051
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4052
	 * potentially reclaimable. Otherwise, we have to worry about
4053
	 * pages like swapcache and node_unmapped_file_pages() provides
4054 4055
	 * a better estimate
	 */
4056 4057
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4058
	else
4059
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4060 4061

	/* If we can't clean pages, remove dirty pages from consideration */
4062 4063
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4064 4065 4066 4067 4068 4069 4070 4071

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4072
/*
4073
 * Try to free up some pages from this node through reclaim.
4074
 */
4075
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4076
{
4077
	/* Minimum pages needed in order to stay on node */
4078
	const unsigned long nr_pages = 1 << order;
4079 4080
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4081
	unsigned int noreclaim_flag;
4082
	struct scan_control sc = {
4083
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4084
		.gfp_mask = current_gfp_context(gfp_mask),
4085
		.order = order,
4086 4087 4088
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4089
		.may_swap = 1,
4090
		.reclaim_idx = gfp_zone(gfp_mask),
4091
	};
4092

4093 4094 4095
	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
					   sc.gfp_mask);

4096
	cond_resched();
4097
	fs_reclaim_acquire(sc.gfp_mask);
4098
	/*
4099
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4100
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4101
	 * and RECLAIM_UNMAP.
4102
	 */
4103 4104
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4105 4106
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4107

4108
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4109
		/*
4110
		 * Free memory by calling shrink node with increasing
4111 4112 4113
		 * priorities until we have enough memory freed.
		 */
		do {
4114
			shrink_node(pgdat, &sc);
4115
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4116
	}
4117

4118
	p->reclaim_state = NULL;
4119 4120
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4121
	fs_reclaim_release(sc.gfp_mask);
4122 4123 4124

	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);

4125
	return sc.nr_reclaimed >= nr_pages;
4126
}
4127

4128
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4129
{
4130
	int ret;
4131 4132

	/*
4133
	 * Node reclaim reclaims unmapped file backed pages and
4134
	 * slab pages if we are over the defined limits.
4135
	 *
4136 4137
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4138 4139
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4140
	 * unmapped file backed pages.
4141
	 */
4142
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4143
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4144
		return NODE_RECLAIM_FULL;
4145 4146

	/*
4147
	 * Do not scan if the allocation should not be delayed.
4148
	 */
4149
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4150
		return NODE_RECLAIM_NOSCAN;
4151 4152

	/*
4153
	 * Only run node reclaim on the local node or on nodes that do not
4154 4155 4156 4157
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4158 4159
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4160

4161 4162
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4163

4164 4165
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4166

4167 4168 4169
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4170
	return ret;
4171
}
4172
#endif
L
Lee Schermerhorn 已提交
4173 4174 4175 4176 4177 4178

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4179
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4180 4181
 *
 * Reasons page might not be evictable:
4182
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4183
 * (2) page is part of an mlocked VMA
4184
 *
L
Lee Schermerhorn 已提交
4185
 */
4186
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4187
{
4188 4189 4190 4191 4192 4193 4194
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4195
}
4196 4197

/**
4198 4199 4200
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4201
 *
4202 4203 4204
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4205
 */
4206
void check_move_unevictable_pages(struct pagevec *pvec)
4207
{
4208
	struct lruvec *lruvec;
4209
	struct pglist_data *pgdat = NULL;
4210 4211 4212
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4213

4214 4215
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4216
		struct pglist_data *pagepgdat = page_pgdat(page);
4217

4218
		pgscanned++;
4219 4220 4221 4222 4223
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4224
		}
4225
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4226

4227 4228
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4229

4230
		if (page_evictable(page)) {
4231 4232
			enum lru_list lru = page_lru_base_type(page);

4233
			VM_BUG_ON_PAGE(PageActive(page), page);
4234
			ClearPageUnevictable(page);
4235 4236
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4237
			pgrescued++;
4238
		}
4239
	}
4240

4241
	if (pgdat) {
4242 4243
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4244
		spin_unlock_irq(&pgdat->lru_lock);
4245 4246
	}
}
4247
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);