vmscan.c 124.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 84 85 86 87 88 89 90
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

91 92 93
	/* e.g. boosted watermark reclaim leaves slabs alone */
	unsigned int may_shrinkslab:1;

94 95 96 97 98 99 100
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
101

102 103 104 105 106
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
107 108 109 110 111 112 113 114 115 116 117 118
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

119 120 121 122 123
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
124 125 126 127 128 129 130 131 132 133

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
168 169 170 171 172
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
173 174 175 176

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

177
#ifdef CONFIG_MEMCG_KMEM
178 179 180 181 182 183 184 185 186 187 188 189 190 191

/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

192 193 194 195 196 197 198 199 200
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
201
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 203 204
	if (id < 0)
		goto unlock;

205 206 207 208 209 210
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

211
		shrinker_nr_max = id + 1;
212
	}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

A
Andrew Morton 已提交
241
#ifdef CONFIG_MEMCG
242 243
static bool global_reclaim(struct scan_control *sc)
{
244
	return !sc->target_mem_cgroup;
245
}
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
267
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 269 270 271
		return true;
#endif
	return false;
}
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
295
#else
296 297 298 299
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
300 301 302 303 304

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
305 306 307 308 309 310 311 312 313 314 315 316

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
317 318
#endif

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

337 338 339 340 341 342 343
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344
{
345 346 347
	unsigned long lru_size;
	int zid;

348
	if (!mem_cgroup_disabled())
349 350 351
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352

353 354 355
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
356

357 358 359 360 361 362 363 364 365 366 367 368
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
369 370 371

}

L
Linus Torvalds 已提交
372
/*
G
Glauber Costa 已提交
373
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
374
 */
375
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
376
{
G
Glauber Costa 已提交
377 378 379 380 381 382 383 384
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
385 386 387 388 389 390

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

391
	return 0;
392 393 394 395 396

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
397 398 399 400
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
401 402 403 404 405 406
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

407 408 409
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
410

411 412
void register_shrinker_prepared(struct shrinker *shrinker)
{
413 414
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
415
#ifdef CONFIG_MEMCG_KMEM
416 417
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418
#endif
419
	up_write(&shrinker_rwsem);
420 421 422 423 424 425 426 427 428
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
429
	return 0;
L
Linus Torvalds 已提交
430
}
431
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
432 433 434 435

/*
 * Remove one
 */
436
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
437
{
438 439
	if (!shrinker->nr_deferred)
		return;
440 441
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
442 443 444
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
445
	kfree(shrinker->nr_deferred);
446
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
447
}
448
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
449 450

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
451

452
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
454 455 456 457
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
458
	long freeable;
G
Glauber Costa 已提交
459 460 461 462 463
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
464
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
465

466 467 468
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

469
	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 471
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
472 473 474 475 476 477 478 479 480

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
481 482 483 484 485 486 487 488 489 490 491 492
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
493 494 495 496 497 498 499 500 501 502 503

	/*
	 * Make sure we apply some minimal pressure on default priority
	 * even on small cgroups. Stale objects are not only consuming memory
	 * by themselves, but can also hold a reference to a dying cgroup,
	 * preventing it from being reclaimed. A dying cgroup with all
	 * corresponding structures like per-cpu stats and kmem caches
	 * can be really big, so it may lead to a significant waste of memory.
	 */
	delta = max_t(unsigned long long, delta, min(freeable, batch_size));

G
Glauber Costa 已提交
504 505
	total_scan += delta;
	if (total_scan < 0) {
506
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
507
		       shrinker->scan_objects, total_scan);
508
		total_scan = freeable;
509 510 511
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
512 513 514 515 516 517 518

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
519
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
520 521 522 523 524
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
525 526
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
527 528 529 530 531 532

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
533 534
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
535 536

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
537
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
538

539 540 541 542 543 544 545 546 547 548 549
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
550
	 * than the total number of objects on slab (freeable), we must be
551 552 553 554
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
555
	       total_scan >= freeable) {
D
Dave Chinner 已提交
556
		unsigned long ret;
557
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
558

559
		shrinkctl->nr_to_scan = nr_to_scan;
560
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
561 562 563 564
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
565

566 567 568
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
569 570 571 572

		cond_resched();
	}

573 574 575 576
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
577 578 579 580 581
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
582 583
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
584 585 586 587
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

588
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
589
	return freed;
590 591
}

592 593 594 595 596
#ifdef CONFIG_MEMCG_KMEM
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
597 598
	unsigned long ret, freed = 0;
	int i;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
620 621 622
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
623 624 625 626
			continue;
		}

		ret = do_shrink_slab(&sc, shrinker, priority);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
#else /* CONFIG_MEMCG_KMEM */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG_KMEM */

670
/**
671
 * shrink_slab - shrink slab caches
672 673
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
674
 * @memcg: memory cgroup whose slab caches to target
675
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
676
 *
677
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
678
 *
679 680
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
681
 *
682 683
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
684
 *
685 686
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
687
 *
688
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
689
 */
690 691
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
692
				 int priority)
L
Linus Torvalds 已提交
693
{
694
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
695 696
	struct shrinker *shrinker;

697
	if (!mem_cgroup_is_root(memcg))
698
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
699

700
	if (!down_read_trylock(&shrinker_rwsem))
701
		goto out;
L
Linus Torvalds 已提交
702 703

	list_for_each_entry(shrinker, &shrinker_list, list) {
704 705 706
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
707
			.memcg = memcg,
708
		};
709

710 711 712 713
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
714 715 716 717 718 719 720 721 722
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
723
	}
724

L
Linus Torvalds 已提交
725
	up_read(&shrinker_rwsem);
726 727
out:
	cond_resched();
D
Dave Chinner 已提交
728
	return freed;
L
Linus Torvalds 已提交
729 730
}

731 732 733 734 735 736 737 738
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
739
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
740
		do {
741
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
742 743 744 745 746 747 748 749 750 751 752 753
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
754 755
static inline int is_page_cache_freeable(struct page *page)
{
756 757
	/*
	 * A freeable page cache page is referenced only by the caller
758 759
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
760
	 */
761
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
762
		HPAGE_PMD_NR : 1;
763
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
764 765
}

766
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
767
{
768
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
769
		return 1;
770
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
771
		return 1;
772
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
792
	lock_page(page);
793 794
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
795 796 797
	unlock_page(page);
}

798 799 800 801 802 803 804 805 806 807 808 809
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
810
/*
A
Andrew Morton 已提交
811 812
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
813
 */
814
static pageout_t pageout(struct page *page, struct address_space *mapping,
815
			 struct scan_control *sc)
L
Linus Torvalds 已提交
816 817 818 819 820 821 822 823
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
824
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
840
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
841 842
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
843
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
844 845 846 847 848 849 850
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
851
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
852 853 854 855 856 857 858
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
859 860
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
861 862 863 864 865 866 867
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
868
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
869 870 871
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
872

L
Linus Torvalds 已提交
873 874 875 876
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
877
		trace_mm_vmscan_writepage(page);
878
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
879 880 881 882 883 884
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

885
/*
N
Nick Piggin 已提交
886 887
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
888
 */
889 890
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
891
{
892
	unsigned long flags;
893
	int refcount;
894

895 896
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
897

M
Matthew Wilcox 已提交
898
	xa_lock_irqsave(&mapping->i_pages, flags);
899
	/*
N
Nick Piggin 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
919
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
920 921
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
922
	 * and thus under the i_pages lock, then this ordering is not required.
923
	 */
924 925 926 927 928
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
929
		goto cannot_free;
930
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
931
	if (unlikely(PageDirty(page))) {
932
		page_ref_unfreeze(page, refcount);
933
		goto cannot_free;
N
Nick Piggin 已提交
934
	}
935 936 937

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
938
		mem_cgroup_swapout(page, swap);
939
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
940
		xa_unlock_irqrestore(&mapping->i_pages, flags);
941
		put_swap_page(page, swap);
N
Nick Piggin 已提交
942
	} else {
943
		void (*freepage)(struct page *);
944
		void *shadow = NULL;
945 946

		freepage = mapping->a_ops->freepage;
947 948 949 950 951 952 953 954 955
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
956 957 958 959 960
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
961
		 * same address_space.
962 963
		 */
		if (reclaimed && page_is_file_cache(page) &&
964
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
965
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
966
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
967
		xa_unlock_irqrestore(&mapping->i_pages, flags);
968 969 970

		if (freepage != NULL)
			freepage(page);
971 972 973 974 975
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
976
	xa_unlock_irqrestore(&mapping->i_pages, flags);
977 978 979
	return 0;
}

N
Nick Piggin 已提交
980 981 982 983 984 985 986 987
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
988
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
989 990 991 992 993
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
994
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
995 996 997 998 999
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
1011
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
1012 1013 1014
	put_page(page);		/* drop ref from isolate */
}

1015 1016 1017
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1018
	PAGEREF_KEEP,
1019 1020 1021 1022 1023 1024
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1025
	int referenced_ptes, referenced_page;
1026 1027
	unsigned long vm_flags;

1028 1029
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1030
	referenced_page = TestClearPageReferenced(page);
1031 1032 1033 1034 1035 1036 1037 1038

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1039
	if (referenced_ptes) {
1040
		if (PageSwapBacked(page))
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1058
		if (referenced_page || referenced_ptes > 1)
1059 1060
			return PAGEREF_ACTIVATE;

1061 1062 1063 1064 1065 1066
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1067 1068
		return PAGEREF_KEEP;
	}
1069 1070

	/* Reclaim if clean, defer dirty pages to writeback */
1071
	if (referenced_page && !PageSwapBacked(page))
1072 1073 1074
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1075 1076
}

1077 1078 1079 1080
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1081 1082
	struct address_space *mapping;

1083 1084 1085 1086
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1087 1088
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1089 1090 1091 1092 1093 1094 1095 1096
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1097 1098 1099 1100 1101 1102 1103 1104

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1105 1106
}

L
Linus Torvalds 已提交
1107
/*
A
Andrew Morton 已提交
1108
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1109
 */
A
Andrew Morton 已提交
1110
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1111
				      struct pglist_data *pgdat,
1112
				      struct scan_control *sc,
1113
				      enum ttu_flags ttu_flags,
1114
				      struct reclaim_stat *stat,
1115
				      bool force_reclaim)
L
Linus Torvalds 已提交
1116 1117
{
	LIST_HEAD(ret_pages);
1118
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
1119
	int pgactivate = 0;
1120 1121 1122 1123 1124 1125
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
1126 1127
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
1128 1129 1130 1131 1132 1133 1134

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1135
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1136
		bool dirty, writeback;
L
Linus Torvalds 已提交
1137 1138 1139 1140 1141 1142

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1143
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1144 1145
			goto keep;

1146
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1147 1148

		sc->nr_scanned++;
1149

1150
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1151
			goto activate_locked;
L
Lee Schermerhorn 已提交
1152

1153
		if (!sc->may_unmap && page_mapped(page))
1154 1155
			goto keep_locked;

L
Linus Torvalds 已提交
1156
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1157 1158
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1159 1160
			sc->nr_scanned++;

1161 1162 1163
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1164
		/*
1165
		 * The number of dirty pages determines if a node is marked
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1177 1178 1179 1180 1181 1182
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1183
		mapping = page_mapping(page);
1184
		if (((dirty || writeback) && mapping &&
1185
		     inode_write_congested(mapping->host)) ||
1186
		    (writeback && PageReclaim(page)))
1187 1188
			nr_congested++;

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1200 1201
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1202
		 *
1203
		 * 2) Global or new memcg reclaim encounters a page that is
1204 1205 1206
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1207
		 *    reclaim and continue scanning.
1208
		 *
1209 1210
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1211 1212 1213 1214 1215
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1216
		 * 3) Legacy memcg encounters a page that is already marked
1217 1218 1219 1220
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1221 1222 1223 1224 1225 1226 1227 1228 1229
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1230
		 */
1231
		if (PageWriteback(page)) {
1232 1233 1234
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1235
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1236
				nr_immediate++;
1237
				goto activate_locked;
1238 1239

			/* Case 2 above */
1240
			} else if (sane_reclaim(sc) ||
1241
			    !PageReclaim(page) || !may_enter_fs) {
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1254
				nr_writeback++;
1255
				goto activate_locked;
1256 1257 1258

			/* Case 3 above */
			} else {
1259
				unlock_page(page);
1260
				wait_on_page_writeback(page);
1261 1262 1263
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1264
			}
1265
		}
L
Linus Torvalds 已提交
1266

1267 1268 1269
		if (!force_reclaim)
			references = page_check_references(page, sc);

1270 1271
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1272
			goto activate_locked;
1273
		case PAGEREF_KEEP:
1274
			nr_ref_keep++;
1275
			goto keep_locked;
1276 1277 1278 1279
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1280 1281 1282 1283

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1284
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1285
		 */
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1311 1312 1313
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1314 1315 1316
					if (!add_to_swap(page))
						goto activate_locked;
				}
1317

1318
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1319

1320 1321 1322
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1323 1324 1325 1326
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1327
		}
L
Linus Torvalds 已提交
1328 1329 1330 1331 1332

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1333
		if (page_mapped(page)) {
1334 1335 1336 1337 1338
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1339
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1340 1341 1342 1343 1344
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1345
			/*
1346 1347 1348 1349 1350 1351 1352 1353
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1354
			 */
1355
			if (page_is_file_cache(page) &&
1356 1357
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1358 1359 1360 1361 1362 1363
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1364
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1365 1366
				SetPageReclaim(page);

1367
				goto activate_locked;
1368 1369
			}

1370
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1371
				goto keep_locked;
1372
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1373
				goto keep_locked;
1374
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1375 1376
				goto keep_locked;

1377 1378 1379 1380 1381 1382
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1383
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1384 1385 1386 1387 1388
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1389
				if (PageWriteback(page))
1390
					goto keep;
1391
				if (PageDirty(page))
L
Linus Torvalds 已提交
1392
					goto keep;
1393

L
Linus Torvalds 已提交
1394 1395 1396 1397
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1398
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1418
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1429
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1430 1431
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1448 1449
		}

S
Shaohua Li 已提交
1450 1451 1452 1453 1454 1455 1456 1457
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1458

S
Shaohua Li 已提交
1459
			count_vm_event(PGLAZYFREED);
1460
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1461 1462
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1463 1464 1465 1466 1467 1468 1469
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1470
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1471
free_it:
1472
		nr_reclaimed++;
1473 1474 1475 1476 1477

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1478 1479 1480 1481 1482
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1483 1484 1485
		continue;

activate_locked:
1486
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1487 1488
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1489
			try_to_free_swap(page);
1490
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1491 1492 1493
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1494
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1495
		}
L
Linus Torvalds 已提交
1496 1497 1498 1499
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1500
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1501
	}
1502

1503
	mem_cgroup_uncharge_list(&free_pages);
1504
	try_to_unmap_flush();
1505
	free_unref_page_list(&free_pages);
1506

L
Linus Torvalds 已提交
1507
	list_splice(&ret_pages, page_list);
1508
	count_vm_events(PGACTIVATE, pgactivate);
1509

1510 1511 1512 1513 1514 1515
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1516 1517 1518
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1519
	}
1520
	return nr_reclaimed;
L
Linus Torvalds 已提交
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1531
	unsigned long ret;
1532 1533 1534 1535
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1536
		if (page_is_file_cache(page) && !PageDirty(page) &&
1537
		    !__PageMovable(page)) {
1538 1539 1540 1541 1542
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1543
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1544
			TTU_IGNORE_ACCESS, NULL, true);
1545
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1546
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1547 1548 1549
	return ret;
}

A
Andy Whitcroft 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1560
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1561 1562 1563 1564 1565 1566 1567
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1568 1569
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1570 1571
		return ret;

A
Andy Whitcroft 已提交
1572
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1573

1574 1575 1576 1577 1578 1579 1580 1581
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1582
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1583 1584 1585 1586 1587 1588
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1589
			bool migrate_dirty;
1590 1591 1592 1593

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1594 1595 1596 1597 1598
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1599
			 */
1600 1601 1602
			if (!trylock_page(page))
				return ret;

1603
			mapping = page_mapping(page);
1604
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1605 1606
			unlock_page(page);
			if (!migrate_dirty)
1607 1608 1609
				return ret;
		}
	}
1610

1611 1612 1613
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1627 1628 1629 1630 1631 1632

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1633
			enum lru_list lru, unsigned long *nr_zone_taken)
1634 1635 1636 1637 1638 1639 1640 1641 1642
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1643
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1644
#endif
1645 1646
	}

1647 1648
}

L
Linus Torvalds 已提交
1649
/*
1650
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656 1657 1658
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1659
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1660
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1661
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1662
 * @nr_scanned:	The number of pages that were scanned.
1663
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1664
 * @mode:	One of the LRU isolation modes
1665
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1666 1667 1668
 *
 * returns how many pages were moved onto *@dst.
 */
1669
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1670
		struct lruvec *lruvec, struct list_head *dst,
1671
		unsigned long *nr_scanned, struct scan_control *sc,
1672
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1673
{
H
Hugh Dickins 已提交
1674
	struct list_head *src = &lruvec->lists[lru];
1675
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1676
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1677
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1678
	unsigned long skipped = 0;
1679
	unsigned long scan, total_scan, nr_pages;
1680
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1681

1682 1683 1684 1685
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1686 1687
		struct page *page;

L
Linus Torvalds 已提交
1688 1689 1690
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1691
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1692

1693 1694
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1695
			nr_skipped[page_zonenum(page)]++;
1696 1697 1698
			continue;
		}

1699 1700 1701 1702 1703 1704 1705
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1706
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1707
		case 0:
M
Mel Gorman 已提交
1708 1709 1710
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1711 1712 1713 1714 1715 1716 1717
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1718

A
Andy Whitcroft 已提交
1719 1720 1721
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1722 1723
	}

1724 1725 1726 1727 1728 1729 1730
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1731 1732 1733
	if (!list_empty(&pages_skipped)) {
		int zid;

1734
		list_splice(&pages_skipped, src);
1735 1736 1737 1738 1739
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1740
			skipped += nr_skipped[zid];
1741 1742
		}
	}
1743
	*nr_scanned = total_scan;
1744
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1745
				    total_scan, skipped, nr_taken, mode, lru);
1746
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1747 1748 1749
	return nr_taken;
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1761 1762 1763
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1764 1765 1766 1767 1768
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1769
 *
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1780
	VM_BUG_ON_PAGE(!page_count(page), page);
1781
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1782

1783 1784
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1785
		struct lruvec *lruvec;
1786

1787
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1788
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1789
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1790
			int lru = page_lru(page);
1791
			get_page(page);
1792
			ClearPageLRU(page);
1793 1794
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1795
		}
1796
		spin_unlock_irq(zone_lru_lock(zone));
1797 1798 1799 1800
	}
	return ret;
}

1801
/*
F
Fengguang Wu 已提交
1802 1803 1804 1805 1806
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1807
 */
M
Mel Gorman 已提交
1808
static int too_many_isolated(struct pglist_data *pgdat, int file,
1809 1810 1811 1812 1813 1814 1815
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1816
	if (!sane_reclaim(sc))
1817 1818 1819
		return 0;

	if (file) {
M
Mel Gorman 已提交
1820 1821
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1822
	} else {
M
Mel Gorman 已提交
1823 1824
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1825 1826
	}

1827 1828 1829 1830 1831
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1832
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1833 1834
		inactive >>= 3;

1835 1836 1837
	return isolated > inactive;
}

1838
static noinline_for_stack void
H
Hugh Dickins 已提交
1839
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1840
{
1841
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1842
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1843
	LIST_HEAD(pages_to_free);
1844 1845 1846 1847 1848

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1849
		struct page *page = lru_to_page(page_list);
1850
		int lru;
1851

1852
		VM_BUG_ON_PAGE(PageLRU(page), page);
1853
		list_del(&page->lru);
1854
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1855
			spin_unlock_irq(&pgdat->lru_lock);
1856
			putback_lru_page(page);
M
Mel Gorman 已提交
1857
			spin_lock_irq(&pgdat->lru_lock);
1858 1859
			continue;
		}
1860

M
Mel Gorman 已提交
1861
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1862

1863
		SetPageLRU(page);
1864
		lru = page_lru(page);
1865 1866
		add_page_to_lru_list(page, lruvec, lru);

1867 1868
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1869 1870
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1871
		}
1872 1873 1874
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1875
			del_page_from_lru_list(page, lruvec, lru);
1876 1877

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1878
				spin_unlock_irq(&pgdat->lru_lock);
1879
				mem_cgroup_uncharge(page);
1880
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1881
				spin_lock_irq(&pgdat->lru_lock);
1882 1883
			} else
				list_add(&page->lru, &pages_to_free);
1884 1885 1886
		}
	}

1887 1888 1889 1890
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1891 1892
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1906
/*
1907
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1908
 * of reclaimed pages
L
Linus Torvalds 已提交
1909
 */
1910
static noinline_for_stack unsigned long
1911
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1912
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1913 1914
{
	LIST_HEAD(page_list);
1915
	unsigned long nr_scanned;
1916
	unsigned long nr_reclaimed = 0;
1917
	unsigned long nr_taken;
1918
	struct reclaim_stat stat = {};
1919
	isolate_mode_t isolate_mode = 0;
1920
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1921
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1922
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1923
	bool stalled = false;
1924

M
Mel Gorman 已提交
1925
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1926 1927 1928 1929 1930 1931
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1932 1933 1934 1935 1936 1937

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1938
	lru_add_drain();
1939 1940

	if (!sc->may_unmap)
1941
		isolate_mode |= ISOLATE_UNMAPPED;
1942

M
Mel Gorman 已提交
1943
	spin_lock_irq(&pgdat->lru_lock);
1944

1945 1946
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1947

M
Mel Gorman 已提交
1948
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1949
	reclaim_stat->recent_scanned[file] += nr_taken;
1950

1951 1952
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1953
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1954 1955 1956 1957
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1958
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1959 1960
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1961
	}
M
Mel Gorman 已提交
1962
	spin_unlock_irq(&pgdat->lru_lock);
1963

1964
	if (nr_taken == 0)
1965
		return 0;
A
Andy Whitcroft 已提交
1966

S
Shaohua Li 已提交
1967
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1968
				&stat, false);
1969

M
Mel Gorman 已提交
1970
	spin_lock_irq(&pgdat->lru_lock);
1971

1972 1973
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1974
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1975 1976 1977 1978
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1979
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1980 1981
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1982
	}
N
Nick Piggin 已提交
1983

1984
	putback_inactive_pages(lruvec, &page_list);
1985

M
Mel Gorman 已提交
1986
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1987

M
Mel Gorman 已提交
1988
	spin_unlock_irq(&pgdat->lru_lock);
1989

1990
	mem_cgroup_uncharge_list(&page_list);
1991
	free_unref_page_list(&page_list);
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

2007 2008 2009 2010 2011 2012 2013 2014
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2015

M
Mel Gorman 已提交
2016
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2017
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2018
	return nr_reclaimed;
L
Linus Torvalds 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
2028
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
2029
 * the pages are mapped, the processing is slow (page_referenced()) so we
2030
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
2031 2032 2033 2034
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
2035
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
2036
 * But we had to alter page->flags anyway.
2037 2038
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
2039
 */
2040

2041
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2042
				     struct list_head *list,
2043
				     struct list_head *pages_to_free,
2044 2045
				     enum lru_list lru)
{
M
Mel Gorman 已提交
2046
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2047
	struct page *page;
2048
	int nr_pages;
2049
	int nr_moved = 0;
2050 2051 2052

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
2053
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2054

2055
		VM_BUG_ON_PAGE(PageLRU(page), page);
2056 2057
		SetPageLRU(page);

2058
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
2059
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2060
		list_move(&page->lru, &lruvec->lists[lru]);
2061

2062 2063 2064
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
2065
			del_page_from_lru_list(page, lruvec, lru);
2066 2067

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
2068
				spin_unlock_irq(&pgdat->lru_lock);
2069
				mem_cgroup_uncharge(page);
2070
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
2071
				spin_lock_irq(&pgdat->lru_lock);
2072 2073
			} else
				list_add(&page->lru, pages_to_free);
2074 2075
		} else {
			nr_moved += nr_pages;
2076 2077
		}
	}
2078

2079
	if (!is_active_lru(lru)) {
2080
		__count_vm_events(PGDEACTIVATE, nr_moved);
2081 2082 2083
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
2084 2085

	return nr_moved;
2086
}
2087

H
Hugh Dickins 已提交
2088
static void shrink_active_list(unsigned long nr_to_scan,
2089
			       struct lruvec *lruvec,
2090
			       struct scan_control *sc,
2091
			       enum lru_list lru)
L
Linus Torvalds 已提交
2092
{
2093
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2094
	unsigned long nr_scanned;
2095
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2096
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2097
	LIST_HEAD(l_active);
2098
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2099
	struct page *page;
2100
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2101 2102
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2103
	isolate_mode_t isolate_mode = 0;
2104
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2105
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2106 2107

	lru_add_drain();
2108 2109

	if (!sc->may_unmap)
2110
		isolate_mode |= ISOLATE_UNMAPPED;
2111

M
Mel Gorman 已提交
2112
	spin_lock_irq(&pgdat->lru_lock);
2113

2114 2115
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
2116

M
Mel Gorman 已提交
2117
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2118
	reclaim_stat->recent_scanned[file] += nr_taken;
2119

M
Mel Gorman 已提交
2120
	__count_vm_events(PGREFILL, nr_scanned);
2121
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2122

M
Mel Gorman 已提交
2123
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2124 2125 2126 2127 2128

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2129

2130
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2131 2132 2133 2134
			putback_lru_page(page);
			continue;
		}

2135 2136 2137 2138 2139 2140 2141 2142
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2143 2144
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2145
			nr_rotated += hpage_nr_pages(page);
2146 2147 2148 2149 2150 2151 2152 2153 2154
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2155
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2156 2157 2158 2159
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2160

2161
		ClearPageActive(page);	/* we are de-activating */
2162
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2163 2164 2165
		list_add(&page->lru, &l_inactive);
	}

2166
	/*
2167
	 * Move pages back to the lru list.
2168
	 */
M
Mel Gorman 已提交
2169
	spin_lock_irq(&pgdat->lru_lock);
2170
	/*
2171 2172 2173
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2174
	 * get_scan_count.
2175
	 */
2176
	reclaim_stat->recent_rotated[file] += nr_rotated;
2177

2178 2179
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2180 2181
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2182

2183
	mem_cgroup_uncharge_list(&l_hold);
2184
	free_unref_page_list(&l_hold);
2185 2186
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2187 2188
}

2189 2190 2191
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2192
 *
2193 2194 2195
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2196
 *
2197 2198
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2199
 *
2200 2201
 * If that fails and refaulting is observed, the inactive list grows.
 *
2202
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2203
 * on this LRU, maintained by the pageout code. An inactive_ratio
2204
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2205
 *
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2216
 */
2217
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2218 2219
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2220
{
2221
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2222 2223 2224 2225 2226
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2227
	unsigned long gb;
2228

2229 2230 2231 2232 2233 2234
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2235

2236 2237
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2238

2239
	if (memcg)
2240
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2241
	else
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2258

2259 2260 2261 2262 2263
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2264

2265
	return inactive * inactive_ratio < active;
2266 2267
}

2268
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2269 2270
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2271
{
2272
	if (is_active_lru(lru)) {
2273 2274
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2275
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2276 2277 2278
		return 0;
	}

2279
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2280 2281
}

2282 2283 2284 2285 2286 2287 2288
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2289 2290 2291 2292 2293 2294
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2295 2296
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2297
 */
2298
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2299 2300
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2301
{
2302
	int swappiness = mem_cgroup_swappiness(memcg);
2303 2304 2305
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2306
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2307
	unsigned long anon_prio, file_prio;
2308
	enum scan_balance scan_balance;
2309
	unsigned long anon, file;
2310
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2311
	enum lru_list lru;
2312 2313

	/* If we have no swap space, do not bother scanning anon pages. */
2314
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2315
		scan_balance = SCAN_FILE;
2316 2317
		goto out;
	}
2318

2319 2320 2321 2322 2323 2324 2325
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2326
	if (!global_reclaim(sc) && !swappiness) {
2327
		scan_balance = SCAN_FILE;
2328 2329 2330 2331 2332 2333 2334 2335
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2336
	if (!sc->priority && swappiness) {
2337
		scan_balance = SCAN_EQUAL;
2338 2339 2340
		goto out;
	}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2351 2352 2353 2354
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2355

M
Mel Gorman 已提交
2356 2357 2358 2359 2360 2361
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2362
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2363 2364 2365 2366
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2367

M
Mel Gorman 已提交
2368
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2380 2381 2382
		}
	}

2383
	/*
2384 2385 2386 2387 2388 2389 2390
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2391
	 */
2392
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2393
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2394
		scan_balance = SCAN_FILE;
2395 2396 2397
		goto out;
	}

2398 2399
	scan_balance = SCAN_FRACT;

2400 2401 2402 2403
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2404
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2405
	file_prio = 200 - anon_prio;
2406

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2418

2419 2420 2421 2422
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2423

M
Mel Gorman 已提交
2424
	spin_lock_irq(&pgdat->lru_lock);
2425 2426 2427
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2428 2429
	}

2430 2431 2432
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2433 2434 2435
	}

	/*
2436 2437 2438
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2439
	 */
2440
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2441
	ap /= reclaim_stat->recent_rotated[0] + 1;
2442

2443
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2444
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2445
	spin_unlock_irq(&pgdat->lru_lock);
2446

2447 2448 2449 2450
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2451 2452 2453 2454 2455
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2456

2457 2458 2459 2460 2461 2462 2463 2464
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2465

2466 2467 2468 2469 2470
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2471
			/*
2472 2473
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2474 2475
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2476
			 */
2477 2478
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2491
		}
2492 2493 2494

		*lru_pages += size;
		nr[lru] = scan;
2495
	}
2496
}
2497

2498
/*
2499
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2500
 */
2501
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2502
			      struct scan_control *sc, unsigned long *lru_pages)
2503
{
2504
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2505
	unsigned long nr[NR_LRU_LISTS];
2506
	unsigned long targets[NR_LRU_LISTS];
2507 2508 2509 2510 2511
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2512
	bool scan_adjusted;
2513

2514
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2515

2516 2517 2518
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2533 2534 2535
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2536 2537 2538
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2539 2540 2541 2542 2543 2544
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2545
							    lruvec, memcg, sc);
2546 2547
			}
		}
2548

2549 2550
		cond_resched();

2551 2552 2553 2554 2555
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2556
		 * requested. Ensure that the anon and file LRUs are scanned
2557 2558 2559 2560 2561 2562 2563
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2564 2565 2566 2567 2568 2569 2570 2571 2572
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2604 2605 2606 2607 2608 2609 2610 2611
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2612
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2613 2614 2615 2616
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2617
/* Use reclaim/compaction for costly allocs or under memory pressure */
2618
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2619
{
2620
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2621
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2622
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2623 2624 2625 2626 2627
		return true;

	return false;
}

2628
/*
M
Mel Gorman 已提交
2629 2630 2631 2632 2633
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2634
 */
2635
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2636 2637 2638 2639 2640 2641
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2642
	int z;
2643 2644

	/* If not in reclaim/compaction mode, stop */
2645
	if (!in_reclaim_compaction(sc))
2646 2647
		return false;

2648
	/* Consider stopping depending on scan and reclaim activity */
2649
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2650
		/*
2651
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2652 2653
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2654
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2655 2656 2657 2658 2659
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2660
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2661 2662 2663 2664 2665 2666 2667 2668 2669
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2670 2671 2672 2673 2674

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2675
	pages_for_compaction = compact_gap(sc->order);
2676
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2677
	if (get_nr_swap_pages() > 0)
2678
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2679 2680 2681 2682 2683
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2684 2685
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2686
		if (!managed_zone(zone))
2687 2688 2689
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2690
		case COMPACT_SUCCESS:
2691 2692 2693 2694 2695 2696
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2697
	}
2698
	return true;
2699 2700
}

2701 2702 2703 2704 2705 2706
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2707
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2708
{
2709
	struct reclaim_state *reclaim_state = current->reclaim_state;
2710
	unsigned long nr_reclaimed, nr_scanned;
2711
	bool reclaimable = false;
L
Linus Torvalds 已提交
2712

2713 2714 2715
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2716
			.pgdat = pgdat,
2717 2718
			.priority = sc->priority,
		};
2719
		unsigned long node_lru_pages = 0;
2720
		struct mem_cgroup *memcg;
2721

2722 2723
		memset(&sc->nr, 0, sizeof(sc->nr));

2724 2725
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2726

2727 2728
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2729
			unsigned long lru_pages;
2730
			unsigned long reclaimed;
2731
			unsigned long scanned;
2732

R
Roman Gushchin 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2747 2748
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2749
					continue;
2750
				}
2751
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2752 2753 2754
				break;
			case MEMCG_PROT_NONE:
				break;
2755 2756
			}

2757
			reclaimed = sc->nr_reclaimed;
2758
			scanned = sc->nr_scanned;
2759 2760
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2761

2762 2763
			if (sc->may_shrinkslab) {
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2764
				    memcg, sc->priority);
2765
			}
2766

2767 2768 2769 2770 2771
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2772
			/*
2773 2774
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2775
			 * node.
2776 2777 2778 2779 2780
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2781
			 */
2782 2783
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2784 2785 2786
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2787
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2788

2789 2790 2791
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2792 2793
		}

2794 2795
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2796 2797 2798
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2799 2800 2801
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2845 2846 2847 2848 2849 2850 2851 2852
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2853 2854 2855 2856 2857 2858 2859
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2860 2861
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2862

2863
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2864
					 sc->nr_scanned - nr_scanned, sc));
2865

2866 2867 2868 2869 2870 2871 2872 2873 2874
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2875
	return reclaimable;
2876 2877
}

2878
/*
2879 2880 2881
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2882
 */
2883
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2884
{
M
Mel Gorman 已提交
2885
	unsigned long watermark;
2886
	enum compact_result suitable;
2887

2888 2889 2890 2891 2892 2893 2894
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2895

2896
	/*
2897 2898 2899 2900 2901 2902 2903
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2904
	 */
2905
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2906

2907
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2908 2909
}

L
Linus Torvalds 已提交
2910 2911 2912 2913 2914 2915 2916 2917
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2918
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2919
{
2920
	struct zoneref *z;
2921
	struct zone *zone;
2922 2923
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2924
	gfp_t orig_mask;
2925
	pg_data_t *last_pgdat = NULL;
2926

2927 2928 2929 2930 2931
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2932
	orig_mask = sc->gfp_mask;
2933
	if (buffer_heads_over_limit) {
2934
		sc->gfp_mask |= __GFP_HIGHMEM;
2935
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2936
	}
2937

2938
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2939
					sc->reclaim_idx, sc->nodemask) {
2940 2941 2942 2943
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2944
		if (global_reclaim(sc)) {
2945 2946
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2947
				continue;
2948

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2960
			    compaction_ready(zone, sc)) {
2961 2962
				sc->compaction_ready = true;
				continue;
2963
			}
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2974 2975 2976 2977 2978 2979 2980
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2981
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2982 2983 2984 2985
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2986
			/* need some check for avoid more shrink_zone() */
2987
		}
2988

2989 2990 2991 2992
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2993
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2994
	}
2995

2996 2997 2998 2999 3000
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
3001
}
3002

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
3013
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
3014 3015 3016 3017 3018 3019 3020 3021
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
3022 3023 3024 3025 3026 3027 3028 3029
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3030 3031 3032 3033
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3034 3035 3036
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3037
 */
3038
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3039
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3040
{
3041
	int initial_priority = sc->priority;
3042 3043 3044
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3045
retry:
3046 3047
	delayacct_freepages_start();

3048
	if (global_reclaim(sc))
3049
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3050

3051
	do {
3052 3053
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3054
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3055
		shrink_zones(zonelist, sc);
3056

3057
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3058 3059 3060 3061
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3062

3063 3064 3065 3066 3067 3068
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3069
	} while (--sc->priority >= 0);
3070

3071 3072 3073 3074 3075 3076 3077
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3078
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3079 3080
	}

3081 3082
	delayacct_freepages_end();

3083 3084 3085
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3086
	/* Aborted reclaim to try compaction? don't OOM, then */
3087
	if (sc->compaction_ready)
3088 3089
		return 1;

3090
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3091
	if (sc->memcg_low_skipped) {
3092
		sc->priority = initial_priority;
3093 3094
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3095 3096 3097
		goto retry;
	}

3098
	return 0;
L
Linus Torvalds 已提交
3099 3100
}

3101
static bool allow_direct_reclaim(pg_data_t *pgdat)
3102 3103 3104 3105 3106 3107 3108
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3109 3110 3111
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3112 3113
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3114 3115 3116 3117
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3118 3119
			continue;

3120 3121 3122 3123
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3124 3125 3126 3127
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3128 3129 3130 3131
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3132
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3144 3145 3146 3147
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3148
 */
3149
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3150 3151
					nodemask_t *nodemask)
{
3152
	struct zoneref *z;
3153
	struct zone *zone;
3154
	pg_data_t *pgdat = NULL;
3155 3156 3157 3158 3159 3160 3161 3162 3163

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3164 3165 3166 3167 3168 3169 3170 3171
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3188
					gfp_zone(gfp_mask), nodemask) {
3189 3190 3191 3192 3193
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3194
		if (allow_direct_reclaim(pgdat))
3195 3196 3197 3198 3199 3200
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3201
		goto out;
3202

3203 3204 3205
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3216
			allow_direct_reclaim(pgdat), HZ);
3217 3218

		goto check_pending;
3219 3220 3221 3222
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3223
		allow_direct_reclaim(pgdat));
3224 3225 3226 3227 3228 3229 3230

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3231 3232
}

3233
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3234
				gfp_t gfp_mask, nodemask_t *nodemask)
3235
{
3236
	unsigned long nr_reclaimed;
3237
	struct scan_control sc = {
3238
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3239
		.gfp_mask = current_gfp_context(gfp_mask),
3240
		.reclaim_idx = gfp_zone(gfp_mask),
3241 3242 3243
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3244
		.may_writepage = !laptop_mode,
3245
		.may_unmap = 1,
3246
		.may_swap = 1,
3247
		.may_shrinkslab = 1,
3248 3249
	};

G
Greg Thelen 已提交
3250 3251 3252 3253 3254 3255 3256 3257
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3258
	/*
3259 3260 3261
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3262
	 */
3263
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3264 3265
		return 1;

3266 3267
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3268
				sc.gfp_mask,
3269
				sc.reclaim_idx);
3270

3271
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3272 3273 3274 3275

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3276 3277
}

A
Andrew Morton 已提交
3278
#ifdef CONFIG_MEMCG
3279

3280
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3281
						gfp_t gfp_mask, bool noswap,
3282
						pg_data_t *pgdat,
3283
						unsigned long *nr_scanned)
3284 3285
{
	struct scan_control sc = {
3286
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3287
		.target_mem_cgroup = memcg,
3288 3289
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3290
		.reclaim_idx = MAX_NR_ZONES - 1,
3291
		.may_swap = !noswap,
3292
		.may_shrinkslab = 1,
3293
	};
3294
	unsigned long lru_pages;
3295

3296 3297
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3298

3299
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3300
						      sc.may_writepage,
3301 3302
						      sc.gfp_mask,
						      sc.reclaim_idx);
3303

3304 3305 3306
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3307
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3308 3309 3310
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3311
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3312 3313 3314

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3315
	*nr_scanned = sc.nr_scanned;
3316 3317 3318
	return sc.nr_reclaimed;
}

3319
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3320
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3321
					   gfp_t gfp_mask,
3322
					   bool may_swap)
3323
{
3324
	struct zonelist *zonelist;
3325
	unsigned long nr_reclaimed;
3326
	unsigned long pflags;
3327
	int nid;
3328
	unsigned int noreclaim_flag;
3329
	struct scan_control sc = {
3330
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3331
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3332
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3333
		.reclaim_idx = MAX_NR_ZONES - 1,
3334 3335 3336 3337
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3338
		.may_swap = may_swap,
3339
		.may_shrinkslab = 1,
3340
	};
3341

3342 3343 3344 3345 3346
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3347
	nid = mem_cgroup_select_victim_node(memcg);
3348

3349
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3350 3351 3352

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3353 3354
					    sc.gfp_mask,
					    sc.reclaim_idx);
3355

3356
	psi_memstall_enter(&pflags);
3357
	noreclaim_flag = memalloc_noreclaim_save();
3358

3359
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3360

3361
	memalloc_noreclaim_restore(noreclaim_flag);
3362
	psi_memstall_leave(&pflags);
3363 3364 3365 3366

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3367 3368 3369
}
#endif

3370
static void age_active_anon(struct pglist_data *pgdat,
3371
				struct scan_control *sc)
3372
{
3373
	struct mem_cgroup *memcg;
3374

3375 3376 3377 3378 3379
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3380
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3381

3382
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3383
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3384
					   sc, LRU_ACTIVE_ANON);
3385 3386 3387

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3388 3389
}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
	for (i = classzone_idx; i >= 0; i--) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3414 3415 3416 3417 3418
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3419
{
3420 3421 3422
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3423

3424 3425 3426 3427
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3428 3429
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3430

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3448 3449
}

3450 3451 3452 3453 3454 3455 3456 3457
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3458 3459 3460 3461 3462 3463
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3464
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3465
{
3466
	/*
3467
	 * The throttled processes are normally woken up in balance_pgdat() as
3468
	 * soon as allow_direct_reclaim() is true. But there is a potential
3469 3470 3471 3472 3473 3474 3475 3476 3477
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3478
	 */
3479 3480
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3481

3482 3483 3484 3485
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3486 3487 3488
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3489 3490
	}

3491
	return false;
3492 3493
}

3494
/*
3495 3496
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3497 3498
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3499 3500
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3501
 */
3502
static bool kswapd_shrink_node(pg_data_t *pgdat,
3503
			       struct scan_control *sc)
3504
{
3505 3506
	struct zone *zone;
	int z;
3507

3508 3509
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3510
	for (z = 0; z <= sc->reclaim_idx; z++) {
3511
		zone = pgdat->node_zones + z;
3512
		if (!managed_zone(zone))
3513
			continue;
3514

3515 3516
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3517 3518

	/*
3519 3520
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3521
	 */
3522
	shrink_node(pgdat, sc);
3523

3524
	/*
3525 3526 3527 3528 3529
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3530
	 */
3531
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3532
		sc->order = 0;
3533

3534
	return sc->nr_scanned >= sc->nr_to_reclaim;
3535 3536
}

L
Linus Torvalds 已提交
3537
/*
3538 3539 3540
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3541
 *
3542
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3543 3544
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3545
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3546 3547 3548
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3549
 */
3550
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3551 3552
{
	int i;
3553 3554
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3555
	unsigned long pflags;
3556 3557 3558
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3559
	struct zone *zone;
3560 3561
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3562
		.order = order,
3563
		.may_unmap = 1,
3564
	};
3565

3566
	psi_memstall_enter(&pflags);
3567 3568
	__fs_reclaim_acquire();

3569
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3570

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3589
	do {
3590
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3591
		bool raise_priority = true;
3592
		bool balanced;
3593
		bool ret;
3594

3595
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3596

3597
		/*
3598 3599 3600 3601 3602 3603 3604 3605
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3606 3607 3608 3609
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3610
				if (!managed_zone(zone))
3611
					continue;
3612

3613
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3614
				break;
L
Linus Torvalds 已提交
3615 3616
			}
		}
3617

3618
		/*
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3635
		 */
3636
		if (!nr_boost_reclaim && balanced)
3637
			goto out;
A
Andrew Morton 已提交
3638

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;
		sc.may_shrinkslab = !nr_boost_reclaim;

3653 3654 3655 3656 3657 3658
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3659
		age_active_anon(pgdat, &sc);
3660

3661 3662 3663 3664
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3665
		if (sc.priority < DEF_PRIORITY - 2)
3666 3667
			sc.may_writepage = 1;

3668 3669 3670
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3671
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3672 3673 3674
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3675
		/*
3676 3677 3678
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3679
		 */
3680
		if (kswapd_shrink_node(pgdat, &sc))
3681
			raise_priority = false;
3682 3683 3684 3685 3686 3687 3688

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3689
				allow_direct_reclaim(pgdat))
3690
			wake_up_all(&pgdat->pfmemalloc_wait);
3691

3692
		/* Check if kswapd should be suspending */
3693 3694 3695 3696
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3697
			break;
3698

3699
		/*
3700 3701
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3702
		 */
3703
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3714
		if (raise_priority || !nr_reclaimed)
3715
			sc.priority--;
3716
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3717

3718 3719 3720
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3721
out:
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

		for (i = 0; i <= classzone_idx; i++) {
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
	}

3744
	snapshot_refaults(NULL, pgdat);
3745
	__fs_reclaim_release();
3746
	psi_memstall_leave(&pflags);
3747
	/*
3748 3749 3750 3751
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3752
	 */
3753
	return sc.order;
L
Linus Torvalds 已提交
3754 3755
}

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3772 3773
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3774 3775 3776 3777 3778 3779 3780 3781 3782
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3783 3784 3785 3786 3787 3788 3789
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3790
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3803
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3804

3805
		remaining = schedule_timeout(HZ/10);
3806 3807 3808 3809 3810 3811 3812

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3813
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3814 3815 3816
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3817 3818 3819 3820 3821 3822 3823 3824
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3825 3826
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3838 3839 3840 3841

		if (!kthread_should_stop())
			schedule();

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3852 3853
/*
 * The background pageout daemon, started as a kernel thread
3854
 * from the init process.
L
Linus Torvalds 已提交
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3867 3868
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3869 3870
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3871

L
Linus Torvalds 已提交
3872 3873 3874
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3875
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3876

R
Rusty Russell 已提交
3877
	if (!cpumask_empty(cpumask))
3878
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3893
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3894
	set_freezable();
L
Linus Torvalds 已提交
3895

3896 3897
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3898
	for ( ; ; ) {
3899
		bool ret;
3900

3901 3902 3903
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3904 3905 3906
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3907

3908 3909
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3910
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3911
		pgdat->kswapd_order = 0;
3912
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3913

3914 3915 3916 3917 3918 3919 3920 3921
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3933 3934
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3935 3936 3937
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3938
	}
3939

3940
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3941
	current->reclaim_state = NULL;
3942

L
Linus Torvalds 已提交
3943 3944 3945 3946
	return 0;
}

/*
3947 3948 3949 3950 3951
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3952
 */
3953 3954
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3955 3956 3957
{
	pg_data_t *pgdat;

3958
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3959 3960
		return;

3961
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3962
		return;
3963
	pgdat = zone->zone_pgdat;
3964 3965
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3966
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3967
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3968
		return;
3969

3970 3971
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3972 3973
	    (pgdat_balanced(pgdat, order, classzone_idx) &&
	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3974 3975 3976 3977 3978 3979 3980 3981 3982
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3983
		return;
3984
	}
3985

3986 3987
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3988
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3989 3990
}

3991
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3992
/*
3993
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3994 3995 3996 3997 3998
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3999
 */
4000
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
4001
{
4002 4003
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
4004
		.nr_to_reclaim = nr_to_reclaim,
4005
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4006
		.reclaim_idx = MAX_NR_ZONES - 1,
4007
		.priority = DEF_PRIORITY,
4008
		.may_writepage = 1,
4009 4010
		.may_unmap = 1,
		.may_swap = 1,
4011
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
4012
	};
4013
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4014 4015
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
4016
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
4017

4018
	fs_reclaim_acquire(sc.gfp_mask);
4019
	noreclaim_flag = memalloc_noreclaim_save();
4020 4021
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4022

4023
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4024

4025
	p->reclaim_state = NULL;
4026
	memalloc_noreclaim_restore(noreclaim_flag);
4027
	fs_reclaim_release(sc.gfp_mask);
4028

4029
	return nr_reclaimed;
L
Linus Torvalds 已提交
4030
}
4031
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
4032 4033 4034 4035 4036

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
4037
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
4038
{
4039
	int nid;
L
Linus Torvalds 已提交
4040

4041 4042 4043
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
4044

4045
		mask = cpumask_of_node(pgdat->node_id);
4046

4047 4048 4049
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
4050
	}
4051
	return 0;
L
Linus Torvalds 已提交
4052 4053
}

4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4069
		BUG_ON(system_state < SYSTEM_RUNNING);
4070 4071
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4072
		pgdat->kswapd = NULL;
4073 4074 4075 4076
	}
	return ret;
}

4077
/*
4078
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4079
 * hold mem_hotplug_begin/end().
4080 4081 4082 4083 4084
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4085
	if (kswapd) {
4086
		kthread_stop(kswapd);
4087 4088
		NODE_DATA(nid)->kswapd = NULL;
	}
4089 4090
}

L
Linus Torvalds 已提交
4091 4092
static int __init kswapd_init(void)
{
4093
	int nid, ret;
4094

L
Linus Torvalds 已提交
4095
	swap_setup();
4096
	for_each_node_state(nid, N_MEMORY)
4097
 		kswapd_run(nid);
4098 4099 4100 4101
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
4102 4103 4104 4105
	return 0;
}

module_init(kswapd_init)
4106 4107 4108

#ifdef CONFIG_NUMA
/*
4109
 * Node reclaim mode
4110
 *
4111
 * If non-zero call node_reclaim when the number of free pages falls below
4112 4113
 * the watermarks.
 */
4114
int node_reclaim_mode __read_mostly;
4115

4116
#define RECLAIM_OFF 0
4117
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4118
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4119
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4120

4121
/*
4122
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4123 4124 4125
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4126
#define NODE_RECLAIM_PRIORITY 4
4127

4128
/*
4129
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4130 4131 4132 4133
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4134 4135 4136 4137 4138 4139
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4140
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4141
{
4142 4143 4144
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4155
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4156
{
4157 4158
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4159 4160

	/*
4161
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4162
	 * potentially reclaimable. Otherwise, we have to worry about
4163
	 * pages like swapcache and node_unmapped_file_pages() provides
4164 4165
	 * a better estimate
	 */
4166 4167
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4168
	else
4169
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4170 4171

	/* If we can't clean pages, remove dirty pages from consideration */
4172 4173
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4174 4175 4176 4177 4178 4179 4180 4181

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4182
/*
4183
 * Try to free up some pages from this node through reclaim.
4184
 */
4185
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4186
{
4187
	/* Minimum pages needed in order to stay on node */
4188
	const unsigned long nr_pages = 1 << order;
4189 4190
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4191
	unsigned int noreclaim_flag;
4192
	struct scan_control sc = {
4193
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4194
		.gfp_mask = current_gfp_context(gfp_mask),
4195
		.order = order,
4196 4197 4198
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4199
		.may_swap = 1,
4200
		.reclaim_idx = gfp_zone(gfp_mask),
4201
	};
4202 4203

	cond_resched();
4204
	fs_reclaim_acquire(sc.gfp_mask);
4205
	/*
4206
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4207
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4208
	 * and RECLAIM_UNMAP.
4209
	 */
4210 4211
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4212 4213
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4214

4215
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4216
		/*
4217
		 * Free memory by calling shrink node with increasing
4218 4219 4220
		 * priorities until we have enough memory freed.
		 */
		do {
4221
			shrink_node(pgdat, &sc);
4222
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4223
	}
4224

4225
	p->reclaim_state = NULL;
4226 4227
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4228
	fs_reclaim_release(sc.gfp_mask);
4229
	return sc.nr_reclaimed >= nr_pages;
4230
}
4231

4232
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4233
{
4234
	int ret;
4235 4236

	/*
4237
	 * Node reclaim reclaims unmapped file backed pages and
4238
	 * slab pages if we are over the defined limits.
4239
	 *
4240 4241
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4242 4243
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4244
	 * unmapped file backed pages.
4245
	 */
4246
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4247
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4248
		return NODE_RECLAIM_FULL;
4249 4250

	/*
4251
	 * Do not scan if the allocation should not be delayed.
4252
	 */
4253
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4254
		return NODE_RECLAIM_NOSCAN;
4255 4256

	/*
4257
	 * Only run node reclaim on the local node or on nodes that do not
4258 4259 4260 4261
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4262 4263
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4264

4265 4266
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4267

4268 4269
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4270

4271 4272 4273
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4274
	return ret;
4275
}
4276
#endif
L
Lee Schermerhorn 已提交
4277 4278 4279 4280 4281 4282

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4283
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4284 4285
 *
 * Reasons page might not be evictable:
4286
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4287
 * (2) page is part of an mlocked VMA
4288
 *
L
Lee Schermerhorn 已提交
4289
 */
4290
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4291
{
4292 4293 4294 4295 4296 4297 4298
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4299
}
4300 4301

/**
4302 4303 4304
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4305
 *
4306 4307 4308
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4309
 */
4310
void check_move_unevictable_pages(struct pagevec *pvec)
4311
{
4312
	struct lruvec *lruvec;
4313
	struct pglist_data *pgdat = NULL;
4314 4315 4316
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4317

4318 4319
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4320
		struct pglist_data *pagepgdat = page_pgdat(page);
4321

4322
		pgscanned++;
4323 4324 4325 4326 4327
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4328
		}
4329
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4330

4331 4332
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4333

4334
		if (page_evictable(page)) {
4335 4336
			enum lru_list lru = page_lru_base_type(page);

4337
			VM_BUG_ON_PAGE(PageActive(page), page);
4338
			ClearPageUnevictable(page);
4339 4340
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4341
			pgrescued++;
4342
		}
4343
	}
4344

4345
	if (pgdat) {
4346 4347
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4348
		spin_unlock_irq(&pgdat->lru_lock);
4349 4350
	}
}
4351
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);