vmscan.c 122.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 84 85 86 87 88 89 90
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

91 92 93 94 95 96 97
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
98

99 100 101 102 103
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
104 105 106 107 108 109 110 111 112 113 114 115
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

116 117 118 119 120
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
121 122 123 124 125 126 127 128 129 130

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
131 132 133

	/* for recording the reclaimed slab by now */
	struct reclaim_state reclaim_state;
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
168 169 170 171 172
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
173 174 175 176

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

177
#ifdef CONFIG_MEMCG_KMEM
178 179 180 181 182 183 184 185 186 187 188 189 190 191

/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

192 193 194 195 196 197 198 199 200
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
201
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 203 204
	if (id < 0)
		goto unlock;

205 206 207 208 209 210
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

211
		shrinker_nr_max = id + 1;
212
	}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

241 242 243 244 245 246 247 248 249 250 251 252
static void set_task_reclaim_state(struct task_struct *task,
				   struct reclaim_state *rs)
{
	/* Check for an overwrite */
	WARN_ON_ONCE(rs && task->reclaim_state);

	/* Check for the nulling of an already-nulled member */
	WARN_ON_ONCE(!rs && !task->reclaim_state);

	task->reclaim_state = rs;
}

A
Andrew Morton 已提交
253
#ifdef CONFIG_MEMCG
254 255
static bool global_reclaim(struct scan_control *sc)
{
256
	return !sc->target_mem_cgroup;
257
}
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
279
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
280 281 282 283
		return true;
#endif
	return false;
}
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
307
#else
308 309 310 311
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
312 313 314 315 316

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
317 318 319 320 321 322 323 324 325 326 327 328

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
329 330
#endif

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

349 350 351 352 353 354 355
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
356
{
357 358 359
	unsigned long lru_size;
	int zid;

360
	if (!mem_cgroup_disabled())
361
		lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
362 363
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
364

365 366 367
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
368

369 370 371 372 373 374 375 376 377 378 379 380
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
381 382 383

}

L
Linus Torvalds 已提交
384
/*
G
Glauber Costa 已提交
385
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
386
 */
387
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
388
{
389
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
390 391 392 393 394 395 396

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
397 398 399 400 401 402

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

403
	return 0;
404 405 406 407 408

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
409 410 411 412
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
413 414 415 416 417 418
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

419 420 421
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
422

423 424
void register_shrinker_prepared(struct shrinker *shrinker)
{
425 426
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
427
#ifdef CONFIG_MEMCG_KMEM
428 429
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
430
#endif
431
	up_write(&shrinker_rwsem);
432 433 434 435 436 437 438 439 440
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
441
	return 0;
L
Linus Torvalds 已提交
442
}
443
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
444 445 446 447

/*
 * Remove one
 */
448
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
449
{
450 451
	if (!shrinker->nr_deferred)
		return;
452 453
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
454 455 456
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
457
	kfree(shrinker->nr_deferred);
458
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
459
}
460
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
461 462

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
463

464
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
465
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
466 467 468 469
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
470
	long freeable;
G
Glauber Costa 已提交
471 472 473 474 475
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
476
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
477

478 479 480
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

481
	freeable = shrinker->count_objects(shrinker, shrinkctl);
482 483
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
484 485 486 487 488 489 490 491 492

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
493 494 495 496 497 498 499 500 501 502 503 504
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
505

G
Glauber Costa 已提交
506 507
	total_scan += delta;
	if (total_scan < 0) {
508
		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
509
		       shrinker->scan_objects, total_scan);
510
		total_scan = freeable;
511 512 513
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
514 515 516 517 518 519 520

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
521
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
522 523 524 525 526
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
527 528
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
529 530 531 532 533 534

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
535 536
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
537 538

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
539
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
540

541 542 543 544 545 546 547 548 549 550 551
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
552
	 * than the total number of objects on slab (freeable), we must be
553 554 555 556
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
557
	       total_scan >= freeable) {
D
Dave Chinner 已提交
558
		unsigned long ret;
559
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
560

561
		shrinkctl->nr_to_scan = nr_to_scan;
562
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
563 564 565 566
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
567

568 569 570
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
571 572 573 574

		cond_resched();
	}

575 576 577 578
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
579 580 581 582 583
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
584 585
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
586 587 588 589
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

590
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
591
	return freed;
592 593
}

594 595 596 597 598
#ifdef CONFIG_MEMCG_KMEM
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
599 600
	unsigned long ret, freed = 0;
	int i;
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
622 623 624
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
625 626 627 628
			continue;
		}

		ret = do_shrink_slab(&sc, shrinker, priority);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
#else /* CONFIG_MEMCG_KMEM */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG_KMEM */

672
/**
673
 * shrink_slab - shrink slab caches
674 675
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
676
 * @memcg: memory cgroup whose slab caches to target
677
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
678
 *
679
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
680
 *
681 682
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
683
 *
684 685
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
686
 *
687 688
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
689
 *
690
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
691
 */
692 693
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
694
				 int priority)
L
Linus Torvalds 已提交
695
{
696
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
697 698
	struct shrinker *shrinker;

699 700 701 702 703 704 705 706
	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
707
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
708

709
	if (!down_read_trylock(&shrinker_rwsem))
710
		goto out;
L
Linus Torvalds 已提交
711 712

	list_for_each_entry(shrinker, &shrinker_list, list) {
713 714 715
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
716
			.memcg = memcg,
717
		};
718

719 720 721 722
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
723 724 725 726 727 728 729 730 731
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
732
	}
733

L
Linus Torvalds 已提交
734
	up_read(&shrinker_rwsem);
735 736
out:
	cond_resched();
D
Dave Chinner 已提交
737
	return freed;
L
Linus Torvalds 已提交
738 739
}

740 741 742 743 744 745 746 747
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
748
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
749
		do {
750
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
751 752 753 754 755 756 757 758 759 760 761 762
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
763 764
static inline int is_page_cache_freeable(struct page *page)
{
765 766
	/*
	 * A freeable page cache page is referenced only by the caller
767 768
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
769
	 */
770
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
771
		HPAGE_PMD_NR : 1;
772
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
773 774
}

775
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
776
{
777
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
778
		return 1;
779
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
780
		return 1;
781
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
801
	lock_page(page);
802 803
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
804 805 806
	unlock_page(page);
}

807 808 809 810 811 812 813 814 815 816 817 818
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
819
/*
A
Andrew Morton 已提交
820 821
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
822
 */
823
static pageout_t pageout(struct page *page, struct address_space *mapping,
824
			 struct scan_control *sc)
L
Linus Torvalds 已提交
825 826 827 828 829 830 831 832
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
833
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
849
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
850 851
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
852
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
853 854 855 856 857 858 859
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
860
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
861 862 863 864 865 866 867
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
868 869
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
870 871 872 873 874 875 876
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
877
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
878 879 880
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
881

L
Linus Torvalds 已提交
882 883 884 885
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
886
		trace_mm_vmscan_writepage(page);
887
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
888 889 890 891 892 893
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

894
/*
N
Nick Piggin 已提交
895 896
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
897
 */
898 899
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
900
{
901
	unsigned long flags;
902
	int refcount;
903

904 905
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
906

M
Matthew Wilcox 已提交
907
	xa_lock_irqsave(&mapping->i_pages, flags);
908
	/*
N
Nick Piggin 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
928
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
929 930
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
931
	 * and thus under the i_pages lock, then this ordering is not required.
932
	 */
933 934 935 936 937
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
938
		goto cannot_free;
939
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
940
	if (unlikely(PageDirty(page))) {
941
		page_ref_unfreeze(page, refcount);
942
		goto cannot_free;
N
Nick Piggin 已提交
943
	}
944 945 946

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
947
		mem_cgroup_swapout(page, swap);
948
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
949
		xa_unlock_irqrestore(&mapping->i_pages, flags);
950
		put_swap_page(page, swap);
N
Nick Piggin 已提交
951
	} else {
952
		void (*freepage)(struct page *);
953
		void *shadow = NULL;
954 955

		freepage = mapping->a_ops->freepage;
956 957 958 959 960 961 962 963 964
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
965 966 967 968 969
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
970
		 * same address_space.
971 972
		 */
		if (reclaimed && page_is_file_cache(page) &&
973
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
974
			shadow = workingset_eviction(page);
J
Johannes Weiner 已提交
975
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
976
		xa_unlock_irqrestore(&mapping->i_pages, flags);
977 978 979

		if (freepage != NULL)
			freepage(page);
980 981 982 983 984
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
985
	xa_unlock_irqrestore(&mapping->i_pages, flags);
986 987 988
	return 0;
}

N
Nick Piggin 已提交
989 990 991 992 993 994 995 996
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
997
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
998 999 1000 1001 1002
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
1003
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
1004 1005 1006 1007 1008
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
1020
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
1021 1022 1023
	put_page(page);		/* drop ref from isolate */
}

1024 1025 1026
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1027
	PAGEREF_KEEP,
1028 1029 1030 1031 1032 1033
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1034
	int referenced_ptes, referenced_page;
1035 1036
	unsigned long vm_flags;

1037 1038
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1039
	referenced_page = TestClearPageReferenced(page);
1040 1041 1042 1043 1044 1045 1046 1047

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1048
	if (referenced_ptes) {
1049
		if (PageSwapBacked(page))
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1067
		if (referenced_page || referenced_ptes > 1)
1068 1069
			return PAGEREF_ACTIVATE;

1070 1071 1072 1073 1074 1075
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1076 1077
		return PAGEREF_KEEP;
	}
1078 1079

	/* Reclaim if clean, defer dirty pages to writeback */
1080
	if (referenced_page && !PageSwapBacked(page))
1081 1082 1083
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1084 1085
}

1086 1087 1088 1089
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1090 1091
	struct address_space *mapping;

1092 1093 1094 1095
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1096 1097
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1098 1099 1100 1101 1102 1103 1104 1105
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1106 1107 1108 1109 1110 1111 1112 1113

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1114 1115
}

L
Linus Torvalds 已提交
1116
/*
A
Andrew Morton 已提交
1117
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1118
 */
A
Andrew Morton 已提交
1119
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1120
				      struct pglist_data *pgdat,
1121
				      struct scan_control *sc,
1122
				      enum ttu_flags ttu_flags,
1123
				      struct reclaim_stat *stat,
1124
				      bool force_reclaim)
L
Linus Torvalds 已提交
1125 1126
{
	LIST_HEAD(ret_pages);
1127
	LIST_HEAD(free_pages);
1128
	unsigned nr_reclaimed = 0;
1129
	unsigned pgactivate = 0;
L
Linus Torvalds 已提交
1130

1131
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136 1137
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1138
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1139
		bool dirty, writeback;
1140
		unsigned int nr_pages;
L
Linus Torvalds 已提交
1141 1142 1143 1144 1145 1146

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1147
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1148 1149
			goto keep;

1150
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1151

1152
		nr_pages = compound_nr(page);
1153 1154 1155

		/* Account the number of base pages even though THP */
		sc->nr_scanned += nr_pages;
1156

1157
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1158
			goto activate_locked;
L
Lee Schermerhorn 已提交
1159

1160
		if (!sc->may_unmap && page_mapped(page))
1161 1162
			goto keep_locked;

1163 1164 1165
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1166
		/*
1167
		 * The number of dirty pages determines if a node is marked
1168 1169 1170 1171 1172 1173
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1174
			stat->nr_dirty++;
1175 1176

		if (dirty && !writeback)
1177
			stat->nr_unqueued_dirty++;
1178

1179 1180 1181 1182 1183 1184
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1185
		mapping = page_mapping(page);
1186
		if (((dirty || writeback) && mapping &&
1187
		     inode_write_congested(mapping->host)) ||
1188
		    (writeback && PageReclaim(page)))
1189
			stat->nr_congested++;
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1202 1203
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1204
		 *
1205
		 * 2) Global or new memcg reclaim encounters a page that is
1206 1207 1208
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1209
		 *    reclaim and continue scanning.
1210
		 *
1211 1212
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1213 1214 1215 1216 1217
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1218
		 * 3) Legacy memcg encounters a page that is already marked
1219 1220 1221 1222
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1223 1224 1225 1226 1227 1228 1229 1230 1231
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1232
		 */
1233
		if (PageWriteback(page)) {
1234 1235 1236
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1237
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1238
				stat->nr_immediate++;
1239
				goto activate_locked;
1240 1241

			/* Case 2 above */
1242
			} else if (sane_reclaim(sc) ||
1243
			    !PageReclaim(page) || !may_enter_fs) {
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1256
				stat->nr_writeback++;
1257
				goto activate_locked;
1258 1259 1260

			/* Case 3 above */
			} else {
1261
				unlock_page(page);
1262
				wait_on_page_writeback(page);
1263 1264 1265
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1266
			}
1267
		}
L
Linus Torvalds 已提交
1268

1269 1270 1271
		if (!force_reclaim)
			references = page_check_references(page, sc);

1272 1273
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1274
			goto activate_locked;
1275
		case PAGEREF_KEEP:
1276
			stat->nr_ref_keep += nr_pages;
1277
			goto keep_locked;
1278 1279 1280 1281
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1282 1283 1284 1285

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1286
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1287
		 */
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
1308
						goto activate_locked_split;
1309 1310 1311 1312
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1313 1314 1315
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1316
					if (!add_to_swap(page))
1317
						goto activate_locked_split;
1318
				}
1319

1320
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1321

1322 1323 1324
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1325 1326 1327 1328
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1329
		}
L
Linus Torvalds 已提交
1330

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		/*
		 * THP may get split above, need minus tail pages and update
		 * nr_pages to avoid accounting tail pages twice.
		 *
		 * The tail pages that are added into swap cache successfully
		 * reach here.
		 */
		if ((nr_pages > 1) && !PageTransHuge(page)) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}

L
Linus Torvalds 已提交
1343 1344 1345 1346
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1347
		if (page_mapped(page)) {
1348 1349 1350 1351 1352
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1353
				stat->nr_unmap_fail += nr_pages;
L
Linus Torvalds 已提交
1354 1355 1356 1357 1358
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1359
			/*
1360 1361 1362 1363 1364 1365 1366 1367
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1368
			 */
1369
			if (page_is_file_cache(page) &&
1370 1371
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1372 1373 1374 1375 1376 1377
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1378
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1379 1380
				SetPageReclaim(page);

1381
				goto activate_locked;
1382 1383
			}

1384
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1385
				goto keep_locked;
1386
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1387
				goto keep_locked;
1388
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1389 1390
				goto keep_locked;

1391 1392 1393 1394 1395 1396
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1397
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1398 1399 1400 1401 1402
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1403
				if (PageWriteback(page))
1404
					goto keep;
1405
				if (PageDirty(page))
L
Linus Torvalds 已提交
1406
					goto keep;
1407

L
Linus Torvalds 已提交
1408 1409 1410 1411
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1412
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1432
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1443
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1444 1445
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1462 1463
		}

S
Shaohua Li 已提交
1464 1465 1466 1467 1468 1469 1470 1471
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1472

S
Shaohua Li 已提交
1473
			count_vm_event(PGLAZYFREED);
1474
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1475 1476
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
1477 1478

		unlock_page(page);
N
Nick Piggin 已提交
1479
free_it:
1480 1481 1482 1483 1484
		/*
		 * THP may get swapped out in a whole, need account
		 * all base pages.
		 */
		nr_reclaimed += nr_pages;
1485 1486 1487 1488 1489

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1490 1491 1492 1493 1494
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1495 1496
		continue;

1497 1498 1499 1500 1501 1502 1503 1504 1505
activate_locked_split:
		/*
		 * The tail pages that are failed to add into swap cache
		 * reach here.  Fixup nr_scanned and nr_pages.
		 */
		if (nr_pages > 1) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}
L
Linus Torvalds 已提交
1506
activate_locked:
1507
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1508 1509
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1510
			try_to_free_swap(page);
1511
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1512
		if (!PageMlocked(page)) {
1513
			int type = page_is_file_cache(page);
M
Minchan Kim 已提交
1514
			SetPageActive(page);
1515
			stat->nr_activate[type] += nr_pages;
1516
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1517
		}
L
Linus Torvalds 已提交
1518 1519 1520 1521
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1522
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1523
	}
1524

1525 1526
	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];

1527
	mem_cgroup_uncharge_list(&free_pages);
1528
	try_to_unmap_flush();
1529
	free_unref_page_list(&free_pages);
1530

L
Linus Torvalds 已提交
1531
	list_splice(&ret_pages, page_list);
1532
	count_vm_events(PGACTIVATE, pgactivate);
1533

1534
	return nr_reclaimed;
L
Linus Torvalds 已提交
1535 1536
}

1537 1538 1539 1540 1541 1542 1543 1544
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1545
	struct reclaim_stat dummy_stat;
1546
	unsigned long ret;
1547 1548 1549 1550
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1551
		if (page_is_file_cache(page) && !PageDirty(page) &&
1552
		    !__PageMovable(page) && !PageUnevictable(page)) {
1553 1554 1555 1556 1557
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1558
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1559
			TTU_IGNORE_ACCESS, &dummy_stat, true);
1560
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1561
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1562 1563 1564
	return ret;
}

A
Andy Whitcroft 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1575
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1576 1577 1578 1579 1580 1581 1582
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1583 1584
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1585 1586
		return ret;

A
Andy Whitcroft 已提交
1587
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1588

1589 1590 1591 1592 1593 1594 1595 1596
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1597
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1598 1599 1600 1601 1602 1603
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1604
			bool migrate_dirty;
1605 1606 1607 1608

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1609 1610 1611 1612 1613
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1614
			 */
1615 1616 1617
			if (!trylock_page(page))
				return ret;

1618
			mapping = page_mapping(page);
1619
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1620 1621
			unlock_page(page);
			if (!migrate_dirty)
1622 1623 1624
				return ret;
		}
	}
1625

1626 1627 1628
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1642 1643 1644 1645 1646 1647

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1648
			enum lru_list lru, unsigned long *nr_zone_taken)
1649 1650 1651 1652 1653 1654 1655 1656 1657
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1658
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1659
#endif
1660 1661
	}

1662 1663
}

1664 1665
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672 1673
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1674
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1675
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1676
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1677
 * @nr_scanned:	The number of pages that were scanned.
1678
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1679
 * @mode:	One of the LRU isolation modes
1680
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1681 1682 1683
 *
 * returns how many pages were moved onto *@dst.
 */
1684
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1685
		struct lruvec *lruvec, struct list_head *dst,
1686
		unsigned long *nr_scanned, struct scan_control *sc,
1687
		enum lru_list lru)
L
Linus Torvalds 已提交
1688
{
H
Hugh Dickins 已提交
1689
	struct list_head *src = &lruvec->lists[lru];
1690
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1691
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1692
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1693
	unsigned long skipped = 0;
1694
	unsigned long scan, total_scan, nr_pages;
1695
	LIST_HEAD(pages_skipped);
1696
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1697

1698
	total_scan = 0;
1699
	scan = 0;
1700
	while (scan < nr_to_scan && !list_empty(src)) {
A
Andy Whitcroft 已提交
1701 1702
		struct page *page;

L
Linus Torvalds 已提交
1703 1704 1705
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1706
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1707

1708
		nr_pages = compound_nr(page);
1709 1710
		total_scan += nr_pages;

1711 1712
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1713
			nr_skipped[page_zonenum(page)] += nr_pages;
1714 1715 1716
			continue;
		}

1717 1718 1719 1720 1721
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
1722 1723 1724 1725
		 *
		 * Account all tail pages of THP.  This would not cause
		 * premature OOM since __isolate_lru_page() returns -EBUSY
		 * only when the page is being freed somewhere else.
1726
		 */
1727
		scan += nr_pages;
1728
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1729
		case 0:
M
Mel Gorman 已提交
1730 1731
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1732 1733 1734 1735 1736 1737 1738
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1739

A
Andy Whitcroft 已提交
1740 1741 1742
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1743 1744
	}

1745 1746 1747 1748 1749 1750 1751
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1752 1753 1754
	if (!list_empty(&pages_skipped)) {
		int zid;

1755
		list_splice(&pages_skipped, src);
1756 1757 1758 1759 1760
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1761
			skipped += nr_skipped[zid];
1762 1763
		}
	}
1764
	*nr_scanned = total_scan;
1765
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1766
				    total_scan, skipped, nr_taken, mode, lru);
1767
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1768 1769 1770
	return nr_taken;
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1782 1783 1784
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1785 1786 1787 1788 1789
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1790
 *
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1801
	VM_BUG_ON_PAGE(!page_count(page), page);
1802
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1803

1804
	if (PageLRU(page)) {
1805
		pg_data_t *pgdat = page_pgdat(page);
1806
		struct lruvec *lruvec;
1807

1808 1809
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1810
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1811
			int lru = page_lru(page);
1812
			get_page(page);
1813
			ClearPageLRU(page);
1814 1815
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1816
		}
1817
		spin_unlock_irq(&pgdat->lru_lock);
1818 1819 1820 1821
	}
	return ret;
}

1822
/*
F
Fengguang Wu 已提交
1823 1824 1825 1826 1827
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1828
 */
M
Mel Gorman 已提交
1829
static int too_many_isolated(struct pglist_data *pgdat, int file,
1830 1831 1832 1833 1834 1835 1836
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1837
	if (!sane_reclaim(sc))
1838 1839 1840
		return 0;

	if (file) {
M
Mel Gorman 已提交
1841 1842
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1843
	} else {
M
Mel Gorman 已提交
1844 1845
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1846 1847
	}

1848 1849 1850 1851 1852
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1853
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1854 1855
		inactive >>= 3;

1856 1857 1858
	return isolated > inactive;
}

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
/*
 * This moves pages from @list to corresponding LRU list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone_lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone_lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_refcount against each page.
 * But we had to alter page->flags anyway.
 *
 * Returns the number of pages moved to the given lruvec.
 */

static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
						     struct list_head *list)
1881
{
M
Mel Gorman 已提交
1882
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1883
	int nr_pages, nr_moved = 0;
1884
	LIST_HEAD(pages_to_free);
1885 1886
	struct page *page;
	enum lru_list lru;
1887

1888 1889
	while (!list_empty(list)) {
		page = lru_to_page(list);
1890
		VM_BUG_ON_PAGE(PageLRU(page), page);
1891
		if (unlikely(!page_evictable(page))) {
1892
			list_del(&page->lru);
M
Mel Gorman 已提交
1893
			spin_unlock_irq(&pgdat->lru_lock);
1894
			putback_lru_page(page);
M
Mel Gorman 已提交
1895
			spin_lock_irq(&pgdat->lru_lock);
1896 1897
			continue;
		}
M
Mel Gorman 已提交
1898
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1899

1900
		SetPageLRU(page);
1901
		lru = page_lru(page);
1902 1903 1904 1905

		nr_pages = hpage_nr_pages(page);
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
		list_move(&page->lru, &lruvec->lists[lru]);
1906

1907 1908 1909
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1910
			del_page_from_lru_list(page, lruvec, lru);
1911 1912

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1913
				spin_unlock_irq(&pgdat->lru_lock);
1914
				mem_cgroup_uncharge(page);
1915
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1916
				spin_lock_irq(&pgdat->lru_lock);
1917 1918
			} else
				list_add(&page->lru, &pages_to_free);
1919 1920
		} else {
			nr_moved += nr_pages;
1921 1922 1923
		}
	}

1924 1925 1926
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
1927 1928 1929
	list_splice(&pages_to_free, list);

	return nr_moved;
1930 1931
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1945
/*
1946
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1947
 * of reclaimed pages
L
Linus Torvalds 已提交
1948
 */
1949
static noinline_for_stack unsigned long
1950
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1951
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1952 1953
{
	LIST_HEAD(page_list);
1954
	unsigned long nr_scanned;
1955
	unsigned long nr_reclaimed = 0;
1956
	unsigned long nr_taken;
1957
	struct reclaim_stat stat;
1958
	int file = is_file_lru(lru);
1959
	enum vm_event_item item;
M
Mel Gorman 已提交
1960
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1961
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1962
	bool stalled = false;
1963

M
Mel Gorman 已提交
1964
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1965 1966 1967 1968 1969 1970
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1971 1972 1973 1974 1975 1976

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1977
	lru_add_drain();
1978

M
Mel Gorman 已提交
1979
	spin_lock_irq(&pgdat->lru_lock);
1980

1981
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1982
				     &nr_scanned, sc, lru);
1983

M
Mel Gorman 已提交
1984
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1985
	reclaim_stat->recent_scanned[file] += nr_taken;
1986

1987 1988 1989 1990
	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
	if (global_reclaim(sc))
		__count_vm_events(item, nr_scanned);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
M
Mel Gorman 已提交
1991
	spin_unlock_irq(&pgdat->lru_lock);
1992

1993
	if (nr_taken == 0)
1994
		return 0;
A
Andy Whitcroft 已提交
1995

S
Shaohua Li 已提交
1996
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1997
				&stat, false);
1998

M
Mel Gorman 已提交
1999
	spin_lock_irq(&pgdat->lru_lock);
2000

2001 2002 2003 2004
	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
	if (global_reclaim(sc))
		__count_vm_events(item, nr_reclaimed);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2005 2006
	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
N
Nick Piggin 已提交
2007

2008
	move_pages_to_lru(lruvec, &page_list);
2009

M
Mel Gorman 已提交
2010
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2011

M
Mel Gorman 已提交
2012
	spin_unlock_irq(&pgdat->lru_lock);
2013

2014
	mem_cgroup_uncharge_list(&page_list);
2015
	free_unref_page_list(&page_list);
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

2031 2032 2033 2034 2035 2036 2037 2038
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2039

M
Mel Gorman 已提交
2040
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2041
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2042
	return nr_reclaimed;
L
Linus Torvalds 已提交
2043 2044
}

H
Hugh Dickins 已提交
2045
static void shrink_active_list(unsigned long nr_to_scan,
2046
			       struct lruvec *lruvec,
2047
			       struct scan_control *sc,
2048
			       enum lru_list lru)
L
Linus Torvalds 已提交
2049
{
2050
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2051
	unsigned long nr_scanned;
2052
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2053
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2054
	LIST_HEAD(l_active);
2055
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2056
	struct page *page;
2057
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2058 2059
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2060
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2061
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2062 2063

	lru_add_drain();
2064

M
Mel Gorman 已提交
2065
	spin_lock_irq(&pgdat->lru_lock);
2066

2067
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2068
				     &nr_scanned, sc, lru);
2069

M
Mel Gorman 已提交
2070
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2071
	reclaim_stat->recent_scanned[file] += nr_taken;
2072

M
Mel Gorman 已提交
2073
	__count_vm_events(PGREFILL, nr_scanned);
2074
	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2075

M
Mel Gorman 已提交
2076
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2082

2083
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2084 2085 2086 2087
			putback_lru_page(page);
			continue;
		}

2088 2089 2090 2091 2092 2093 2094 2095
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2096 2097
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2098
			nr_rotated += hpage_nr_pages(page);
2099 2100 2101 2102 2103 2104 2105 2106 2107
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2108
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2109 2110 2111 2112
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2113

2114
		ClearPageActive(page);	/* we are de-activating */
2115
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2116 2117 2118
		list_add(&page->lru, &l_inactive);
	}

2119
	/*
2120
	 * Move pages back to the lru list.
2121
	 */
M
Mel Gorman 已提交
2122
	spin_lock_irq(&pgdat->lru_lock);
2123
	/*
2124 2125 2126
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2127
	 * get_scan_count.
2128
	 */
2129
	reclaim_stat->recent_rotated[file] += nr_rotated;
2130

2131 2132
	nr_activate = move_pages_to_lru(lruvec, &l_active);
	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2133 2134
	/* Keep all free pages in l_active list */
	list_splice(&l_inactive, &l_active);
2135 2136 2137 2138

	__count_vm_events(PGDEACTIVATE, nr_deactivate);
	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);

M
Mel Gorman 已提交
2139 2140
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2141

2142 2143
	mem_cgroup_uncharge_list(&l_active);
	free_unref_page_list(&l_active);
2144 2145
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2146 2147
}

2148 2149 2150
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2151
 *
2152 2153 2154
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2155
 *
2156 2157
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2158
 *
2159 2160
 * If that fails and refaulting is observed, the inactive list grows.
 *
2161
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2162
 * on this LRU, maintained by the pageout code. An inactive_ratio
2163
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2164
 *
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2175
 */
2176
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2177
				 struct scan_control *sc, bool trace)
2178
{
2179
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2180 2181 2182 2183 2184
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2185
	unsigned long gb;
2186

2187 2188 2189 2190 2191 2192
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2193

2194 2195
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2196

2197 2198 2199 2200 2201
	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
2202
	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2203
	if (file && lruvec->refaults != refaults) {
2204 2205 2206 2207 2208 2209 2210 2211
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2212

2213
	if (trace)
2214 2215 2216 2217
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2218

2219
	return inactive * inactive_ratio < active;
2220 2221
}

2222
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2223
				 struct lruvec *lruvec, struct scan_control *sc)
2224
{
2225
	if (is_active_lru(lru)) {
2226
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2227
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2228 2229 2230
		return 0;
	}

2231
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2232 2233
}

2234 2235 2236 2237 2238 2239 2240
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2241 2242 2243 2244 2245 2246
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2247 2248
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2249
 */
2250
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2251 2252
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2253
{
2254
	int swappiness = mem_cgroup_swappiness(memcg);
2255 2256 2257
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2258
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2259
	unsigned long anon_prio, file_prio;
2260
	enum scan_balance scan_balance;
2261
	unsigned long anon, file;
2262
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2263
	enum lru_list lru;
2264 2265

	/* If we have no swap space, do not bother scanning anon pages. */
2266
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2267
		scan_balance = SCAN_FILE;
2268 2269
		goto out;
	}
2270

2271 2272 2273 2274 2275 2276 2277
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2278
	if (!global_reclaim(sc) && !swappiness) {
2279
		scan_balance = SCAN_FILE;
2280 2281 2282 2283 2284 2285 2286 2287
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2288
	if (!sc->priority && swappiness) {
2289
		scan_balance = SCAN_EQUAL;
2290 2291 2292
		goto out;
	}

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2303 2304 2305 2306
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2307

M
Mel Gorman 已提交
2308 2309 2310 2311 2312 2313
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2314
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2315 2316 2317 2318
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2319

M
Mel Gorman 已提交
2320
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2321 2322 2323 2324 2325
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
2326
			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2327 2328 2329 2330 2331
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2332 2333 2334
		}
	}

2335
	/*
2336 2337 2338 2339 2340 2341 2342
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2343
	 */
2344
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2345
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2346
		scan_balance = SCAN_FILE;
2347 2348 2349
		goto out;
	}

2350 2351
	scan_balance = SCAN_FRACT;

2352 2353 2354 2355
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2356
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2357
	file_prio = 200 - anon_prio;
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2370

2371 2372 2373 2374
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2375

M
Mel Gorman 已提交
2376
	spin_lock_irq(&pgdat->lru_lock);
2377 2378 2379
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2380 2381
	}

2382 2383 2384
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2385 2386 2387
	}

	/*
2388 2389 2390
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2391
	 */
2392
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2393
	ap /= reclaim_stat->recent_rotated[0] + 1;
2394

2395
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2396
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2397
	spin_unlock_irq(&pgdat->lru_lock);
2398

2399 2400 2401 2402
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2403 2404 2405 2406 2407
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2408

2409 2410 2411 2412 2413 2414 2415 2416
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2417

2418 2419 2420 2421 2422
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2423
			/*
2424 2425
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2426 2427
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2428
			 */
2429 2430
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2443
		}
2444 2445 2446

		*lru_pages += size;
		nr[lru] = scan;
2447
	}
2448
}
2449

2450
/*
2451
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2452
 */
2453
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2454
			      struct scan_control *sc, unsigned long *lru_pages)
2455
{
2456
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2457
	unsigned long nr[NR_LRU_LISTS];
2458
	unsigned long targets[NR_LRU_LISTS];
2459 2460 2461 2462 2463
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2464
	bool scan_adjusted;
2465

2466
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2467

2468 2469 2470
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2485 2486 2487
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2488 2489 2490
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2491 2492 2493 2494 2495 2496
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2497
							    lruvec, sc);
2498 2499
			}
		}
2500

2501 2502
		cond_resched();

2503 2504 2505 2506 2507
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2508
		 * requested. Ensure that the anon and file LRUs are scanned
2509 2510 2511 2512 2513 2514 2515
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2516 2517 2518 2519 2520 2521 2522 2523 2524
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2556 2557 2558 2559 2560 2561 2562 2563
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2564
	if (inactive_list_is_low(lruvec, false, sc, true))
2565 2566 2567 2568
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2569
/* Use reclaim/compaction for costly allocs or under memory pressure */
2570
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2571
{
2572
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2573
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2574
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2575 2576 2577 2578 2579
		return true;

	return false;
}

2580
/*
M
Mel Gorman 已提交
2581 2582 2583 2584 2585
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2586
 */
2587
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2588 2589 2590 2591 2592 2593
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2594
	int z;
2595 2596

	/* If not in reclaim/compaction mode, stop */
2597
	if (!in_reclaim_compaction(sc))
2598 2599
		return false;

2600
	/* Consider stopping depending on scan and reclaim activity */
2601
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2602
		/*
2603
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2604 2605
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2606
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2607 2608 2609 2610 2611
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2612
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2613 2614 2615 2616 2617 2618 2619 2620 2621
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2622 2623 2624 2625 2626

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2627
	pages_for_compaction = compact_gap(sc->order);
2628
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2629
	if (get_nr_swap_pages() > 0)
2630
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2631 2632 2633 2634 2635
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2636 2637
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2638
		if (!managed_zone(zone))
2639 2640 2641
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2642
		case COMPACT_SUCCESS:
2643 2644 2645 2646 2647 2648
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2649
	}
2650
	return true;
2651 2652
}

2653 2654 2655 2656 2657 2658
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2659
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2660
{
2661
	struct reclaim_state *reclaim_state = current->reclaim_state;
2662
	unsigned long nr_reclaimed, nr_scanned;
2663
	bool reclaimable = false;
L
Linus Torvalds 已提交
2664

2665 2666 2667
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2668
			.pgdat = pgdat,
2669 2670
			.priority = sc->priority,
		};
2671
		unsigned long node_lru_pages = 0;
2672
		struct mem_cgroup *memcg;
2673

2674 2675
		memset(&sc->nr, 0, sizeof(sc->nr));

2676 2677
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2678

2679 2680
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2681
			unsigned long lru_pages;
2682
			unsigned long reclaimed;
2683
			unsigned long scanned;
2684

R
Roman Gushchin 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2699 2700
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2701
					continue;
2702
				}
2703
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2704 2705 2706
				break;
			case MEMCG_PROT_NONE:
				break;
2707 2708
			}

2709
			reclaimed = sc->nr_reclaimed;
2710
			scanned = sc->nr_scanned;
2711 2712
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2713

2714 2715
			shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
					sc->priority);
2716

2717 2718 2719 2720 2721
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2722
			/*
2723 2724
			 * Kswapd have to scan all memory cgroups to fulfill
			 * the overall scan target for the node.
2725 2726 2727 2728 2729
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2730
			 */
2731
			if (!current_is_kswapd() &&
2732
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2733 2734 2735
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2736
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2737

2738 2739 2740
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2741 2742
		}

2743 2744
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2745 2746 2747
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2748 2749 2750
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2794 2795 2796 2797 2798 2799 2800 2801
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2802 2803 2804 2805 2806 2807 2808
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2809 2810
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2811

2812
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2813
					 sc->nr_scanned - nr_scanned, sc));
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2824
	return reclaimable;
2825 2826
}

2827
/*
2828 2829 2830
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2831
 */
2832
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2833
{
M
Mel Gorman 已提交
2834
	unsigned long watermark;
2835
	enum compact_result suitable;
2836

2837 2838 2839 2840 2841 2842 2843
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2844

2845
	/*
2846 2847 2848 2849 2850 2851 2852
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2853
	 */
2854
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2855

2856
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2857 2858
}

L
Linus Torvalds 已提交
2859 2860 2861 2862 2863 2864 2865 2866
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2867
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2868
{
2869
	struct zoneref *z;
2870
	struct zone *zone;
2871 2872
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2873
	gfp_t orig_mask;
2874
	pg_data_t *last_pgdat = NULL;
2875

2876 2877 2878 2879 2880
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2881
	orig_mask = sc->gfp_mask;
2882
	if (buffer_heads_over_limit) {
2883
		sc->gfp_mask |= __GFP_HIGHMEM;
2884
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2885
	}
2886

2887
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2888
					sc->reclaim_idx, sc->nodemask) {
2889 2890 2891 2892
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2893
		if (global_reclaim(sc)) {
2894 2895
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2896
				continue;
2897

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2909
			    compaction_ready(zone, sc)) {
2910 2911
				sc->compaction_ready = true;
				continue;
2912
			}
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2923 2924 2925 2926 2927 2928 2929
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2930
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2931 2932 2933 2934
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2935
			/* need some check for avoid more shrink_zone() */
2936
		}
2937

2938 2939 2940 2941
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2942
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2943
	}
2944

2945 2946 2947 2948 2949
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2950
}
2951

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2962
		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2963 2964 2965 2966
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2967 2968 2969 2970 2971 2972 2973 2974
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2975 2976 2977 2978
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2979 2980 2981
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2982
 */
2983
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2984
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2985
{
2986
	int initial_priority = sc->priority;
2987 2988 2989
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2990
retry:
2991 2992
	delayacct_freepages_start();

2993
	if (global_reclaim(sc))
2994
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2995

2996
	do {
2997 2998
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2999
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3000
		shrink_zones(zonelist, sc);
3001

3002
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3003 3004 3005 3006
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3007

3008 3009 3010 3011 3012 3013
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3014
	} while (--sc->priority >= 0);
3015

3016 3017 3018 3019 3020 3021 3022
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3023
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3024 3025
	}

3026 3027
	delayacct_freepages_end();

3028 3029 3030
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3031
	/* Aborted reclaim to try compaction? don't OOM, then */
3032
	if (sc->compaction_ready)
3033 3034
		return 1;

3035
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3036
	if (sc->memcg_low_skipped) {
3037
		sc->priority = initial_priority;
3038 3039
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3040 3041 3042
		goto retry;
	}

3043
	return 0;
L
Linus Torvalds 已提交
3044 3045
}

3046
static bool allow_direct_reclaim(pg_data_t *pgdat)
3047 3048 3049 3050 3051 3052 3053
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3054 3055 3056
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3057 3058
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3059 3060 3061 3062
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3063 3064
			continue;

3065 3066 3067 3068
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3069 3070 3071 3072
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3073 3074 3075 3076
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3077
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3089 3090 3091 3092
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3093
 */
3094
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3095 3096
					nodemask_t *nodemask)
{
3097
	struct zoneref *z;
3098
	struct zone *zone;
3099
	pg_data_t *pgdat = NULL;
3100 3101 3102 3103 3104 3105 3106 3107 3108

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3109 3110 3111 3112 3113 3114 3115 3116
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3117

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3133
					gfp_zone(gfp_mask), nodemask) {
3134 3135 3136 3137 3138
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3139
		if (allow_direct_reclaim(pgdat))
3140 3141 3142 3143 3144 3145
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3146
		goto out;
3147

3148 3149 3150
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3161
			allow_direct_reclaim(pgdat), HZ);
3162 3163

		goto check_pending;
3164 3165 3166 3167
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3168
		allow_direct_reclaim(pgdat));
3169 3170 3171 3172 3173 3174 3175

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3176 3177
}

3178
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3179
				gfp_t gfp_mask, nodemask_t *nodemask)
3180
{
3181
	unsigned long nr_reclaimed;
3182
	struct scan_control sc = {
3183
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3184
		.gfp_mask = current_gfp_context(gfp_mask),
3185
		.reclaim_idx = gfp_zone(gfp_mask),
3186 3187 3188
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3189
		.may_writepage = !laptop_mode,
3190
		.may_unmap = 1,
3191
		.may_swap = 1,
3192 3193
	};

G
Greg Thelen 已提交
3194 3195 3196 3197 3198 3199 3200 3201
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3202
	/*
3203 3204 3205
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3206
	 */
3207
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3208 3209
		return 1;

3210
	set_task_reclaim_state(current, &sc.reclaim_state);
3211
	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3212

3213
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3214 3215

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3216
	set_task_reclaim_state(current, NULL);
3217 3218

	return nr_reclaimed;
3219 3220
}

A
Andrew Morton 已提交
3221
#ifdef CONFIG_MEMCG
3222

3223
/* Only used by soft limit reclaim. Do not reuse for anything else. */
3224
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3225
						gfp_t gfp_mask, bool noswap,
3226
						pg_data_t *pgdat,
3227
						unsigned long *nr_scanned)
3228 3229
{
	struct scan_control sc = {
3230
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3231
		.target_mem_cgroup = memcg,
3232 3233
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3234
		.reclaim_idx = MAX_NR_ZONES - 1,
3235 3236
		.may_swap = !noswap,
	};
3237
	unsigned long lru_pages;
3238

3239 3240
	WARN_ON_ONCE(!current->reclaim_state);

3241 3242
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3243

3244
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3245
						      sc.gfp_mask);
3246

3247 3248 3249
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3250
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3251 3252 3253
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3254
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3255 3256 3257

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3258
	*nr_scanned = sc.nr_scanned;
3259

3260 3261 3262
	return sc.nr_reclaimed;
}

3263
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3264
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3265
					   gfp_t gfp_mask,
3266
					   bool may_swap)
3267
{
3268
	struct zonelist *zonelist;
3269
	unsigned long nr_reclaimed;
3270
	unsigned long pflags;
3271
	int nid;
3272
	unsigned int noreclaim_flag;
3273
	struct scan_control sc = {
3274
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3275
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3276
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3277
		.reclaim_idx = MAX_NR_ZONES - 1,
3278 3279 3280 3281
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3282
		.may_swap = may_swap,
3283
	};
3284

3285
	set_task_reclaim_state(current, &sc.reclaim_state);
3286 3287 3288 3289 3290
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3291
	nid = mem_cgroup_select_victim_node(memcg);
3292

3293
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3294

3295
	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3296

3297
	psi_memstall_enter(&pflags);
3298
	noreclaim_flag = memalloc_noreclaim_save();
3299

3300
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3301

3302
	memalloc_noreclaim_restore(noreclaim_flag);
3303
	psi_memstall_leave(&pflags);
3304 3305

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3306
	set_task_reclaim_state(current, NULL);
3307 3308

	return nr_reclaimed;
3309 3310 3311
}
#endif

3312
static void age_active_anon(struct pglist_data *pgdat,
3313
				struct scan_control *sc)
3314
{
3315
	struct mem_cgroup *memcg;
3316

3317 3318 3319 3320 3321
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3322
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3323

3324
		if (inactive_list_is_low(lruvec, false, sc, true))
3325
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3326
					   sc, LRU_ACTIVE_ANON);
3327 3328 3329

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3330 3331
}

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
	for (i = classzone_idx; i >= 0; i--) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3356 3357 3358 3359 3360
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3361
{
3362 3363 3364
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3365

3366 3367 3368 3369
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3370 3371
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3372

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3390 3391
}

3392 3393 3394 3395 3396 3397 3398 3399
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3400 3401 3402 3403 3404 3405
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3406
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3407
{
3408
	/*
3409
	 * The throttled processes are normally woken up in balance_pgdat() as
3410
	 * soon as allow_direct_reclaim() is true. But there is a potential
3411 3412 3413 3414 3415 3416 3417 3418 3419
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3420
	 */
3421 3422
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3423

3424 3425 3426 3427
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3428 3429 3430
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3431 3432
	}

3433
	return false;
3434 3435
}

3436
/*
3437 3438
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3439 3440
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3441 3442
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3443
 */
3444
static bool kswapd_shrink_node(pg_data_t *pgdat,
3445
			       struct scan_control *sc)
3446
{
3447 3448
	struct zone *zone;
	int z;
3449

3450 3451
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3452
	for (z = 0; z <= sc->reclaim_idx; z++) {
3453
		zone = pgdat->node_zones + z;
3454
		if (!managed_zone(zone))
3455
			continue;
3456

3457 3458
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3459 3460

	/*
3461 3462
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3463
	 */
3464
	shrink_node(pgdat, sc);
3465

3466
	/*
3467 3468 3469 3470 3471
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3472
	 */
3473
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3474
		sc->order = 0;
3475

3476
	return sc->nr_scanned >= sc->nr_to_reclaim;
3477 3478
}

L
Linus Torvalds 已提交
3479
/*
3480 3481 3482
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3483
 *
3484
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3485 3486
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3487
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3488
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3489 3490
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3491
 */
3492
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3493 3494
{
	int i;
3495 3496
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3497
	unsigned long pflags;
3498 3499 3500
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3501
	struct zone *zone;
3502 3503
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3504
		.order = order,
3505
		.may_unmap = 1,
3506
	};
3507

3508
	set_task_reclaim_state(current, &sc.reclaim_state);
3509
	psi_memstall_enter(&pflags);
3510 3511
	__fs_reclaim_acquire();

3512
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3513

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3532
	do {
3533
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3534
		bool raise_priority = true;
3535
		bool balanced;
3536
		bool ret;
3537

3538
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3539

3540
		/*
3541 3542 3543 3544 3545 3546 3547 3548
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3549 3550 3551 3552
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3553
				if (!managed_zone(zone))
3554
					continue;
3555

3556
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3557
				break;
L
Linus Torvalds 已提交
3558 3559
			}
		}
3560

3561
		/*
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3578
		 */
3579
		if (!nr_boost_reclaim && balanced)
3580
			goto out;
A
Andrew Morton 已提交
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;

3595 3596 3597 3598 3599 3600
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3601
		age_active_anon(pgdat, &sc);
3602

3603 3604 3605 3606
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3607
		if (sc.priority < DEF_PRIORITY - 2)
3608 3609
			sc.may_writepage = 1;

3610 3611 3612
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3613
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3614 3615 3616
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3617
		/*
3618 3619 3620
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3621
		 */
3622
		if (kswapd_shrink_node(pgdat, &sc))
3623
			raise_priority = false;
3624 3625 3626 3627 3628 3629 3630

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3631
				allow_direct_reclaim(pgdat))
3632
			wake_up_all(&pgdat->pfmemalloc_wait);
3633

3634
		/* Check if kswapd should be suspending */
3635 3636 3637 3638
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3639
			break;
3640

3641
		/*
3642 3643
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3644
		 */
3645
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3656
		if (raise_priority || !nr_reclaimed)
3657
			sc.priority--;
3658
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3659

3660 3661 3662
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3663
out:
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

		for (i = 0; i <= classzone_idx; i++) {
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
	}

3686
	snapshot_refaults(NULL, pgdat);
3687
	__fs_reclaim_release();
3688
	psi_memstall_leave(&pflags);
3689
	set_task_reclaim_state(current, NULL);
3690

3691
	/*
3692 3693 3694 3695
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3696
	 */
3697
	return sc.order;
L
Linus Torvalds 已提交
3698 3699
}

3700
/*
3701 3702 3703 3704 3705
 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
 * after previous reclaim attempt (node is still unbalanced). In that case
 * return the zone index of the previous kswapd reclaim cycle.
3706 3707
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3708
					   enum zone_type prev_classzone_idx)
3709 3710
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3711 3712
		return prev_classzone_idx;
	return pgdat->kswapd_classzone_idx;
3713 3714
}

3715 3716
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3717 3718 3719 3720 3721 3722 3723 3724 3725
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3726 3727 3728 3729 3730 3731 3732
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3733
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3746
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3747

3748
		remaining = schedule_timeout(HZ/10);
3749 3750 3751 3752 3753 3754 3755

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3756
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3757 3758 3759
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3760 3761 3762 3763 3764 3765 3766 3767
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3768 3769
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3781 3782 3783 3784

		if (!kthread_should_stop())
			schedule();

3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3795 3796
/*
 * The background pageout daemon, started as a kernel thread
3797
 * from the init process.
L
Linus Torvalds 已提交
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3810 3811
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3812 3813
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3814
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3815

R
Rusty Russell 已提交
3816
	if (!cpumask_empty(cpumask))
3817
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3831
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3832
	set_freezable();
L
Linus Torvalds 已提交
3833

3834 3835
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3836
	for ( ; ; ) {
3837
		bool ret;
3838

3839 3840 3841
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3842 3843 3844
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3845

3846 3847
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3848
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3849
		pgdat->kswapd_order = 0;
3850
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3851

3852 3853 3854 3855 3856 3857 3858 3859
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3871 3872
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3873 3874 3875
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3876
	}
3877

3878 3879
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);

L
Linus Torvalds 已提交
3880 3881 3882 3883
	return 0;
}

/*
3884 3885 3886 3887 3888
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3889
 */
3890 3891
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3892 3893 3894
{
	pg_data_t *pgdat;

3895
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3896 3897
		return;

3898
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3899
		return;
3900
	pgdat = zone->zone_pgdat;
3901 3902 3903 3904 3905 3906

	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		pgdat->kswapd_classzone_idx = classzone_idx;
	else
		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
						  classzone_idx);
3907
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3908
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3909
		return;
3910

3911 3912
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3913 3914
	    (pgdat_balanced(pgdat, order, classzone_idx) &&
	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3915 3916 3917 3918 3919 3920 3921 3922 3923
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3924
		return;
3925
	}
3926

3927 3928
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3929
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3930 3931
}

3932
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3933
/*
3934
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3935 3936 3937 3938 3939
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3940
 */
3941
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3942
{
3943
	struct scan_control sc = {
3944
		.nr_to_reclaim = nr_to_reclaim,
3945
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3946
		.reclaim_idx = MAX_NR_ZONES - 1,
3947
		.priority = DEF_PRIORITY,
3948
		.may_writepage = 1,
3949 3950
		.may_unmap = 1,
		.may_swap = 1,
3951
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3952
	};
3953
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3954
	unsigned long nr_reclaimed;
3955
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3956

3957
	fs_reclaim_acquire(sc.gfp_mask);
3958
	noreclaim_flag = memalloc_noreclaim_save();
3959
	set_task_reclaim_state(current, &sc.reclaim_state);
3960

3961
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3962

3963
	set_task_reclaim_state(current, NULL);
3964
	memalloc_noreclaim_restore(noreclaim_flag);
3965
	fs_reclaim_release(sc.gfp_mask);
3966

3967
	return nr_reclaimed;
L
Linus Torvalds 已提交
3968
}
3969
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3975
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3976
{
3977
	int nid;
L
Linus Torvalds 已提交
3978

3979 3980 3981
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3982

3983
		mask = cpumask_of_node(pgdat->node_id);
3984

3985 3986 3987
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3988
	}
3989
	return 0;
L
Linus Torvalds 已提交
3990 3991
}

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4007
		BUG_ON(system_state < SYSTEM_RUNNING);
4008 4009
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4010
		pgdat->kswapd = NULL;
4011 4012 4013 4014
	}
	return ret;
}

4015
/*
4016
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4017
 * hold mem_hotplug_begin/end().
4018 4019 4020 4021 4022
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4023
	if (kswapd) {
4024
		kthread_stop(kswapd);
4025 4026
		NODE_DATA(nid)->kswapd = NULL;
	}
4027 4028
}

L
Linus Torvalds 已提交
4029 4030
static int __init kswapd_init(void)
{
4031
	int nid, ret;
4032

L
Linus Torvalds 已提交
4033
	swap_setup();
4034
	for_each_node_state(nid, N_MEMORY)
4035
 		kswapd_run(nid);
4036 4037 4038 4039
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
4040 4041 4042 4043
	return 0;
}

module_init(kswapd_init)
4044 4045 4046

#ifdef CONFIG_NUMA
/*
4047
 * Node reclaim mode
4048
 *
4049
 * If non-zero call node_reclaim when the number of free pages falls below
4050 4051
 * the watermarks.
 */
4052
int node_reclaim_mode __read_mostly;
4053

4054
#define RECLAIM_OFF 0
4055
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4056
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4057
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4058

4059
/*
4060
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4061 4062 4063
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4064
#define NODE_RECLAIM_PRIORITY 4
4065

4066
/*
4067
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4068 4069 4070 4071
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4072 4073 4074 4075 4076 4077
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4078
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4079
{
4080 4081 4082
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4093
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4094
{
4095 4096
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4097 4098

	/*
4099
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4100
	 * potentially reclaimable. Otherwise, we have to worry about
4101
	 * pages like swapcache and node_unmapped_file_pages() provides
4102 4103
	 * a better estimate
	 */
4104 4105
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4106
	else
4107
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4108 4109

	/* If we can't clean pages, remove dirty pages from consideration */
4110 4111
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4112 4113 4114 4115 4116 4117 4118 4119

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4120
/*
4121
 * Try to free up some pages from this node through reclaim.
4122
 */
4123
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4124
{
4125
	/* Minimum pages needed in order to stay on node */
4126
	const unsigned long nr_pages = 1 << order;
4127
	struct task_struct *p = current;
4128
	unsigned int noreclaim_flag;
4129
	struct scan_control sc = {
4130
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4131
		.gfp_mask = current_gfp_context(gfp_mask),
4132
		.order = order,
4133 4134 4135
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4136
		.may_swap = 1,
4137
		.reclaim_idx = gfp_zone(gfp_mask),
4138
	};
4139

4140 4141 4142
	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
					   sc.gfp_mask);

4143
	cond_resched();
4144
	fs_reclaim_acquire(sc.gfp_mask);
4145
	/*
4146
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4147
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4148
	 * and RECLAIM_UNMAP.
4149
	 */
4150 4151
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4152
	set_task_reclaim_state(p, &sc.reclaim_state);
4153

4154
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4155
		/*
4156
		 * Free memory by calling shrink node with increasing
4157 4158 4159
		 * priorities until we have enough memory freed.
		 */
		do {
4160
			shrink_node(pgdat, &sc);
4161
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4162
	}
4163

4164
	set_task_reclaim_state(p, NULL);
4165 4166
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4167
	fs_reclaim_release(sc.gfp_mask);
4168 4169 4170

	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);

4171
	return sc.nr_reclaimed >= nr_pages;
4172
}
4173

4174
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4175
{
4176
	int ret;
4177 4178

	/*
4179
	 * Node reclaim reclaims unmapped file backed pages and
4180
	 * slab pages if we are over the defined limits.
4181
	 *
4182 4183
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4184 4185
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4186
	 * unmapped file backed pages.
4187
	 */
4188
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4189
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4190
		return NODE_RECLAIM_FULL;
4191 4192

	/*
4193
	 * Do not scan if the allocation should not be delayed.
4194
	 */
4195
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4196
		return NODE_RECLAIM_NOSCAN;
4197 4198

	/*
4199
	 * Only run node reclaim on the local node or on nodes that do not
4200 4201 4202 4203
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4204 4205
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4206

4207 4208
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4209

4210 4211
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4212

4213 4214 4215
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4216
	return ret;
4217
}
4218
#endif
L
Lee Schermerhorn 已提交
4219 4220 4221 4222 4223 4224

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4225
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4226 4227
 *
 * Reasons page might not be evictable:
4228
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4229
 * (2) page is part of an mlocked VMA
4230
 *
L
Lee Schermerhorn 已提交
4231
 */
4232
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4233
{
4234 4235 4236 4237 4238 4239 4240
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4241
}
4242 4243

/**
4244 4245 4246
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4247
 *
4248 4249 4250
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4251
 */
4252
void check_move_unevictable_pages(struct pagevec *pvec)
4253
{
4254
	struct lruvec *lruvec;
4255
	struct pglist_data *pgdat = NULL;
4256 4257 4258
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4259

4260 4261
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4262
		struct pglist_data *pagepgdat = page_pgdat(page);
4263

4264
		pgscanned++;
4265 4266 4267 4268 4269
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4270
		}
4271
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4272

4273 4274
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4275

4276
		if (page_evictable(page)) {
4277 4278
			enum lru_list lru = page_lru_base_type(page);

4279
			VM_BUG_ON_PAGE(PageActive(page), page);
4280
			ClearPageUnevictable(page);
4281 4282
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4283
			pgrescued++;
4284
		}
4285
	}
4286

4287
	if (pgdat) {
4288 4289
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4290
		spin_unlock_irq(&pgdat->lru_lock);
4291 4292
	}
}
4293
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);