vmscan.c 126.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 84 85 86 87 88 89 90
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

91 92 93 94 95 96 97
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
98

99 100 101 102 103
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
104 105 106 107 108 109 110 111 112 113 114 115
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

116 117 118 119 120
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
121 122 123 124 125 126 127 128 129 130

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
131 132 133

	/* for recording the reclaimed slab by now */
	struct reclaim_state reclaim_state;
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
168 169 170 171 172
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
173

174 175 176 177 178 179 180 181 182 183 184 185
static void set_task_reclaim_state(struct task_struct *task,
				   struct reclaim_state *rs)
{
	/* Check for an overwrite */
	WARN_ON_ONCE(rs && task->reclaim_state);

	/* Check for the nulling of an already-nulled member */
	WARN_ON_ONCE(!rs && !task->reclaim_state);

	task->reclaim_state = rs;
}

L
Linus Torvalds 已提交
186 187 188
static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

189
#ifdef CONFIG_MEMCG
190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

203 204 205 206 207 208 209 210 211
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
212
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 214 215
	if (id < 0)
		goto unlock;

216 217 218 219 220 221
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

222
		shrinker_nr_max = id + 1;
223
	}
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}

242 243
static bool global_reclaim(struct scan_control *sc)
{
244
	return !sc->target_mem_cgroup;
245
}
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
267
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 269 270 271
		return true;
#endif
	return false;
}
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
295
#else
296 297 298 299 300 301 302 303 304
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}

305 306 307 308
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
309 310 311 312 313

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
314 315 316 317 318 319 320 321 322 323 324 325

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
326 327
#endif

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

346 347 348 349 350 351 352
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
353
{
354 355 356
	unsigned long lru_size;
	int zid;

357
	if (!mem_cgroup_disabled())
358
		lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
359 360
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
361

362 363 364
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
365

366 367 368 369 370 371 372 373 374 375 376 377
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
378 379 380

}

L
Linus Torvalds 已提交
381
/*
G
Glauber Costa 已提交
382
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
383
 */
384
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
385
{
386
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
387 388 389 390 391 392 393

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
394 395 396 397 398 399

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

400
	return 0;
401 402 403 404 405

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
406 407 408 409
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
410 411 412 413 414 415
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

416 417 418
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
419

420 421
void register_shrinker_prepared(struct shrinker *shrinker)
{
422 423
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
424
#ifdef CONFIG_MEMCG_KMEM
425 426
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
427
#endif
428
	up_write(&shrinker_rwsem);
429 430 431 432 433 434 435 436 437
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
438
	return 0;
L
Linus Torvalds 已提交
439
}
440
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
441 442 443 444

/*
 * Remove one
 */
445
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
446
{
447 448
	if (!shrinker->nr_deferred)
		return;
449 450
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
451 452 453
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
454
	kfree(shrinker->nr_deferred);
455
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
456
}
457
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
458 459

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
460

461
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
462
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
463 464 465 466
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
467
	long freeable;
G
Glauber Costa 已提交
468 469 470 471 472
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
473
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
474

475 476 477
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

478
	freeable = shrinker->count_objects(shrinker, shrinkctl);
479 480
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
481 482 483 484 485 486 487 488 489

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
490 491 492 493 494 495 496 497 498 499 500 501
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
502

G
Glauber Costa 已提交
503 504
	total_scan += delta;
	if (total_scan < 0) {
505
		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
506
		       shrinker->scan_objects, total_scan);
507
		total_scan = freeable;
508 509 510
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
511 512 513 514 515 516 517

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
518
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
519 520 521 522 523
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
524 525
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
526 527 528 529 530 531

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
532 533
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
534 535

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
536
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
537

538 539 540 541 542 543 544 545 546 547 548
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
549
	 * than the total number of objects on slab (freeable), we must be
550 551 552 553
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
554
	       total_scan >= freeable) {
D
Dave Chinner 已提交
555
		unsigned long ret;
556
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
557

558
		shrinkctl->nr_to_scan = nr_to_scan;
559
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
560 561 562 563
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
564

565 566 567
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
568 569 570 571

		cond_resched();
	}

572 573 574 575
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
576 577 578 579 580
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
581 582
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
583 584 585 586
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

587
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
588
	return freed;
589 590
}

591
#ifdef CONFIG_MEMCG
592 593 594 595
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
596 597
	unsigned long ret, freed = 0;
	int i;
598

599
	if (!mem_cgroup_online(memcg))
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
619 620 621
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
622 623 624
			continue;
		}

625 626 627 628 629
		/* Call non-slab shrinkers even though kmem is disabled */
		if (!memcg_kmem_enabled() &&
		    !(shrinker->flags & SHRINKER_NONSLAB))
			continue;

630
		ret = do_shrink_slab(&sc, shrinker, priority);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
655 656 657 658 659 660 661 662 663 664 665
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
666
#else /* CONFIG_MEMCG */
667 668 669 670 671
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
672
#endif /* CONFIG_MEMCG */
673

674
/**
675
 * shrink_slab - shrink slab caches
676 677
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
678
 * @memcg: memory cgroup whose slab caches to target
679
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
680
 *
681
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
682
 *
683 684
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
685
 *
686 687
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
688
 *
689 690
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
691
 *
692
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
693
 */
694 695
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
696
				 int priority)
L
Linus Torvalds 已提交
697
{
698
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
699 700
	struct shrinker *shrinker;

701 702 703 704 705 706 707 708
	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
709
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
710

711
	if (!down_read_trylock(&shrinker_rwsem))
712
		goto out;
L
Linus Torvalds 已提交
713 714

	list_for_each_entry(shrinker, &shrinker_list, list) {
715 716 717
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
718
			.memcg = memcg,
719
		};
720

721 722 723 724
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
725 726 727 728 729 730 731 732 733
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
734
	}
735

L
Linus Torvalds 已提交
736
	up_read(&shrinker_rwsem);
737 738
out:
	cond_resched();
D
Dave Chinner 已提交
739
	return freed;
L
Linus Torvalds 已提交
740 741
}

742 743 744 745 746 747 748 749
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
750
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
751
		do {
752
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
753 754 755 756 757 758 759 760 761 762 763 764
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
765 766
static inline int is_page_cache_freeable(struct page *page)
{
767 768
	/*
	 * A freeable page cache page is referenced only by the caller
769 770
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
771
	 */
772
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
773
		HPAGE_PMD_NR : 1;
774
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
775 776
}

777
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
778
{
779
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
780
		return 1;
781
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
782
		return 1;
783
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
803
	lock_page(page);
804 805
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
806 807 808
	unlock_page(page);
}

809 810 811 812 813 814 815 816 817 818 819 820
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
821
/*
A
Andrew Morton 已提交
822 823
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
824
 */
825
static pageout_t pageout(struct page *page, struct address_space *mapping,
826
			 struct scan_control *sc)
L
Linus Torvalds 已提交
827 828 829 830 831 832 833 834
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
835
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
851
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
852 853
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
854
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
855 856 857 858 859 860 861
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
862
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
863 864 865 866 867 868 869
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
870 871
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
872 873 874 875 876 877 878
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
879
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
880 881 882
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
883

L
Linus Torvalds 已提交
884 885 886 887
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
888
		trace_mm_vmscan_writepage(page);
889
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
890 891 892 893 894 895
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

896
/*
N
Nick Piggin 已提交
897 898
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
899
 */
900 901
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
902
{
903
	unsigned long flags;
904
	int refcount;
905

906 907
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
908

M
Matthew Wilcox 已提交
909
	xa_lock_irqsave(&mapping->i_pages, flags);
910
	/*
N
Nick Piggin 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
930
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
931 932
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
933
	 * and thus under the i_pages lock, then this ordering is not required.
934
	 */
935 936 937 938 939
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
940
		goto cannot_free;
941
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
942
	if (unlikely(PageDirty(page))) {
943
		page_ref_unfreeze(page, refcount);
944
		goto cannot_free;
N
Nick Piggin 已提交
945
	}
946 947 948

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
949
		mem_cgroup_swapout(page, swap);
950
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
951
		xa_unlock_irqrestore(&mapping->i_pages, flags);
952
		put_swap_page(page, swap);
N
Nick Piggin 已提交
953
	} else {
954
		void (*freepage)(struct page *);
955
		void *shadow = NULL;
956 957

		freepage = mapping->a_ops->freepage;
958 959 960 961 962 963 964 965 966
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
967 968 969 970 971
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
972
		 * same address_space.
973 974
		 */
		if (reclaimed && page_is_file_cache(page) &&
975
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
976
			shadow = workingset_eviction(page);
J
Johannes Weiner 已提交
977
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
978
		xa_unlock_irqrestore(&mapping->i_pages, flags);
979 980 981

		if (freepage != NULL)
			freepage(page);
982 983 984 985 986
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
987
	xa_unlock_irqrestore(&mapping->i_pages, flags);
988 989 990
	return 0;
}

N
Nick Piggin 已提交
991 992 993 994 995 996 997 998
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
999
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
1000 1001 1002 1003 1004
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
1005
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
1006 1007 1008 1009 1010
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
1022
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
1023 1024 1025
	put_page(page);		/* drop ref from isolate */
}

1026 1027 1028
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1029
	PAGEREF_KEEP,
1030 1031 1032 1033 1034 1035
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1036
	int referenced_ptes, referenced_page;
1037 1038
	unsigned long vm_flags;

1039 1040
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1041
	referenced_page = TestClearPageReferenced(page);
1042 1043 1044 1045 1046 1047 1048 1049

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1050
	if (referenced_ptes) {
1051
		if (PageSwapBacked(page))
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1069
		if (referenced_page || referenced_ptes > 1)
1070 1071
			return PAGEREF_ACTIVATE;

1072 1073 1074 1075 1076 1077
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1078 1079
		return PAGEREF_KEEP;
	}
1080 1081

	/* Reclaim if clean, defer dirty pages to writeback */
1082
	if (referenced_page && !PageSwapBacked(page))
1083 1084 1085
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1086 1087
}

1088 1089 1090 1091
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1092 1093
	struct address_space *mapping;

1094 1095 1096 1097
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1098 1099
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1100 1101 1102 1103 1104 1105 1106 1107
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1108 1109 1110 1111 1112 1113 1114 1115

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1116 1117
}

L
Linus Torvalds 已提交
1118
/*
A
Andrew Morton 已提交
1119
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1120
 */
A
Andrew Morton 已提交
1121
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1122
				      struct pglist_data *pgdat,
1123
				      struct scan_control *sc,
1124
				      enum ttu_flags ttu_flags,
1125
				      struct reclaim_stat *stat,
1126
				      bool ignore_references)
L
Linus Torvalds 已提交
1127 1128
{
	LIST_HEAD(ret_pages);
1129
	LIST_HEAD(free_pages);
1130
	unsigned nr_reclaimed = 0;
1131
	unsigned pgactivate = 0;
L
Linus Torvalds 已提交
1132

1133
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1134 1135 1136 1137 1138 1139
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1140
		enum page_references references = PAGEREF_RECLAIM;
1141
		bool dirty, writeback;
1142
		unsigned int nr_pages;
L
Linus Torvalds 已提交
1143 1144 1145 1146 1147 1148

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1149
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1150 1151
			goto keep;

1152
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1153

1154
		nr_pages = compound_nr(page);
1155 1156 1157

		/* Account the number of base pages even though THP */
		sc->nr_scanned += nr_pages;
1158

1159
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1160
			goto activate_locked;
L
Lee Schermerhorn 已提交
1161

1162
		if (!sc->may_unmap && page_mapped(page))
1163 1164
			goto keep_locked;

1165 1166 1167
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1168
		/*
1169
		 * The number of dirty pages determines if a node is marked
1170 1171 1172 1173 1174 1175
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1176
			stat->nr_dirty++;
1177 1178

		if (dirty && !writeback)
1179
			stat->nr_unqueued_dirty++;
1180

1181 1182 1183 1184 1185 1186
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1187
		mapping = page_mapping(page);
1188
		if (((dirty || writeback) && mapping &&
1189
		     inode_write_congested(mapping->host)) ||
1190
		    (writeback && PageReclaim(page)))
1191
			stat->nr_congested++;
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1204 1205
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1206
		 *
1207
		 * 2) Global or new memcg reclaim encounters a page that is
1208 1209 1210
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1211
		 *    reclaim and continue scanning.
1212
		 *
1213 1214
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1215 1216 1217 1218 1219
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1220
		 * 3) Legacy memcg encounters a page that is already marked
1221 1222 1223 1224
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1225 1226 1227 1228 1229 1230 1231 1232 1233
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1234
		 */
1235
		if (PageWriteback(page)) {
1236 1237 1238
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1239
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1240
				stat->nr_immediate++;
1241
				goto activate_locked;
1242 1243

			/* Case 2 above */
1244
			} else if (sane_reclaim(sc) ||
1245
			    !PageReclaim(page) || !may_enter_fs) {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1258
				stat->nr_writeback++;
1259
				goto activate_locked;
1260 1261 1262

			/* Case 3 above */
			} else {
1263
				unlock_page(page);
1264
				wait_on_page_writeback(page);
1265 1266 1267
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1268
			}
1269
		}
L
Linus Torvalds 已提交
1270

1271
		if (!ignore_references)
1272 1273
			references = page_check_references(page, sc);

1274 1275
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1276
			goto activate_locked;
1277
		case PAGEREF_KEEP:
1278
			stat->nr_ref_keep += nr_pages;
1279
			goto keep_locked;
1280 1281 1282 1283
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1284 1285 1286 1287

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1288
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1289
		 */
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
1310
						goto activate_locked_split;
1311 1312 1313 1314
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1315 1316 1317
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1318
					if (!add_to_swap(page))
1319
						goto activate_locked_split;
1320
				}
1321

1322
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1323

1324 1325 1326
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1327 1328 1329 1330
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1331
		}
L
Linus Torvalds 已提交
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		/*
		 * THP may get split above, need minus tail pages and update
		 * nr_pages to avoid accounting tail pages twice.
		 *
		 * The tail pages that are added into swap cache successfully
		 * reach here.
		 */
		if ((nr_pages > 1) && !PageTransHuge(page)) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}

L
Linus Torvalds 已提交
1345 1346 1347 1348
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1349
		if (page_mapped(page)) {
1350 1351 1352 1353 1354
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1355
				stat->nr_unmap_fail += nr_pages;
L
Linus Torvalds 已提交
1356 1357 1358 1359 1360
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1361
			/*
1362 1363 1364 1365 1366 1367 1368 1369
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1370
			 */
1371
			if (page_is_file_cache(page) &&
1372 1373
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1374 1375 1376 1377 1378 1379
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1380
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1381 1382
				SetPageReclaim(page);

1383
				goto activate_locked;
1384 1385
			}

1386
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1387
				goto keep_locked;
1388
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1389
				goto keep_locked;
1390
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1391 1392
				goto keep_locked;

1393 1394 1395 1396 1397 1398
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1399
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1405
				if (PageWriteback(page))
1406
					goto keep;
1407
				if (PageDirty(page))
L
Linus Torvalds 已提交
1408
					goto keep;
1409

L
Linus Torvalds 已提交
1410 1411 1412 1413
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1414
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1434
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1445
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1446 1447
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1464 1465
		}

S
Shaohua Li 已提交
1466 1467 1468 1469 1470 1471 1472 1473
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1474

S
Shaohua Li 已提交
1475
			count_vm_event(PGLAZYFREED);
1476
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1477 1478
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
1479 1480

		unlock_page(page);
N
Nick Piggin 已提交
1481
free_it:
1482 1483 1484 1485 1486
		/*
		 * THP may get swapped out in a whole, need account
		 * all base pages.
		 */
		nr_reclaimed += nr_pages;
1487 1488 1489 1490 1491

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1492
		if (unlikely(PageTransHuge(page)))
1493
			(*get_compound_page_dtor(page))(page);
1494
		else
1495
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1496 1497
		continue;

1498 1499 1500 1501 1502 1503 1504 1505 1506
activate_locked_split:
		/*
		 * The tail pages that are failed to add into swap cache
		 * reach here.  Fixup nr_scanned and nr_pages.
		 */
		if (nr_pages > 1) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}
L
Linus Torvalds 已提交
1507
activate_locked:
1508
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1509 1510
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1511
			try_to_free_swap(page);
1512
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1513
		if (!PageMlocked(page)) {
1514
			int type = page_is_file_cache(page);
M
Minchan Kim 已提交
1515
			SetPageActive(page);
1516
			stat->nr_activate[type] += nr_pages;
1517
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1518
		}
L
Linus Torvalds 已提交
1519 1520 1521 1522
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1523
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1524
	}
1525

1526 1527
	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];

1528
	mem_cgroup_uncharge_list(&free_pages);
1529
	try_to_unmap_flush();
1530
	free_unref_page_list(&free_pages);
1531

L
Linus Torvalds 已提交
1532
	list_splice(&ret_pages, page_list);
1533
	count_vm_events(PGACTIVATE, pgactivate);
1534

1535
	return nr_reclaimed;
L
Linus Torvalds 已提交
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1546
	struct reclaim_stat dummy_stat;
1547
	unsigned long ret;
1548 1549 1550 1551
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1552
		if (page_is_file_cache(page) && !PageDirty(page) &&
1553
		    !__PageMovable(page) && !PageUnevictable(page)) {
1554 1555 1556 1557 1558
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1559
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1560
			TTU_IGNORE_ACCESS, &dummy_stat, true);
1561
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1562
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1563 1564 1565
	return ret;
}

A
Andy Whitcroft 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1576
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1577 1578 1579 1580 1581 1582 1583
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1584 1585
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1586 1587
		return ret;

A
Andy Whitcroft 已提交
1588
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1589

1590 1591 1592 1593 1594 1595 1596 1597
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1598
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1599 1600 1601 1602 1603 1604
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1605
			bool migrate_dirty;
1606 1607 1608 1609

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1610 1611 1612 1613 1614
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1615
			 */
1616 1617 1618
			if (!trylock_page(page))
				return ret;

1619
			mapping = page_mapping(page);
1620
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1621 1622
			unlock_page(page);
			if (!migrate_dirty)
1623 1624 1625
				return ret;
		}
	}
1626

1627 1628 1629
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1643 1644 1645 1646 1647 1648

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1649
			enum lru_list lru, unsigned long *nr_zone_taken)
1650 1651 1652 1653 1654 1655 1656 1657 1658
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1659
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1660
#endif
1661 1662
	}

1663 1664
}

1665 1666
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1667 1668 1669 1670 1671 1672 1673 1674
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1675
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1676
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1677
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1678
 * @nr_scanned:	The number of pages that were scanned.
1679
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1680
 * @mode:	One of the LRU isolation modes
1681
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1682 1683 1684
 *
 * returns how many pages were moved onto *@dst.
 */
1685
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1686
		struct lruvec *lruvec, struct list_head *dst,
1687
		unsigned long *nr_scanned, struct scan_control *sc,
1688
		enum lru_list lru)
L
Linus Torvalds 已提交
1689
{
H
Hugh Dickins 已提交
1690
	struct list_head *src = &lruvec->lists[lru];
1691
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1692
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1693
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1694
	unsigned long skipped = 0;
1695
	unsigned long scan, total_scan, nr_pages;
1696
	LIST_HEAD(pages_skipped);
1697
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1698

1699
	total_scan = 0;
1700
	scan = 0;
1701
	while (scan < nr_to_scan && !list_empty(src)) {
A
Andy Whitcroft 已提交
1702 1703
		struct page *page;

L
Linus Torvalds 已提交
1704 1705 1706
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1707
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1708

1709
		nr_pages = compound_nr(page);
1710 1711
		total_scan += nr_pages;

1712 1713
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1714
			nr_skipped[page_zonenum(page)] += nr_pages;
1715 1716 1717
			continue;
		}

1718 1719 1720 1721 1722
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
1723 1724 1725 1726
		 *
		 * Account all tail pages of THP.  This would not cause
		 * premature OOM since __isolate_lru_page() returns -EBUSY
		 * only when the page is being freed somewhere else.
1727
		 */
1728
		scan += nr_pages;
1729
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1730
		case 0:
M
Mel Gorman 已提交
1731 1732
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1733 1734 1735 1736 1737 1738 1739
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1740

A
Andy Whitcroft 已提交
1741 1742 1743
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1744 1745
	}

1746 1747 1748 1749 1750 1751 1752
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1753 1754 1755
	if (!list_empty(&pages_skipped)) {
		int zid;

1756
		list_splice(&pages_skipped, src);
1757 1758 1759 1760 1761
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1762
			skipped += nr_skipped[zid];
1763 1764
		}
	}
1765
	*nr_scanned = total_scan;
1766
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1767
				    total_scan, skipped, nr_taken, mode, lru);
1768
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1769 1770 1771
	return nr_taken;
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1783 1784 1785
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1786 1787 1788 1789 1790
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1791
 *
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1802
	VM_BUG_ON_PAGE(!page_count(page), page);
1803
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1804

1805
	if (PageLRU(page)) {
1806
		pg_data_t *pgdat = page_pgdat(page);
1807
		struct lruvec *lruvec;
1808

1809 1810
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1811
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1812
			int lru = page_lru(page);
1813
			get_page(page);
1814
			ClearPageLRU(page);
1815 1816
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1817
		}
1818
		spin_unlock_irq(&pgdat->lru_lock);
1819 1820 1821 1822
	}
	return ret;
}

1823
/*
F
Fengguang Wu 已提交
1824 1825 1826 1827 1828
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1829
 */
M
Mel Gorman 已提交
1830
static int too_many_isolated(struct pglist_data *pgdat, int file,
1831 1832 1833 1834 1835 1836 1837
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1838
	if (!sane_reclaim(sc))
1839 1840 1841
		return 0;

	if (file) {
M
Mel Gorman 已提交
1842 1843
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1844
	} else {
M
Mel Gorman 已提交
1845 1846
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1847 1848
	}

1849 1850 1851 1852 1853
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1854
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1855 1856
		inactive >>= 3;

1857 1858 1859
	return isolated > inactive;
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/*
 * This moves pages from @list to corresponding LRU list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone_lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone_lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_refcount against each page.
 * But we had to alter page->flags anyway.
 *
 * Returns the number of pages moved to the given lruvec.
 */

static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
						     struct list_head *list)
1882
{
M
Mel Gorman 已提交
1883
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1884
	int nr_pages, nr_moved = 0;
1885
	LIST_HEAD(pages_to_free);
1886 1887
	struct page *page;
	enum lru_list lru;
1888

1889 1890
	while (!list_empty(list)) {
		page = lru_to_page(list);
1891
		VM_BUG_ON_PAGE(PageLRU(page), page);
1892
		if (unlikely(!page_evictable(page))) {
1893
			list_del(&page->lru);
M
Mel Gorman 已提交
1894
			spin_unlock_irq(&pgdat->lru_lock);
1895
			putback_lru_page(page);
M
Mel Gorman 已提交
1896
			spin_lock_irq(&pgdat->lru_lock);
1897 1898
			continue;
		}
M
Mel Gorman 已提交
1899
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1900

1901
		SetPageLRU(page);
1902
		lru = page_lru(page);
1903 1904 1905 1906

		nr_pages = hpage_nr_pages(page);
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
		list_move(&page->lru, &lruvec->lists[lru]);
1907

1908 1909 1910
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1911
			del_page_from_lru_list(page, lruvec, lru);
1912 1913

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1914
				spin_unlock_irq(&pgdat->lru_lock);
1915
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1916
				spin_lock_irq(&pgdat->lru_lock);
1917 1918
			} else
				list_add(&page->lru, &pages_to_free);
1919 1920
		} else {
			nr_moved += nr_pages;
1921 1922 1923
		}
	}

1924 1925 1926
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
1927 1928 1929
	list_splice(&pages_to_free, list);

	return nr_moved;
1930 1931
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1945
/*
1946
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1947
 * of reclaimed pages
L
Linus Torvalds 已提交
1948
 */
1949
static noinline_for_stack unsigned long
1950
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1951
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1952 1953
{
	LIST_HEAD(page_list);
1954
	unsigned long nr_scanned;
1955
	unsigned long nr_reclaimed = 0;
1956
	unsigned long nr_taken;
1957
	struct reclaim_stat stat;
1958
	int file = is_file_lru(lru);
1959
	enum vm_event_item item;
M
Mel Gorman 已提交
1960
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1961
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1962
	bool stalled = false;
1963

M
Mel Gorman 已提交
1964
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1965 1966 1967 1968 1969 1970
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1971 1972 1973 1974 1975 1976

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1977
	lru_add_drain();
1978

M
Mel Gorman 已提交
1979
	spin_lock_irq(&pgdat->lru_lock);
1980

1981
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1982
				     &nr_scanned, sc, lru);
1983

M
Mel Gorman 已提交
1984
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1985
	reclaim_stat->recent_scanned[file] += nr_taken;
1986

1987 1988 1989 1990
	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
	if (global_reclaim(sc))
		__count_vm_events(item, nr_scanned);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
M
Mel Gorman 已提交
1991
	spin_unlock_irq(&pgdat->lru_lock);
1992

1993
	if (nr_taken == 0)
1994
		return 0;
A
Andy Whitcroft 已提交
1995

S
Shaohua Li 已提交
1996
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1997
				&stat, false);
1998

M
Mel Gorman 已提交
1999
	spin_lock_irq(&pgdat->lru_lock);
2000

2001 2002 2003 2004
	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
	if (global_reclaim(sc))
		__count_vm_events(item, nr_reclaimed);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2005 2006
	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
N
Nick Piggin 已提交
2007

2008
	move_pages_to_lru(lruvec, &page_list);
2009

M
Mel Gorman 已提交
2010
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2011

M
Mel Gorman 已提交
2012
	spin_unlock_irq(&pgdat->lru_lock);
2013

2014
	mem_cgroup_uncharge_list(&page_list);
2015
	free_unref_page_list(&page_list);
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

2031 2032 2033 2034 2035 2036 2037 2038
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2039

M
Mel Gorman 已提交
2040
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2041
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2042
	return nr_reclaimed;
L
Linus Torvalds 已提交
2043 2044
}

H
Hugh Dickins 已提交
2045
static void shrink_active_list(unsigned long nr_to_scan,
2046
			       struct lruvec *lruvec,
2047
			       struct scan_control *sc,
2048
			       enum lru_list lru)
L
Linus Torvalds 已提交
2049
{
2050
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2051
	unsigned long nr_scanned;
2052
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2053
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2054
	LIST_HEAD(l_active);
2055
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2056
	struct page *page;
2057
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2058 2059
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2060
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2061
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2062 2063

	lru_add_drain();
2064

M
Mel Gorman 已提交
2065
	spin_lock_irq(&pgdat->lru_lock);
2066

2067
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2068
				     &nr_scanned, sc, lru);
2069

M
Mel Gorman 已提交
2070
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2071
	reclaim_stat->recent_scanned[file] += nr_taken;
2072

M
Mel Gorman 已提交
2073
	__count_vm_events(PGREFILL, nr_scanned);
2074
	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2075

M
Mel Gorman 已提交
2076
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2082

2083
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2084 2085 2086 2087
			putback_lru_page(page);
			continue;
		}

2088 2089 2090 2091 2092 2093 2094 2095
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2096 2097
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2098
			nr_rotated += hpage_nr_pages(page);
2099 2100 2101 2102 2103 2104 2105 2106 2107
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2108
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2109 2110 2111 2112
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2113

2114
		ClearPageActive(page);	/* we are de-activating */
2115
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2116 2117 2118
		list_add(&page->lru, &l_inactive);
	}

2119
	/*
2120
	 * Move pages back to the lru list.
2121
	 */
M
Mel Gorman 已提交
2122
	spin_lock_irq(&pgdat->lru_lock);
2123
	/*
2124 2125 2126
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2127
	 * get_scan_count.
2128
	 */
2129
	reclaim_stat->recent_rotated[file] += nr_rotated;
2130

2131 2132
	nr_activate = move_pages_to_lru(lruvec, &l_active);
	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2133 2134
	/* Keep all free pages in l_active list */
	list_splice(&l_inactive, &l_active);
2135 2136 2137 2138

	__count_vm_events(PGDEACTIVATE, nr_deactivate);
	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);

M
Mel Gorman 已提交
2139 2140
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2141

2142 2143
	mem_cgroup_uncharge_list(&l_active);
	free_unref_page_list(&l_active);
2144 2145
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2146 2147
}

M
Minchan Kim 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
unsigned long reclaim_pages(struct list_head *page_list)
{
	int nid = -1;
	unsigned long nr_reclaimed = 0;
	LIST_HEAD(node_page_list);
	struct reclaim_stat dummy_stat;
	struct page *page;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_writepage = 1,
		.may_unmap = 1,
		.may_swap = 1,
	};

	while (!list_empty(page_list)) {
		page = lru_to_page(page_list);
		if (nid == -1) {
			nid = page_to_nid(page);
			INIT_LIST_HEAD(&node_page_list);
		}

		if (nid == page_to_nid(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &node_page_list);
			continue;
		}

		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}

		nid = -1;
	}

	if (!list_empty(&node_page_list)) {
		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}
	}

	return nr_reclaimed;
}

2204 2205 2206
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2207
 *
2208 2209 2210
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2211
 *
2212 2213
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2214
 *
2215 2216
 * If that fails and refaulting is observed, the inactive list grows.
 *
2217
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2218
 * on this LRU, maintained by the pageout code. An inactive_ratio
2219
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2220
 *
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2231
 */
2232
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2233
				 struct scan_control *sc, bool trace)
2234
{
2235
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2236 2237 2238 2239 2240
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2241
	unsigned long gb;
2242

2243 2244 2245 2246 2247 2248
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2249

2250 2251
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2252

2253 2254 2255 2256 2257
	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
2258
	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2259
	if (file && lruvec->refaults != refaults) {
2260 2261 2262 2263 2264 2265 2266 2267
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2268

2269
	if (trace)
2270 2271 2272 2273
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2274

2275
	return inactive * inactive_ratio < active;
2276 2277
}

2278
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2279
				 struct lruvec *lruvec, struct scan_control *sc)
2280
{
2281
	if (is_active_lru(lru)) {
2282
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2283
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2284 2285 2286
		return 0;
	}

2287
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2288 2289
}

2290 2291 2292 2293 2294 2295 2296
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2297 2298 2299 2300 2301 2302
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2303 2304
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2305
 */
2306
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2307 2308
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2309
{
2310
	int swappiness = mem_cgroup_swappiness(memcg);
2311 2312 2313
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2314
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2315
	unsigned long anon_prio, file_prio;
2316
	enum scan_balance scan_balance;
2317
	unsigned long anon, file;
2318
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2319
	enum lru_list lru;
2320 2321

	/* If we have no swap space, do not bother scanning anon pages. */
2322
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2323
		scan_balance = SCAN_FILE;
2324 2325
		goto out;
	}
2326

2327 2328 2329 2330 2331 2332 2333
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2334
	if (!global_reclaim(sc) && !swappiness) {
2335
		scan_balance = SCAN_FILE;
2336 2337 2338 2339 2340 2341 2342 2343
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2344
	if (!sc->priority && swappiness) {
2345
		scan_balance = SCAN_EQUAL;
2346 2347 2348
		goto out;
	}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2359 2360 2361 2362
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2363

M
Mel Gorman 已提交
2364 2365 2366 2367 2368 2369
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2370
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2371 2372 2373 2374
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2375

M
Mel Gorman 已提交
2376
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2377 2378 2379 2380 2381
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
2382
			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2383 2384 2385 2386 2387
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2388 2389 2390
		}
	}

2391
	/*
2392 2393 2394 2395 2396 2397 2398
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2399
	 */
2400
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2401
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2402
		scan_balance = SCAN_FILE;
2403 2404 2405
		goto out;
	}

2406 2407
	scan_balance = SCAN_FRACT;

2408 2409 2410 2411
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2412
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2413
	file_prio = 200 - anon_prio;
2414

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2426

2427 2428 2429 2430
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2431

M
Mel Gorman 已提交
2432
	spin_lock_irq(&pgdat->lru_lock);
2433 2434 2435
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2436 2437
	}

2438 2439 2440
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2441 2442 2443
	}

	/*
2444 2445 2446
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2447
	 */
2448
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2449
	ap /= reclaim_stat->recent_rotated[0] + 1;
2450

2451
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2452
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2453
	spin_unlock_irq(&pgdat->lru_lock);
2454

2455 2456 2457 2458
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2459 2460 2461
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
2462
		unsigned long lruvec_size;
2463
		unsigned long scan;
2464
		unsigned long min, low;
2465 2466

		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2467
		mem_cgroup_protection(memcg, &min, &low);
2468

2469
		if (min || low) {
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
			/*
			 * Scale a cgroup's reclaim pressure by proportioning
			 * its current usage to its memory.low or memory.min
			 * setting.
			 *
			 * This is important, as otherwise scanning aggression
			 * becomes extremely binary -- from nothing as we
			 * approach the memory protection threshold, to totally
			 * nominal as we exceed it.  This results in requiring
			 * setting extremely liberal protection thresholds. It
			 * also means we simply get no protection at all if we
			 * set it too low, which is not ideal.
			 */
			unsigned long cgroup_size = mem_cgroup_size(memcg);

			/*
2486 2487 2488
			 * If there is any protection in place, we adjust scan
			 * pressure in proportion to how much a group's current
			 * usage exceeds that, in percent.
2489
			 *
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
			 * There is one special case: in the first reclaim pass,
			 * we skip over all groups that are within their low
			 * protection. If that fails to reclaim enough pages to
			 * satisfy the reclaim goal, we come back and override
			 * the best-effort low protection. However, we still
			 * ideally want to honor how well-behaved groups are in
			 * that case instead of simply punishing them all
			 * equally. As such, we reclaim them based on how much
			 * of their best-effort protection they are using. Usage
			 * below memory.min is excluded from consideration when
			 * calculating utilisation, as it isn't ever
			 * reclaimable, so it might as well not exist for our
			 * purposes.
2503
			 */
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
			if (sc->memcg_low_reclaim && low > min) {
				/*
				 * Reclaim according to utilisation between min
				 * and low
				 */
				scan = lruvec_size * (cgroup_size - min) /
					(low - min);
			} else {
				/* Reclaim according to protection overage */
				scan = lruvec_size * cgroup_size /
					max(min, low) - lruvec_size;
			}
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

			/*
			 * Don't allow the scan target to exceed the lruvec
			 * size, which otherwise could happen if we have >200%
			 * overage in the normal case, or >100% overage when
			 * sc->memcg_low_reclaim is set.
			 *
			 * This is important because other cgroups without
			 * memory.low have their scan target initially set to
			 * their lruvec size, so allowing values >100% of the
			 * lruvec size here could result in penalising cgroups
			 * with memory.low set even *more* than their peers in
			 * some cases in the case of large overages.
			 *
			 * Also, minimally target SWAP_CLUSTER_MAX pages to keep
2531 2532
			 * reclaim moving forwards, avoiding decremeting
			 * sc->priority further than desirable.
2533 2534 2535 2536 2537 2538 2539
			 */
			scan = clamp(scan, SWAP_CLUSTER_MAX, lruvec_size);
		} else {
			scan = lruvec_size;
		}

		scan >>= sc->priority;
2540

2541 2542 2543 2544 2545
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
2546
			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2547

2548 2549 2550 2551 2552
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2553
			/*
2554 2555
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2556 2557
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2558
			 */
2559 2560
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2561 2562 2563 2564 2565
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
2566
				lruvec_size = 0;
2567 2568 2569 2570 2571 2572
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2573
		}
2574

2575
		*lru_pages += lruvec_size;
2576
		nr[lru] = scan;
2577
	}
2578
}
2579

2580
/*
2581
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2582
 */
2583
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2584
			      struct scan_control *sc, unsigned long *lru_pages)
2585
{
2586
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2587
	unsigned long nr[NR_LRU_LISTS];
2588
	unsigned long targets[NR_LRU_LISTS];
2589 2590 2591 2592 2593
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2594
	bool scan_adjusted;
2595

2596
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2597

2598 2599 2600
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2615 2616 2617
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2618 2619 2620
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2621 2622 2623 2624 2625 2626
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2627
							    lruvec, sc);
2628 2629
			}
		}
2630

2631 2632
		cond_resched();

2633 2634 2635 2636 2637
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2638
		 * requested. Ensure that the anon and file LRUs are scanned
2639 2640 2641 2642 2643 2644 2645
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2646 2647 2648 2649 2650 2651 2652 2653 2654
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2686 2687 2688 2689 2690 2691 2692 2693
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2694
	if (inactive_list_is_low(lruvec, false, sc, true))
2695 2696 2697 2698
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2699
/* Use reclaim/compaction for costly allocs or under memory pressure */
2700
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2701
{
2702
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2703
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2704
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2705 2706 2707 2708 2709
		return true;

	return false;
}

2710
/*
M
Mel Gorman 已提交
2711 2712 2713 2714 2715
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2716
 */
2717
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2718 2719 2720 2721 2722
					unsigned long nr_reclaimed,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2723
	int z;
2724 2725

	/* If not in reclaim/compaction mode, stop */
2726
	if (!in_reclaim_compaction(sc))
2727 2728
		return false;

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	/*
	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
	 * number of pages that were scanned. This will return to the caller
	 * with the risk reclaim/compaction and the resulting allocation attempt
	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
	 * allocations through requiring that the full LRU list has been scanned
	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
	 * scan, but that approximation was wrong, and there were corner cases
	 * where always a non-zero amount of pages were scanned.
	 */
	if (!nr_reclaimed)
		return false;
2741 2742

	/* If compaction would go ahead or the allocation would succeed, stop */
2743 2744
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2745
		if (!managed_zone(zone))
2746 2747 2748
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2749
		case COMPACT_SUCCESS:
2750 2751 2752 2753 2754 2755
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2756
	}
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = compact_gap(sc->order);
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);

2767
	return inactive_lru_pages > pages_for_compaction;
2768 2769
}

2770 2771 2772 2773 2774 2775
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2776
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2777
{
2778
	struct reclaim_state *reclaim_state = current->reclaim_state;
2779
	unsigned long nr_reclaimed, nr_scanned;
2780
	bool reclaimable = false;
L
Linus Torvalds 已提交
2781

2782 2783
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
2784
		unsigned long node_lru_pages = 0;
2785
		struct mem_cgroup *memcg;
2786

2787 2788
		memset(&sc->nr, 0, sizeof(sc->nr));

2789 2790
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2791

2792
		memcg = mem_cgroup_iter(root, NULL, NULL);
2793
		do {
2794
			unsigned long lru_pages;
2795
			unsigned long reclaimed;
2796
			unsigned long scanned;
2797

R
Roman Gushchin 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2812 2813
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2814
					continue;
2815
				}
2816
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2817 2818
				break;
			case MEMCG_PROT_NONE:
2819 2820 2821 2822 2823 2824 2825
				/*
				 * All protection thresholds breached. We may
				 * still choose to vary the scan pressure
				 * applied based on by how much the cgroup in
				 * question has exceeded its protection
				 * thresholds (see get_scan_count).
				 */
R
Roman Gushchin 已提交
2826
				break;
2827 2828
			}

2829
			reclaimed = sc->nr_reclaimed;
2830
			scanned = sc->nr_scanned;
2831 2832
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2833

2834 2835
			shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
					sc->priority);
2836

2837 2838 2839 2840 2841
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2842
		} while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
2843

2844 2845 2846
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2847 2848
		}

2849 2850
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2851 2852 2853
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2854 2855 2856
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2900 2901 2902 2903 2904 2905 2906 2907
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2908 2909 2910 2911 2912 2913 2914
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2915 2916
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2917

2918
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2919
					 sc));
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2930
	return reclaimable;
2931 2932
}

2933
/*
2934 2935 2936
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2937
 */
2938
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2939
{
M
Mel Gorman 已提交
2940
	unsigned long watermark;
2941
	enum compact_result suitable;
2942

2943 2944 2945 2946 2947 2948 2949
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2950

2951
	/*
2952 2953 2954 2955 2956 2957 2958
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2959
	 */
2960
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2961

2962
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2963 2964
}

L
Linus Torvalds 已提交
2965 2966 2967 2968 2969 2970 2971 2972
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2973
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2974
{
2975
	struct zoneref *z;
2976
	struct zone *zone;
2977 2978
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2979
	gfp_t orig_mask;
2980
	pg_data_t *last_pgdat = NULL;
2981

2982 2983 2984 2985 2986
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2987
	orig_mask = sc->gfp_mask;
2988
	if (buffer_heads_over_limit) {
2989
		sc->gfp_mask |= __GFP_HIGHMEM;
2990
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2991
	}
2992

2993
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2994
					sc->reclaim_idx, sc->nodemask) {
2995 2996 2997 2998
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2999
		if (global_reclaim(sc)) {
3000 3001
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
3002
				continue;
3003

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3015
			    compaction_ready(zone, sc)) {
3016 3017
				sc->compaction_ready = true;
				continue;
3018
			}
3019

3020 3021 3022 3023 3024 3025 3026 3027 3028
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

3029 3030 3031 3032 3033 3034 3035
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
3036
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3037 3038 3039 3040
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
3041
			/* need some check for avoid more shrink_zone() */
3042
		}
3043

3044 3045 3046 3047
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
3048
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
3049
	}
3050

3051 3052 3053 3054 3055
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
3056
}
3057

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3068
		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
3069 3070 3071 3072
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
3073 3074 3075 3076 3077 3078 3079 3080
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3081 3082 3083 3084
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3085 3086 3087
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3088
 */
3089
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3090
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3091
{
3092
	int initial_priority = sc->priority;
3093 3094 3095
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3096
retry:
3097 3098
	delayacct_freepages_start();

3099
	if (global_reclaim(sc))
3100
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3101

3102
	do {
3103 3104
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3105
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3106
		shrink_zones(zonelist, sc);
3107

3108
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3109 3110 3111 3112
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3113

3114 3115 3116 3117 3118 3119
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3120
	} while (--sc->priority >= 0);
3121

3122 3123 3124 3125 3126 3127 3128
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3129
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3130 3131
	}

3132 3133
	delayacct_freepages_end();

3134 3135 3136
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3137
	/* Aborted reclaim to try compaction? don't OOM, then */
3138
	if (sc->compaction_ready)
3139 3140
		return 1;

3141
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3142
	if (sc->memcg_low_skipped) {
3143
		sc->priority = initial_priority;
3144 3145
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3146 3147 3148
		goto retry;
	}

3149
	return 0;
L
Linus Torvalds 已提交
3150 3151
}

3152
static bool allow_direct_reclaim(pg_data_t *pgdat)
3153 3154 3155 3156 3157 3158 3159
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3160 3161 3162
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3163 3164
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3165 3166 3167 3168
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3169 3170
			continue;

3171 3172 3173 3174
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3175 3176 3177 3178
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3179 3180 3181 3182
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3183
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3195 3196 3197 3198
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3199
 */
3200
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3201 3202
					nodemask_t *nodemask)
{
3203
	struct zoneref *z;
3204
	struct zone *zone;
3205
	pg_data_t *pgdat = NULL;
3206 3207 3208 3209 3210 3211 3212 3213 3214

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3215 3216 3217 3218 3219 3220 3221 3222
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3223

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3239
					gfp_zone(gfp_mask), nodemask) {
3240 3241 3242 3243 3244
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3245
		if (allow_direct_reclaim(pgdat))
3246 3247 3248 3249 3250 3251
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3252
		goto out;
3253

3254 3255 3256
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3267
			allow_direct_reclaim(pgdat), HZ);
3268 3269

		goto check_pending;
3270 3271 3272 3273
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3274
		allow_direct_reclaim(pgdat));
3275 3276 3277 3278 3279 3280 3281

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3282 3283
}

3284
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3285
				gfp_t gfp_mask, nodemask_t *nodemask)
3286
{
3287
	unsigned long nr_reclaimed;
3288
	struct scan_control sc = {
3289
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3290
		.gfp_mask = current_gfp_context(gfp_mask),
3291
		.reclaim_idx = gfp_zone(gfp_mask),
3292 3293 3294
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3295
		.may_writepage = !laptop_mode,
3296
		.may_unmap = 1,
3297
		.may_swap = 1,
3298 3299
	};

G
Greg Thelen 已提交
3300 3301 3302 3303 3304 3305 3306 3307
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3308
	/*
3309 3310 3311
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3312
	 */
3313
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3314 3315
		return 1;

3316
	set_task_reclaim_state(current, &sc.reclaim_state);
3317
	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3318

3319
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3320 3321

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3322
	set_task_reclaim_state(current, NULL);
3323 3324

	return nr_reclaimed;
3325 3326
}

A
Andrew Morton 已提交
3327
#ifdef CONFIG_MEMCG
3328

3329
/* Only used by soft limit reclaim. Do not reuse for anything else. */
3330
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3331
						gfp_t gfp_mask, bool noswap,
3332
						pg_data_t *pgdat,
3333
						unsigned long *nr_scanned)
3334 3335
{
	struct scan_control sc = {
3336
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3337
		.target_mem_cgroup = memcg,
3338 3339
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3340
		.reclaim_idx = MAX_NR_ZONES - 1,
3341 3342
		.may_swap = !noswap,
	};
3343
	unsigned long lru_pages;
3344

3345 3346
	WARN_ON_ONCE(!current->reclaim_state);

3347 3348
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3349

3350
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3351
						      sc.gfp_mask);
3352

3353 3354 3355
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3356
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3357 3358 3359
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3360
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3361 3362 3363

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3364
	*nr_scanned = sc.nr_scanned;
3365

3366 3367 3368
	return sc.nr_reclaimed;
}

3369
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3370
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3371
					   gfp_t gfp_mask,
3372
					   bool may_swap)
3373
{
3374
	struct zonelist *zonelist;
3375
	unsigned long nr_reclaimed;
3376
	unsigned long pflags;
3377
	int nid;
3378
	unsigned int noreclaim_flag;
3379
	struct scan_control sc = {
3380
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3381
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3382
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3383
		.reclaim_idx = MAX_NR_ZONES - 1,
3384 3385 3386 3387
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3388
		.may_swap = may_swap,
3389
	};
3390

3391
	set_task_reclaim_state(current, &sc.reclaim_state);
3392 3393 3394 3395 3396
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3397
	nid = mem_cgroup_select_victim_node(memcg);
3398

3399
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3400

3401
	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3402

3403
	psi_memstall_enter(&pflags);
3404
	noreclaim_flag = memalloc_noreclaim_save();
3405

3406
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3407

3408
	memalloc_noreclaim_restore(noreclaim_flag);
3409
	psi_memstall_leave(&pflags);
3410 3411

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3412
	set_task_reclaim_state(current, NULL);
3413 3414

	return nr_reclaimed;
3415 3416 3417
}
#endif

3418
static void age_active_anon(struct pglist_data *pgdat,
3419
				struct scan_control *sc)
3420
{
3421
	struct mem_cgroup *memcg;
3422

3423 3424 3425 3426 3427
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3428
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3429

3430
		if (inactive_list_is_low(lruvec, false, sc, true))
3431
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3432
					   sc, LRU_ACTIVE_ANON);
3433 3434 3435

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3436 3437
}

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
	for (i = classzone_idx; i >= 0; i--) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3462 3463 3464 3465 3466
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3467
{
3468 3469 3470
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3471

3472 3473 3474 3475
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3476 3477
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3478

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3496 3497
}

3498 3499 3500 3501 3502 3503 3504 3505
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3506 3507 3508 3509 3510 3511
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3512
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3513
{
3514
	/*
3515
	 * The throttled processes are normally woken up in balance_pgdat() as
3516
	 * soon as allow_direct_reclaim() is true. But there is a potential
3517 3518 3519 3520 3521 3522 3523 3524 3525
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3526
	 */
3527 3528
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3529

3530 3531 3532 3533
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3534 3535 3536
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3537 3538
	}

3539
	return false;
3540 3541
}

3542
/*
3543 3544
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3545 3546
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3547 3548
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3549
 */
3550
static bool kswapd_shrink_node(pg_data_t *pgdat,
3551
			       struct scan_control *sc)
3552
{
3553 3554
	struct zone *zone;
	int z;
3555

3556 3557
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3558
	for (z = 0; z <= sc->reclaim_idx; z++) {
3559
		zone = pgdat->node_zones + z;
3560
		if (!managed_zone(zone))
3561
			continue;
3562

3563 3564
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3565 3566

	/*
3567 3568
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3569
	 */
3570
	shrink_node(pgdat, sc);
3571

3572
	/*
3573 3574 3575 3576 3577
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3578
	 */
3579
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3580
		sc->order = 0;
3581

3582
	return sc->nr_scanned >= sc->nr_to_reclaim;
3583 3584
}

L
Linus Torvalds 已提交
3585
/*
3586 3587 3588
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3589
 *
3590
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3591 3592
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3593
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3594
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3595 3596
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3597
 */
3598
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3599 3600
{
	int i;
3601 3602
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3603
	unsigned long pflags;
3604 3605 3606
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3607
	struct zone *zone;
3608 3609
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3610
		.order = order,
3611
		.may_unmap = 1,
3612
	};
3613

3614
	set_task_reclaim_state(current, &sc.reclaim_state);
3615
	psi_memstall_enter(&pflags);
3616 3617
	__fs_reclaim_acquire();

3618
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3619

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3638
	do {
3639
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3640
		bool raise_priority = true;
3641
		bool balanced;
3642
		bool ret;
3643

3644
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3645

3646
		/*
3647 3648 3649 3650 3651 3652 3653 3654
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3655 3656 3657 3658
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3659
				if (!managed_zone(zone))
3660
					continue;
3661

3662
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3663
				break;
L
Linus Torvalds 已提交
3664 3665
			}
		}
3666

3667
		/*
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3684
		 */
3685
		if (!nr_boost_reclaim && balanced)
3686
			goto out;
A
Andrew Morton 已提交
3687

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;

3701 3702 3703 3704 3705 3706
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3707
		age_active_anon(pgdat, &sc);
3708

3709 3710 3711 3712
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3713
		if (sc.priority < DEF_PRIORITY - 2)
3714 3715
			sc.may_writepage = 1;

3716 3717 3718
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3719
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3720 3721 3722
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3723
		/*
3724 3725 3726
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3727
		 */
3728
		if (kswapd_shrink_node(pgdat, &sc))
3729
			raise_priority = false;
3730 3731 3732 3733 3734 3735 3736

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3737
				allow_direct_reclaim(pgdat))
3738
			wake_up_all(&pgdat->pfmemalloc_wait);
3739

3740
		/* Check if kswapd should be suspending */
3741 3742 3743 3744
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3745
			break;
3746

3747
		/*
3748 3749
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3750
		 */
3751
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3762
		if (raise_priority || !nr_reclaimed)
3763
			sc.priority--;
3764
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3765

3766 3767 3768
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3769
out:
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

		for (i = 0; i <= classzone_idx; i++) {
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
	}

3792
	snapshot_refaults(NULL, pgdat);
3793
	__fs_reclaim_release();
3794
	psi_memstall_leave(&pflags);
3795
	set_task_reclaim_state(current, NULL);
3796

3797
	/*
3798 3799 3800 3801
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3802
	 */
3803
	return sc.order;
L
Linus Torvalds 已提交
3804 3805
}

3806
/*
3807 3808 3809 3810 3811
 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
 * after previous reclaim attempt (node is still unbalanced). In that case
 * return the zone index of the previous kswapd reclaim cycle.
3812 3813
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3814
					   enum zone_type prev_classzone_idx)
3815 3816
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3817 3818
		return prev_classzone_idx;
	return pgdat->kswapd_classzone_idx;
3819 3820
}

3821 3822
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3823 3824 3825 3826 3827 3828 3829 3830 3831
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3832 3833 3834 3835 3836 3837 3838
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3839
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3852
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3853

3854
		remaining = schedule_timeout(HZ/10);
3855 3856 3857 3858 3859 3860 3861

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3862
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3863 3864 3865
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3866 3867 3868 3869 3870 3871 3872 3873
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3874 3875
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3887 3888 3889 3890

		if (!kthread_should_stop())
			schedule();

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3901 3902
/*
 * The background pageout daemon, started as a kernel thread
3903
 * from the init process.
L
Linus Torvalds 已提交
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3916 3917
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3918 3919
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3920
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3921

R
Rusty Russell 已提交
3922
	if (!cpumask_empty(cpumask))
3923
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3937
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3938
	set_freezable();
L
Linus Torvalds 已提交
3939

3940 3941
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3942
	for ( ; ; ) {
3943
		bool ret;
3944

3945 3946 3947
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3948 3949 3950
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3951

3952 3953
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3954
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3955
		pgdat->kswapd_order = 0;
3956
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3957

3958 3959 3960 3961 3962 3963 3964 3965
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3977 3978
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3979 3980 3981
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3982
	}
3983

3984 3985
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);

L
Linus Torvalds 已提交
3986 3987 3988 3989
	return 0;
}

/*
3990 3991 3992 3993 3994
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3995
 */
3996 3997
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3998 3999 4000
{
	pg_data_t *pgdat;

4001
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
4002 4003
		return;

4004
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
4005
		return;
4006
	pgdat = zone->zone_pgdat;
4007 4008 4009 4010 4011 4012

	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		pgdat->kswapd_classzone_idx = classzone_idx;
	else
		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
						  classzone_idx);
4013
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
4014
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
4015
		return;
4016

4017 4018
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4019 4020
	    (pgdat_balanced(pgdat, order, classzone_idx) &&
	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
4021 4022 4023 4024 4025 4026 4027 4028 4029
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
4030
		return;
4031
	}
4032

4033 4034
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
4035
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
4036 4037
}

4038
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
4039
/*
4040
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4041 4042 4043 4044 4045
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
4046
 */
4047
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
4048
{
4049
	struct scan_control sc = {
4050
		.nr_to_reclaim = nr_to_reclaim,
4051
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4052
		.reclaim_idx = MAX_NR_ZONES - 1,
4053
		.priority = DEF_PRIORITY,
4054
		.may_writepage = 1,
4055 4056
		.may_unmap = 1,
		.may_swap = 1,
4057
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
4058
	};
4059
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4060
	unsigned long nr_reclaimed;
4061
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
4062

4063
	fs_reclaim_acquire(sc.gfp_mask);
4064
	noreclaim_flag = memalloc_noreclaim_save();
4065
	set_task_reclaim_state(current, &sc.reclaim_state);
4066

4067
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4068

4069
	set_task_reclaim_state(current, NULL);
4070
	memalloc_noreclaim_restore(noreclaim_flag);
4071
	fs_reclaim_release(sc.gfp_mask);
4072

4073
	return nr_reclaimed;
L
Linus Torvalds 已提交
4074
}
4075
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
4076 4077 4078 4079 4080

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
4081
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
4082
{
4083
	int nid;
L
Linus Torvalds 已提交
4084

4085 4086 4087
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
4088

4089
		mask = cpumask_of_node(pgdat->node_id);
4090

4091 4092 4093
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
4094
	}
4095
	return 0;
L
Linus Torvalds 已提交
4096 4097
}

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4113
		BUG_ON(system_state < SYSTEM_RUNNING);
4114 4115
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4116
		pgdat->kswapd = NULL;
4117 4118 4119 4120
	}
	return ret;
}

4121
/*
4122
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4123
 * hold mem_hotplug_begin/end().
4124 4125 4126 4127 4128
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4129
	if (kswapd) {
4130
		kthread_stop(kswapd);
4131 4132
		NODE_DATA(nid)->kswapd = NULL;
	}
4133 4134
}

L
Linus Torvalds 已提交
4135 4136
static int __init kswapd_init(void)
{
4137
	int nid, ret;
4138

L
Linus Torvalds 已提交
4139
	swap_setup();
4140
	for_each_node_state(nid, N_MEMORY)
4141
 		kswapd_run(nid);
4142 4143 4144 4145
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
4146 4147 4148 4149
	return 0;
}

module_init(kswapd_init)
4150 4151 4152

#ifdef CONFIG_NUMA
/*
4153
 * Node reclaim mode
4154
 *
4155
 * If non-zero call node_reclaim when the number of free pages falls below
4156 4157
 * the watermarks.
 */
4158
int node_reclaim_mode __read_mostly;
4159

4160
#define RECLAIM_OFF 0
4161
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4162
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4163
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4164

4165
/*
4166
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4167 4168 4169
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4170
#define NODE_RECLAIM_PRIORITY 4
4171

4172
/*
4173
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4174 4175 4176 4177
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4178 4179 4180 4181 4182 4183
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4184
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4185
{
4186 4187 4188
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4199
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4200
{
4201 4202
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4203 4204

	/*
4205
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4206
	 * potentially reclaimable. Otherwise, we have to worry about
4207
	 * pages like swapcache and node_unmapped_file_pages() provides
4208 4209
	 * a better estimate
	 */
4210 4211
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4212
	else
4213
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4214 4215

	/* If we can't clean pages, remove dirty pages from consideration */
4216 4217
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4218 4219 4220 4221 4222 4223 4224 4225

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4226
/*
4227
 * Try to free up some pages from this node through reclaim.
4228
 */
4229
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4230
{
4231
	/* Minimum pages needed in order to stay on node */
4232
	const unsigned long nr_pages = 1 << order;
4233
	struct task_struct *p = current;
4234
	unsigned int noreclaim_flag;
4235
	struct scan_control sc = {
4236
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4237
		.gfp_mask = current_gfp_context(gfp_mask),
4238
		.order = order,
4239 4240 4241
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4242
		.may_swap = 1,
4243
		.reclaim_idx = gfp_zone(gfp_mask),
4244
	};
4245

4246 4247 4248
	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
					   sc.gfp_mask);

4249
	cond_resched();
4250
	fs_reclaim_acquire(sc.gfp_mask);
4251
	/*
4252
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4253
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4254
	 * and RECLAIM_UNMAP.
4255
	 */
4256 4257
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4258
	set_task_reclaim_state(p, &sc.reclaim_state);
4259

4260
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4261
		/*
4262
		 * Free memory by calling shrink node with increasing
4263 4264 4265
		 * priorities until we have enough memory freed.
		 */
		do {
4266
			shrink_node(pgdat, &sc);
4267
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4268
	}
4269

4270
	set_task_reclaim_state(p, NULL);
4271 4272
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4273
	fs_reclaim_release(sc.gfp_mask);
4274 4275 4276

	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);

4277
	return sc.nr_reclaimed >= nr_pages;
4278
}
4279

4280
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4281
{
4282
	int ret;
4283 4284

	/*
4285
	 * Node reclaim reclaims unmapped file backed pages and
4286
	 * slab pages if we are over the defined limits.
4287
	 *
4288 4289
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4290 4291
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4292
	 * unmapped file backed pages.
4293
	 */
4294
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4295
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4296
		return NODE_RECLAIM_FULL;
4297 4298

	/*
4299
	 * Do not scan if the allocation should not be delayed.
4300
	 */
4301
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4302
		return NODE_RECLAIM_NOSCAN;
4303 4304

	/*
4305
	 * Only run node reclaim on the local node or on nodes that do not
4306 4307 4308 4309
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4310 4311
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4312

4313 4314
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4315

4316 4317
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4318

4319 4320 4321
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4322
	return ret;
4323
}
4324
#endif
L
Lee Schermerhorn 已提交
4325 4326 4327 4328 4329 4330

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4331
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4332 4333
 *
 * Reasons page might not be evictable:
4334
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4335
 * (2) page is part of an mlocked VMA
4336
 *
L
Lee Schermerhorn 已提交
4337
 */
4338
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4339
{
4340 4341 4342 4343 4344 4345 4346
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4347
}
4348 4349

/**
4350 4351 4352
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4353
 *
4354 4355 4356
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4357
 */
4358
void check_move_unevictable_pages(struct pagevec *pvec)
4359
{
4360
	struct lruvec *lruvec;
4361
	struct pglist_data *pgdat = NULL;
4362 4363 4364
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4365

4366 4367
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4368
		struct pglist_data *pagepgdat = page_pgdat(page);
4369

4370
		pgscanned++;
4371 4372 4373 4374 4375
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4376
		}
4377
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4378

4379 4380
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4381

4382
		if (page_evictable(page)) {
4383 4384
			enum lru_list lru = page_lru_base_type(page);

4385
			VM_BUG_ON_PAGE(PageActive(page), page);
4386
			ClearPageUnevictable(page);
4387 4388
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4389
			pgrescued++;
4390
		}
4391
	}
4392

4393
	if (pgdat) {
4394 4395
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4396
		spin_unlock_irq(&pgdat->lru_lock);
4397 4398
	}
}
4399
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);