vmscan.c 120.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
52
#include <linux/psi.h>
L
Linus Torvalds 已提交
53 54 55 56 57

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
58
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
59

60 61
#include "internal.h"

62 63 64
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
65
struct scan_control {
66 67 68
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

69 70 71 72 73
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
74

75 76 77 78 79
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
80

81
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
82 83 84 85 86 87 88 89
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

90 91 92 93 94 95 96
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
97

98 99 100 101 102
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
103 104 105 106 107 108 109 110 111 112 113 114
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

115 116 117 118 119
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
120 121 122 123 124 125 126 127 128 129

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
164 165 166 167 168
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
169 170 171 172

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

173
#ifdef CONFIG_MEMCG_KMEM
174 175 176 177 178 179 180 181 182 183 184 185 186 187

/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

188 189 190 191 192 193 194 195 196
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
197
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
198 199 200
	if (id < 0)
		goto unlock;

201 202 203 204 205 206
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

207
		shrinker_nr_max = id + 1;
208
	}
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

A
Andrew Morton 已提交
237
#ifdef CONFIG_MEMCG
238 239
static bool global_reclaim(struct scan_control *sc)
{
240
	return !sc->target_mem_cgroup;
241
}
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
263
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
264 265 266 267
		return true;
#endif
	return false;
}
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
291
#else
292 293 294 295
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
296 297 298 299 300

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
301 302 303 304 305 306 307 308 309 310 311 312

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
313 314
#endif

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

333 334 335 336 337 338 339
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
340
{
341 342 343
	unsigned long lru_size;
	int zid;

344
	if (!mem_cgroup_disabled())
345 346 347
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
348

349 350 351
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
352

353 354 355 356 357 358 359 360 361 362 363 364
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
365 366 367

}

L
Linus Torvalds 已提交
368
/*
G
Glauber Costa 已提交
369
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
370
 */
371
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
372
{
G
Glauber Costa 已提交
373 374 375 376 377 378 379 380
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
381 382 383 384 385 386

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

387
	return 0;
388 389 390 391 392

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
393 394 395 396
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
397 398 399 400 401 402
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

403 404 405
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
406

407 408
void register_shrinker_prepared(struct shrinker *shrinker)
{
409 410
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
411
#ifdef CONFIG_MEMCG_KMEM
412 413
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
414
#endif
415
	up_write(&shrinker_rwsem);
416 417 418 419 420 421 422 423 424
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
425
	return 0;
L
Linus Torvalds 已提交
426
}
427
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
428 429 430 431

/*
 * Remove one
 */
432
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
433
{
434 435
	if (!shrinker->nr_deferred)
		return;
436 437
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
438 439 440
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
441
	kfree(shrinker->nr_deferred);
442
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
443
}
444
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
445 446

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
447

448
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
449
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
450 451 452 453
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
454
	long freeable;
G
Glauber Costa 已提交
455 456 457 458 459
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
460
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
461

462 463 464
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

465
	freeable = shrinker->count_objects(shrinker, shrinkctl);
466 467
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
468 469 470 471 472 473 474 475 476

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
477 478 479
	delta = freeable >> priority;
	delta *= 4;
	do_div(delta, shrinker->seeks);
480 481 482 483 484 485 486 487 488 489 490

	/*
	 * Make sure we apply some minimal pressure on default priority
	 * even on small cgroups. Stale objects are not only consuming memory
	 * by themselves, but can also hold a reference to a dying cgroup,
	 * preventing it from being reclaimed. A dying cgroup with all
	 * corresponding structures like per-cpu stats and kmem caches
	 * can be really big, so it may lead to a significant waste of memory.
	 */
	delta = max_t(unsigned long long, delta, min(freeable, batch_size));

G
Glauber Costa 已提交
491 492
	total_scan += delta;
	if (total_scan < 0) {
493
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
494
		       shrinker->scan_objects, total_scan);
495
		total_scan = freeable;
496 497 498
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
499 500 501 502 503 504 505

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
506
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
507 508 509 510 511
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
512 513
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
514 515 516 517 518 519

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
520 521
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
522 523

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
524
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
525

526 527 528 529 530 531 532 533 534 535 536
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
537
	 * than the total number of objects on slab (freeable), we must be
538 539 540 541
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
542
	       total_scan >= freeable) {
D
Dave Chinner 已提交
543
		unsigned long ret;
544
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
545

546
		shrinkctl->nr_to_scan = nr_to_scan;
547
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
548 549 550 551
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
552

553 554 555
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
556 557 558 559

		cond_resched();
	}

560 561 562 563
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
564 565 566 567 568
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
569 570
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
571 572 573 574
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

575
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
576
	return freed;
577 578
}

579 580 581 582 583
#ifdef CONFIG_MEMCG_KMEM
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
584 585
	unsigned long ret, freed = 0;
	int i;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
607 608 609
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
610 611 612 613
			continue;
		}

		ret = do_shrink_slab(&sc, shrinker, priority);
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
#else /* CONFIG_MEMCG_KMEM */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG_KMEM */

657
/**
658
 * shrink_slab - shrink slab caches
659 660
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
661
 * @memcg: memory cgroup whose slab caches to target
662
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
663
 *
664
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
665
 *
666 667
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
668
 *
669 670
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
671
 *
672 673
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
674
 *
675
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
676
 */
677 678
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
679
				 int priority)
L
Linus Torvalds 已提交
680
{
681
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
682 683
	struct shrinker *shrinker;

684
	if (!mem_cgroup_is_root(memcg))
685
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
686

687
	if (!down_read_trylock(&shrinker_rwsem))
688
		goto out;
L
Linus Torvalds 已提交
689 690

	list_for_each_entry(shrinker, &shrinker_list, list) {
691 692 693
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
694
			.memcg = memcg,
695
		};
696

697 698 699 700
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
701 702 703 704 705 706 707 708 709
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
710
	}
711

L
Linus Torvalds 已提交
712
	up_read(&shrinker_rwsem);
713 714
out:
	cond_resched();
D
Dave Chinner 已提交
715
	return freed;
L
Linus Torvalds 已提交
716 717
}

718 719 720 721 722 723 724 725
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
726
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
727
		do {
728
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
729 730 731 732 733 734 735 736 737 738 739 740
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
741 742
static inline int is_page_cache_freeable(struct page *page)
{
743 744 745 746 747
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
748 749 750
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
751 752
}

753
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
754
{
755
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
756
		return 1;
757
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
758
		return 1;
759
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
779
	lock_page(page);
780 781
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
782 783 784
	unlock_page(page);
}

785 786 787 788 789 790 791 792 793 794 795 796
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
797
/*
A
Andrew Morton 已提交
798 799
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
800
 */
801
static pageout_t pageout(struct page *page, struct address_space *mapping,
802
			 struct scan_control *sc)
L
Linus Torvalds 已提交
803 804 805 806 807 808 809 810
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
811
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
827
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
828 829
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
830
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
831 832 833 834 835 836 837
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
838
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
839 840 841 842 843 844 845
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
846 847
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
848 849 850 851 852 853 854
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
855
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
856 857 858
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
859

L
Linus Torvalds 已提交
860 861 862 863
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
864
		trace_mm_vmscan_writepage(page);
865
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
866 867 868 869 870 871
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

872
/*
N
Nick Piggin 已提交
873 874
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
875
 */
876 877
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
878
{
879
	unsigned long flags;
880
	int refcount;
881

882 883
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
884

M
Matthew Wilcox 已提交
885
	xa_lock_irqsave(&mapping->i_pages, flags);
886
	/*
N
Nick Piggin 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
906
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
907 908
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
909
	 * and thus under the i_pages lock, then this ordering is not required.
910
	 */
911 912 913 914 915
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
916
		goto cannot_free;
917
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
918
	if (unlikely(PageDirty(page))) {
919
		page_ref_unfreeze(page, refcount);
920
		goto cannot_free;
N
Nick Piggin 已提交
921
	}
922 923 924

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
925
		mem_cgroup_swapout(page, swap);
926
		__delete_from_swap_cache(page);
M
Matthew Wilcox 已提交
927
		xa_unlock_irqrestore(&mapping->i_pages, flags);
928
		put_swap_page(page, swap);
N
Nick Piggin 已提交
929
	} else {
930
		void (*freepage)(struct page *);
931
		void *shadow = NULL;
932 933

		freepage = mapping->a_ops->freepage;
934 935 936 937 938 939 940 941 942
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
943 944 945 946 947
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
948
		 * same address_space.
949 950
		 */
		if (reclaimed && page_is_file_cache(page) &&
951
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
952
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
953
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
954
		xa_unlock_irqrestore(&mapping->i_pages, flags);
955 956 957

		if (freepage != NULL)
			freepage(page);
958 959 960 961 962
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
963
	xa_unlock_irqrestore(&mapping->i_pages, flags);
964 965 966
	return 0;
}

N
Nick Piggin 已提交
967 968 969 970 971 972 973 974
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
975
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
976 977 978 979 980
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
981
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
982 983 984 985 986
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
987 988 989 990 991 992 993 994 995 996 997
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
998
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
999 1000 1001
	put_page(page);		/* drop ref from isolate */
}

1002 1003 1004
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1005
	PAGEREF_KEEP,
1006 1007 1008 1009 1010 1011
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1012
	int referenced_ptes, referenced_page;
1013 1014
	unsigned long vm_flags;

1015 1016
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1017
	referenced_page = TestClearPageReferenced(page);
1018 1019 1020 1021 1022 1023 1024 1025

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1026
	if (referenced_ptes) {
1027
		if (PageSwapBacked(page))
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1045
		if (referenced_page || referenced_ptes > 1)
1046 1047
			return PAGEREF_ACTIVATE;

1048 1049 1050 1051 1052 1053
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1054 1055
		return PAGEREF_KEEP;
	}
1056 1057

	/* Reclaim if clean, defer dirty pages to writeback */
1058
	if (referenced_page && !PageSwapBacked(page))
1059 1060 1061
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1062 1063
}

1064 1065 1066 1067
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1068 1069
	struct address_space *mapping;

1070 1071 1072 1073
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1074 1075
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1076 1077 1078 1079 1080 1081 1082 1083
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1084 1085 1086 1087 1088 1089 1090 1091

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1092 1093
}

L
Linus Torvalds 已提交
1094
/*
A
Andrew Morton 已提交
1095
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1096
 */
A
Andrew Morton 已提交
1097
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1098
				      struct pglist_data *pgdat,
1099
				      struct scan_control *sc,
1100
				      enum ttu_flags ttu_flags,
1101
				      struct reclaim_stat *stat,
1102
				      bool force_reclaim)
L
Linus Torvalds 已提交
1103 1104
{
	LIST_HEAD(ret_pages);
1105
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
1106
	int pgactivate = 0;
1107 1108 1109 1110 1111 1112
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
1113 1114
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119 1120 1121

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1122
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1123
		bool dirty, writeback;
L
Linus Torvalds 已提交
1124 1125 1126 1127 1128 1129

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1130
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1131 1132
			goto keep;

1133
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1134 1135

		sc->nr_scanned++;
1136

1137
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1138
			goto activate_locked;
L
Lee Schermerhorn 已提交
1139

1140
		if (!sc->may_unmap && page_mapped(page))
1141 1142
			goto keep_locked;

L
Linus Torvalds 已提交
1143
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1144 1145
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1146 1147
			sc->nr_scanned++;

1148 1149 1150
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1151
		/*
1152
		 * The number of dirty pages determines if a node is marked
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1164 1165 1166 1167 1168 1169
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1170
		mapping = page_mapping(page);
1171
		if (((dirty || writeback) && mapping &&
1172
		     inode_write_congested(mapping->host)) ||
1173
		    (writeback && PageReclaim(page)))
1174 1175
			nr_congested++;

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1187 1188
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1189
		 *
1190
		 * 2) Global or new memcg reclaim encounters a page that is
1191 1192 1193
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1194
		 *    reclaim and continue scanning.
1195
		 *
1196 1197
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1198 1199 1200 1201 1202
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1203
		 * 3) Legacy memcg encounters a page that is already marked
1204 1205 1206 1207
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1208 1209 1210 1211 1212 1213 1214 1215 1216
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1217
		 */
1218
		if (PageWriteback(page)) {
1219 1220 1221
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1222
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1223
				nr_immediate++;
1224
				goto activate_locked;
1225 1226

			/* Case 2 above */
1227
			} else if (sane_reclaim(sc) ||
1228
			    !PageReclaim(page) || !may_enter_fs) {
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1241
				nr_writeback++;
1242
				goto activate_locked;
1243 1244 1245

			/* Case 3 above */
			} else {
1246
				unlock_page(page);
1247
				wait_on_page_writeback(page);
1248 1249 1250
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1251
			}
1252
		}
L
Linus Torvalds 已提交
1253

1254 1255 1256
		if (!force_reclaim)
			references = page_check_references(page, sc);

1257 1258
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1259
			goto activate_locked;
1260
		case PAGEREF_KEEP:
1261
			nr_ref_keep++;
1262
			goto keep_locked;
1263 1264 1265 1266
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1267 1268 1269 1270

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1271
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1272
		 */
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1298 1299 1300
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1301 1302 1303
					if (!add_to_swap(page))
						goto activate_locked;
				}
1304

1305
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1306

1307 1308 1309
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1310 1311 1312 1313
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1314
		}
L
Linus Torvalds 已提交
1315 1316 1317 1318 1319

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1320
		if (page_mapped(page)) {
1321 1322 1323 1324 1325
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1326
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1327 1328 1329 1330 1331
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1332
			/*
1333 1334 1335 1336 1337 1338 1339 1340
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1341
			 */
1342
			if (page_is_file_cache(page) &&
1343 1344
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1345 1346 1347 1348 1349 1350
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1351
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1352 1353
				SetPageReclaim(page);

1354
				goto activate_locked;
1355 1356
			}

1357
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1358
				goto keep_locked;
1359
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1360
				goto keep_locked;
1361
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1362 1363
				goto keep_locked;

1364 1365 1366 1367 1368 1369
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1370
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1371 1372 1373 1374 1375
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1376
				if (PageWriteback(page))
1377
					goto keep;
1378
				if (PageDirty(page))
L
Linus Torvalds 已提交
1379
					goto keep;
1380

L
Linus Torvalds 已提交
1381 1382 1383 1384
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1385
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1405
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1416
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1417 1418
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1435 1436
		}

S
Shaohua Li 已提交
1437 1438 1439 1440 1441 1442 1443 1444
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1445

S
Shaohua Li 已提交
1446
			count_vm_event(PGLAZYFREED);
1447
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1448 1449
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1450 1451 1452 1453 1454 1455 1456
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1457
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1458
free_it:
1459
		nr_reclaimed++;
1460 1461 1462 1463 1464

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1465 1466 1467 1468 1469
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1470 1471 1472
		continue;

activate_locked:
1473
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1474 1475
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1476
			try_to_free_swap(page);
1477
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1478 1479 1480
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1481
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1482
		}
L
Linus Torvalds 已提交
1483 1484 1485 1486
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1487
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1488
	}
1489

1490
	mem_cgroup_uncharge_list(&free_pages);
1491
	try_to_unmap_flush();
1492
	free_unref_page_list(&free_pages);
1493

L
Linus Torvalds 已提交
1494
	list_splice(&ret_pages, page_list);
1495
	count_vm_events(PGACTIVATE, pgactivate);
1496

1497 1498 1499 1500 1501 1502
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1503 1504 1505
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1506
	}
1507
	return nr_reclaimed;
L
Linus Torvalds 已提交
1508 1509
}

1510 1511 1512 1513 1514 1515 1516 1517
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1518
	unsigned long ret;
1519 1520 1521 1522
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1523
		if (page_is_file_cache(page) && !PageDirty(page) &&
1524
		    !__PageMovable(page)) {
1525 1526 1527 1528 1529
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1530
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1531
			TTU_IGNORE_ACCESS, NULL, true);
1532
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1533
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1534 1535 1536
	return ret;
}

A
Andy Whitcroft 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1547
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1548 1549 1550 1551 1552 1553 1554
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1555 1556
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1557 1558
		return ret;

A
Andy Whitcroft 已提交
1559
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1560

1561 1562 1563 1564 1565 1566 1567 1568
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1569
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1570 1571 1572 1573 1574 1575
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1576
			bool migrate_dirty;
1577 1578 1579 1580

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1581 1582 1583 1584 1585
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1586
			 */
1587 1588 1589
			if (!trylock_page(page))
				return ret;

1590
			mapping = page_mapping(page);
1591
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1592 1593
			unlock_page(page);
			if (!migrate_dirty)
1594 1595 1596
				return ret;
		}
	}
1597

1598 1599 1600
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1614 1615 1616 1617 1618 1619

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1620
			enum lru_list lru, unsigned long *nr_zone_taken)
1621 1622 1623 1624 1625 1626 1627 1628 1629
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1630
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1631
#endif
1632 1633
	}

1634 1635
}

L
Linus Torvalds 已提交
1636
/*
1637
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1638 1639 1640 1641 1642 1643 1644 1645
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1646
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1647
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1648
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1649
 * @nr_scanned:	The number of pages that were scanned.
1650
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1651
 * @mode:	One of the LRU isolation modes
1652
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1653 1654 1655
 *
 * returns how many pages were moved onto *@dst.
 */
1656
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1657
		struct lruvec *lruvec, struct list_head *dst,
1658
		unsigned long *nr_scanned, struct scan_control *sc,
1659
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1660
{
H
Hugh Dickins 已提交
1661
	struct list_head *src = &lruvec->lists[lru];
1662
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1663
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1664
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1665
	unsigned long skipped = 0;
1666
	unsigned long scan, total_scan, nr_pages;
1667
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1668

1669 1670 1671 1672
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1673 1674
		struct page *page;

L
Linus Torvalds 已提交
1675 1676 1677
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1678
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1679

1680 1681
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1682
			nr_skipped[page_zonenum(page)]++;
1683 1684 1685
			continue;
		}

1686 1687 1688 1689 1690 1691 1692
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1693
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1694
		case 0:
M
Mel Gorman 已提交
1695 1696 1697
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1698 1699 1700 1701 1702 1703 1704
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1705

A
Andy Whitcroft 已提交
1706 1707 1708
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1709 1710
	}

1711 1712 1713 1714 1715 1716 1717
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1718 1719 1720
	if (!list_empty(&pages_skipped)) {
		int zid;

1721
		list_splice(&pages_skipped, src);
1722 1723 1724 1725 1726
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1727
			skipped += nr_skipped[zid];
1728 1729
		}
	}
1730
	*nr_scanned = total_scan;
1731
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1732
				    total_scan, skipped, nr_taken, mode, lru);
1733
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1734 1735 1736
	return nr_taken;
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1748 1749 1750
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1751 1752 1753 1754 1755
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1756
 *
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1767
	VM_BUG_ON_PAGE(!page_count(page), page);
1768
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1769

1770 1771
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1772
		struct lruvec *lruvec;
1773

1774
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1775
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1776
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1777
			int lru = page_lru(page);
1778
			get_page(page);
1779
			ClearPageLRU(page);
1780 1781
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1782
		}
1783
		spin_unlock_irq(zone_lru_lock(zone));
1784 1785 1786 1787
	}
	return ret;
}

1788
/*
F
Fengguang Wu 已提交
1789 1790 1791 1792 1793
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1794
 */
M
Mel Gorman 已提交
1795
static int too_many_isolated(struct pglist_data *pgdat, int file,
1796 1797 1798 1799 1800 1801 1802
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1803
	if (!sane_reclaim(sc))
1804 1805 1806
		return 0;

	if (file) {
M
Mel Gorman 已提交
1807 1808
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1809
	} else {
M
Mel Gorman 已提交
1810 1811
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1812 1813
	}

1814 1815 1816 1817 1818
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1819
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1820 1821
		inactive >>= 3;

1822 1823 1824
	return isolated > inactive;
}

1825
static noinline_for_stack void
H
Hugh Dickins 已提交
1826
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1827
{
1828
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1829
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1830
	LIST_HEAD(pages_to_free);
1831 1832 1833 1834 1835

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1836
		struct page *page = lru_to_page(page_list);
1837
		int lru;
1838

1839
		VM_BUG_ON_PAGE(PageLRU(page), page);
1840
		list_del(&page->lru);
1841
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1842
			spin_unlock_irq(&pgdat->lru_lock);
1843
			putback_lru_page(page);
M
Mel Gorman 已提交
1844
			spin_lock_irq(&pgdat->lru_lock);
1845 1846
			continue;
		}
1847

M
Mel Gorman 已提交
1848
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1849

1850
		SetPageLRU(page);
1851
		lru = page_lru(page);
1852 1853
		add_page_to_lru_list(page, lruvec, lru);

1854 1855
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1856 1857
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1858
		}
1859 1860 1861
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1862
			del_page_from_lru_list(page, lruvec, lru);
1863 1864

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1865
				spin_unlock_irq(&pgdat->lru_lock);
1866
				mem_cgroup_uncharge(page);
1867
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1868
				spin_lock_irq(&pgdat->lru_lock);
1869 1870
			} else
				list_add(&page->lru, &pages_to_free);
1871 1872 1873
		}
	}

1874 1875 1876 1877
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1878 1879
}

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1893
/*
1894
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1895
 * of reclaimed pages
L
Linus Torvalds 已提交
1896
 */
1897
static noinline_for_stack unsigned long
1898
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1899
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1900 1901
{
	LIST_HEAD(page_list);
1902
	unsigned long nr_scanned;
1903
	unsigned long nr_reclaimed = 0;
1904
	unsigned long nr_taken;
1905
	struct reclaim_stat stat = {};
1906
	isolate_mode_t isolate_mode = 0;
1907
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1908
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1909
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1910
	bool stalled = false;
1911

M
Mel Gorman 已提交
1912
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1913 1914 1915 1916 1917 1918
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1919 1920 1921 1922 1923 1924

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1925
	lru_add_drain();
1926 1927

	if (!sc->may_unmap)
1928
		isolate_mode |= ISOLATE_UNMAPPED;
1929

M
Mel Gorman 已提交
1930
	spin_lock_irq(&pgdat->lru_lock);
1931

1932 1933
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1934

M
Mel Gorman 已提交
1935
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1936
	reclaim_stat->recent_scanned[file] += nr_taken;
1937

1938 1939
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1940
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1941 1942 1943 1944
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1945
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1946 1947
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1948
	}
M
Mel Gorman 已提交
1949
	spin_unlock_irq(&pgdat->lru_lock);
1950

1951
	if (nr_taken == 0)
1952
		return 0;
A
Andy Whitcroft 已提交
1953

S
Shaohua Li 已提交
1954
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1955
				&stat, false);
1956

M
Mel Gorman 已提交
1957
	spin_lock_irq(&pgdat->lru_lock);
1958

1959 1960
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1961
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1962 1963 1964 1965
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1966
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1967 1968
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1969
	}
N
Nick Piggin 已提交
1970

1971
	putback_inactive_pages(lruvec, &page_list);
1972

M
Mel Gorman 已提交
1973
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1974

M
Mel Gorman 已提交
1975
	spin_unlock_irq(&pgdat->lru_lock);
1976

1977
	mem_cgroup_uncharge_list(&page_list);
1978
	free_unref_page_list(&page_list);
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1994 1995 1996 1997 1998 1999 2000 2001
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2002

M
Mel Gorman 已提交
2003
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2004
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2005
	return nr_reclaimed;
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
2015
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
2016
 * the pages are mapped, the processing is slow (page_referenced()) so we
2017
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
2018 2019 2020 2021
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
2022
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
2023
 * But we had to alter page->flags anyway.
2024 2025
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
2026
 */
2027

2028
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2029
				     struct list_head *list,
2030
				     struct list_head *pages_to_free,
2031 2032
				     enum lru_list lru)
{
M
Mel Gorman 已提交
2033
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2034
	struct page *page;
2035
	int nr_pages;
2036
	int nr_moved = 0;
2037 2038 2039

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
2040
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2041

2042
		VM_BUG_ON_PAGE(PageLRU(page), page);
2043 2044
		SetPageLRU(page);

2045
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
2046
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2047
		list_move(&page->lru, &lruvec->lists[lru]);
2048

2049 2050 2051
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
2052
			del_page_from_lru_list(page, lruvec, lru);
2053 2054

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
2055
				spin_unlock_irq(&pgdat->lru_lock);
2056
				mem_cgroup_uncharge(page);
2057
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
2058
				spin_lock_irq(&pgdat->lru_lock);
2059 2060
			} else
				list_add(&page->lru, pages_to_free);
2061 2062
		} else {
			nr_moved += nr_pages;
2063 2064
		}
	}
2065

2066
	if (!is_active_lru(lru)) {
2067
		__count_vm_events(PGDEACTIVATE, nr_moved);
2068 2069 2070
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
2071 2072

	return nr_moved;
2073
}
2074

H
Hugh Dickins 已提交
2075
static void shrink_active_list(unsigned long nr_to_scan,
2076
			       struct lruvec *lruvec,
2077
			       struct scan_control *sc,
2078
			       enum lru_list lru)
L
Linus Torvalds 已提交
2079
{
2080
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2081
	unsigned long nr_scanned;
2082
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2083
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2084
	LIST_HEAD(l_active);
2085
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2086
	struct page *page;
2087
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2088 2089
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2090
	isolate_mode_t isolate_mode = 0;
2091
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2092
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2093 2094

	lru_add_drain();
2095 2096

	if (!sc->may_unmap)
2097
		isolate_mode |= ISOLATE_UNMAPPED;
2098

M
Mel Gorman 已提交
2099
	spin_lock_irq(&pgdat->lru_lock);
2100

2101 2102
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
2103

M
Mel Gorman 已提交
2104
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2105
	reclaim_stat->recent_scanned[file] += nr_taken;
2106

M
Mel Gorman 已提交
2107
	__count_vm_events(PGREFILL, nr_scanned);
2108
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2109

M
Mel Gorman 已提交
2110
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2111 2112 2113 2114 2115

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2116

2117
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2118 2119 2120 2121
			putback_lru_page(page);
			continue;
		}

2122 2123 2124 2125 2126 2127 2128 2129
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2130 2131
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2132
			nr_rotated += hpage_nr_pages(page);
2133 2134 2135 2136 2137 2138 2139 2140 2141
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2142
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2143 2144 2145 2146
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2147

2148
		ClearPageActive(page);	/* we are de-activating */
2149
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2150 2151 2152
		list_add(&page->lru, &l_inactive);
	}

2153
	/*
2154
	 * Move pages back to the lru list.
2155
	 */
M
Mel Gorman 已提交
2156
	spin_lock_irq(&pgdat->lru_lock);
2157
	/*
2158 2159 2160
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2161
	 * get_scan_count.
2162
	 */
2163
	reclaim_stat->recent_rotated[file] += nr_rotated;
2164

2165 2166
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2167 2168
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2169

2170
	mem_cgroup_uncharge_list(&l_hold);
2171
	free_unref_page_list(&l_hold);
2172 2173
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2174 2175
}

2176 2177 2178
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2179
 *
2180 2181 2182
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2183
 *
2184 2185
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2186
 *
2187 2188
 * If that fails and refaulting is observed, the inactive list grows.
 *
2189
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2190
 * on this LRU, maintained by the pageout code. An inactive_ratio
2191
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2192
 *
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2203
 */
2204
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2205 2206
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2207
{
2208
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2209 2210 2211 2212 2213
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2214
	unsigned long gb;
2215

2216 2217 2218 2219 2220 2221
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2222

2223 2224
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2225

2226
	if (memcg)
2227
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2228
	else
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2245

2246 2247 2248 2249 2250
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2251

2252
	return inactive * inactive_ratio < active;
2253 2254
}

2255
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2256 2257
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2258
{
2259
	if (is_active_lru(lru)) {
2260 2261
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2262
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2263 2264 2265
		return 0;
	}

2266
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2267 2268
}

2269 2270 2271 2272 2273 2274 2275
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2276 2277 2278 2279 2280 2281
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2282 2283
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2284
 */
2285
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2286 2287
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2288
{
2289
	int swappiness = mem_cgroup_swappiness(memcg);
2290 2291 2292
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2293
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2294
	unsigned long anon_prio, file_prio;
2295
	enum scan_balance scan_balance;
2296
	unsigned long anon, file;
2297
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2298
	enum lru_list lru;
2299 2300

	/* If we have no swap space, do not bother scanning anon pages. */
2301
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2302
		scan_balance = SCAN_FILE;
2303 2304
		goto out;
	}
2305

2306 2307 2308 2309 2310 2311 2312
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2313
	if (!global_reclaim(sc) && !swappiness) {
2314
		scan_balance = SCAN_FILE;
2315 2316 2317 2318 2319 2320 2321 2322
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2323
	if (!sc->priority && swappiness) {
2324
		scan_balance = SCAN_EQUAL;
2325 2326 2327
		goto out;
	}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2338 2339 2340 2341
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2342

M
Mel Gorman 已提交
2343 2344 2345 2346 2347 2348
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2349
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2350 2351 2352 2353
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2354

M
Mel Gorman 已提交
2355
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2367 2368 2369
		}
	}

2370
	/*
2371 2372 2373 2374 2375 2376 2377
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2378
	 */
2379
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2380
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2381
		scan_balance = SCAN_FILE;
2382 2383 2384
		goto out;
	}

2385 2386
	scan_balance = SCAN_FRACT;

2387 2388 2389 2390
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2391
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2392
	file_prio = 200 - anon_prio;
2393

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2405

2406 2407 2408 2409
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2410

M
Mel Gorman 已提交
2411
	spin_lock_irq(&pgdat->lru_lock);
2412 2413 2414
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2415 2416
	}

2417 2418 2419
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2420 2421 2422
	}

	/*
2423 2424 2425
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2426
	 */
2427
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2428
	ap /= reclaim_stat->recent_rotated[0] + 1;
2429

2430
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2431
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2432
	spin_unlock_irq(&pgdat->lru_lock);
2433

2434 2435 2436 2437
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2438 2439 2440 2441 2442
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2443

2444 2445 2446 2447 2448 2449 2450 2451
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2452

2453 2454 2455 2456 2457
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2458
			/*
2459 2460
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2461 2462
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2463
			 */
2464 2465
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2478
		}
2479 2480 2481

		*lru_pages += size;
		nr[lru] = scan;
2482
	}
2483
}
2484

2485
/*
2486
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2487
 */
2488
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2489
			      struct scan_control *sc, unsigned long *lru_pages)
2490
{
2491
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2492
	unsigned long nr[NR_LRU_LISTS];
2493
	unsigned long targets[NR_LRU_LISTS];
2494 2495 2496 2497 2498
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2499
	bool scan_adjusted;
2500

2501
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2502

2503 2504 2505
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2520 2521 2522
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2523 2524 2525
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2526 2527 2528 2529 2530 2531
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2532
							    lruvec, memcg, sc);
2533 2534
			}
		}
2535

2536 2537
		cond_resched();

2538 2539 2540 2541 2542
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2543
		 * requested. Ensure that the anon and file LRUs are scanned
2544 2545 2546 2547 2548 2549 2550
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2551 2552 2553 2554 2555 2556 2557 2558 2559
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2591 2592 2593 2594 2595 2596 2597 2598
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2599
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2600 2601 2602 2603
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2604
/* Use reclaim/compaction for costly allocs or under memory pressure */
2605
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2606
{
2607
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2608
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2609
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2610 2611 2612 2613 2614
		return true;

	return false;
}

2615
/*
M
Mel Gorman 已提交
2616 2617 2618 2619 2620
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2621
 */
2622
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2623 2624 2625 2626 2627 2628
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2629
	int z;
2630 2631

	/* If not in reclaim/compaction mode, stop */
2632
	if (!in_reclaim_compaction(sc))
2633 2634
		return false;

2635
	/* Consider stopping depending on scan and reclaim activity */
2636
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2637
		/*
2638
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2639 2640
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2641
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2642 2643 2644 2645 2646
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2647
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2648 2649 2650 2651 2652 2653 2654 2655 2656
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2657 2658 2659 2660 2661

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2662
	pages_for_compaction = compact_gap(sc->order);
2663
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2664
	if (get_nr_swap_pages() > 0)
2665
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2666 2667 2668 2669 2670
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2671 2672
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2673
		if (!managed_zone(zone))
2674 2675 2676
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2677
		case COMPACT_SUCCESS:
2678 2679 2680 2681 2682 2683
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2684
	}
2685
	return true;
2686 2687
}

2688 2689 2690 2691 2692 2693
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2694
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2695
{
2696
	struct reclaim_state *reclaim_state = current->reclaim_state;
2697
	unsigned long nr_reclaimed, nr_scanned;
2698
	bool reclaimable = false;
L
Linus Torvalds 已提交
2699

2700 2701 2702
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2703
			.pgdat = pgdat,
2704 2705
			.priority = sc->priority,
		};
2706
		unsigned long node_lru_pages = 0;
2707
		struct mem_cgroup *memcg;
2708

2709 2710
		memset(&sc->nr, 0, sizeof(sc->nr));

2711 2712
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2713

2714 2715
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2716
			unsigned long lru_pages;
2717
			unsigned long reclaimed;
2718
			unsigned long scanned;
2719

R
Roman Gushchin 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2734 2735
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2736
					continue;
2737
				}
2738
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2739 2740 2741
				break;
			case MEMCG_PROT_NONE:
				break;
2742 2743
			}

2744
			reclaimed = sc->nr_reclaimed;
2745
			scanned = sc->nr_scanned;
2746 2747
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2748

2749 2750
			shrink_slab(sc->gfp_mask, pgdat->node_id,
				    memcg, sc->priority);
2751

2752 2753 2754 2755 2756
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2757
			/*
2758 2759
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2760
			 * node.
2761 2762 2763 2764 2765
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2766
			 */
2767 2768
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2769 2770 2771
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2772
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2773

2774 2775 2776
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2777 2778
		}

2779 2780
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2781 2782 2783
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2784 2785 2786
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2830 2831 2832 2833 2834 2835 2836 2837
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2838 2839 2840 2841 2842 2843 2844
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2845 2846
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2847

2848
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2849
					 sc->nr_scanned - nr_scanned, sc));
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2860
	return reclaimable;
2861 2862
}

2863
/*
2864 2865 2866
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2867
 */
2868
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2869
{
M
Mel Gorman 已提交
2870
	unsigned long watermark;
2871
	enum compact_result suitable;
2872

2873 2874 2875 2876 2877 2878 2879
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2880

2881
	/*
2882 2883 2884 2885 2886 2887 2888
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2889
	 */
2890
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2891

2892
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2893 2894
}

L
Linus Torvalds 已提交
2895 2896 2897 2898 2899 2900 2901 2902
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2903
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2904
{
2905
	struct zoneref *z;
2906
	struct zone *zone;
2907 2908
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2909
	gfp_t orig_mask;
2910
	pg_data_t *last_pgdat = NULL;
2911

2912 2913 2914 2915 2916
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2917
	orig_mask = sc->gfp_mask;
2918
	if (buffer_heads_over_limit) {
2919
		sc->gfp_mask |= __GFP_HIGHMEM;
2920
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2921
	}
2922

2923
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2924
					sc->reclaim_idx, sc->nodemask) {
2925 2926 2927 2928
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2929
		if (global_reclaim(sc)) {
2930 2931
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2932
				continue;
2933

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2945
			    compaction_ready(zone, sc)) {
2946 2947
				sc->compaction_ready = true;
				continue;
2948
			}
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2959 2960 2961 2962 2963 2964 2965
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2966
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2967 2968 2969 2970
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2971
			/* need some check for avoid more shrink_zone() */
2972
		}
2973

2974 2975 2976 2977
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2978
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2979
	}
2980

2981 2982 2983 2984 2985
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2986
}
2987

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2998
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2999 3000 3001 3002 3003 3004 3005 3006
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
3007 3008 3009 3010 3011 3012 3013 3014
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3015 3016 3017 3018
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3019 3020 3021
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3022
 */
3023
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3024
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3025
{
3026
	int initial_priority = sc->priority;
3027 3028 3029
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3030
retry:
3031 3032
	delayacct_freepages_start();

3033
	if (global_reclaim(sc))
3034
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3035

3036
	do {
3037 3038
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3039
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3040
		shrink_zones(zonelist, sc);
3041

3042
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3043 3044 3045 3046
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3047

3048 3049 3050 3051 3052 3053
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3054
	} while (--sc->priority >= 0);
3055

3056 3057 3058 3059 3060 3061 3062
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3063
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3064 3065
	}

3066 3067
	delayacct_freepages_end();

3068 3069 3070
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3071
	/* Aborted reclaim to try compaction? don't OOM, then */
3072
	if (sc->compaction_ready)
3073 3074
		return 1;

3075
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3076
	if (sc->memcg_low_skipped) {
3077
		sc->priority = initial_priority;
3078 3079
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3080 3081 3082
		goto retry;
	}

3083
	return 0;
L
Linus Torvalds 已提交
3084 3085
}

3086
static bool allow_direct_reclaim(pg_data_t *pgdat)
3087 3088 3089 3090 3091 3092 3093
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3094 3095 3096
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3097 3098
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3099 3100 3101 3102
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3103 3104
			continue;

3105 3106 3107 3108
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3109 3110 3111 3112
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3113 3114 3115 3116
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3117
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3129 3130 3131 3132
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3133
 */
3134
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3135 3136
					nodemask_t *nodemask)
{
3137
	struct zoneref *z;
3138
	struct zone *zone;
3139
	pg_data_t *pgdat = NULL;
3140 3141 3142 3143 3144 3145 3146 3147 3148

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3149 3150 3151 3152 3153 3154 3155 3156
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3157

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3173
					gfp_zone(gfp_mask), nodemask) {
3174 3175 3176 3177 3178
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3179
		if (allow_direct_reclaim(pgdat))
3180 3181 3182 3183 3184 3185
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3186
		goto out;
3187

3188 3189 3190
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3201
			allow_direct_reclaim(pgdat), HZ);
3202 3203

		goto check_pending;
3204 3205 3206 3207
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3208
		allow_direct_reclaim(pgdat));
3209 3210 3211 3212 3213 3214 3215

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3216 3217
}

3218
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3219
				gfp_t gfp_mask, nodemask_t *nodemask)
3220
{
3221
	unsigned long nr_reclaimed;
3222
	struct scan_control sc = {
3223
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3224
		.gfp_mask = current_gfp_context(gfp_mask),
3225
		.reclaim_idx = gfp_zone(gfp_mask),
3226 3227 3228
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3229
		.may_writepage = !laptop_mode,
3230
		.may_unmap = 1,
3231
		.may_swap = 1,
3232 3233
	};

G
Greg Thelen 已提交
3234 3235 3236 3237 3238 3239 3240 3241
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3242
	/*
3243 3244 3245
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3246
	 */
3247
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3248 3249
		return 1;

3250 3251
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3252
				sc.gfp_mask,
3253
				sc.reclaim_idx);
3254

3255
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3256 3257 3258 3259

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3260 3261
}

A
Andrew Morton 已提交
3262
#ifdef CONFIG_MEMCG
3263

3264
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3265
						gfp_t gfp_mask, bool noswap,
3266
						pg_data_t *pgdat,
3267
						unsigned long *nr_scanned)
3268 3269
{
	struct scan_control sc = {
3270
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3271
		.target_mem_cgroup = memcg,
3272 3273
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3274
		.reclaim_idx = MAX_NR_ZONES - 1,
3275 3276
		.may_swap = !noswap,
	};
3277
	unsigned long lru_pages;
3278

3279 3280
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3281

3282
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3283
						      sc.may_writepage,
3284 3285
						      sc.gfp_mask,
						      sc.reclaim_idx);
3286

3287 3288 3289
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3290
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3291 3292 3293
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3294
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3295 3296 3297

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3298
	*nr_scanned = sc.nr_scanned;
3299 3300 3301
	return sc.nr_reclaimed;
}

3302
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3303
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3304
					   gfp_t gfp_mask,
3305
					   bool may_swap)
3306
{
3307
	struct zonelist *zonelist;
3308
	unsigned long nr_reclaimed;
3309
	unsigned long pflags;
3310
	int nid;
3311
	unsigned int noreclaim_flag;
3312
	struct scan_control sc = {
3313
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3314
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3315
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3316
		.reclaim_idx = MAX_NR_ZONES - 1,
3317 3318 3319 3320
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3321
		.may_swap = may_swap,
3322
	};
3323

3324 3325 3326 3327 3328
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3329
	nid = mem_cgroup_select_victim_node(memcg);
3330

3331
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3332 3333 3334

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3335 3336
					    sc.gfp_mask,
					    sc.reclaim_idx);
3337

3338
	psi_memstall_enter(&pflags);
3339
	noreclaim_flag = memalloc_noreclaim_save();
3340

3341
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3342

3343
	memalloc_noreclaim_restore(noreclaim_flag);
3344
	psi_memstall_leave(&pflags);
3345 3346 3347 3348

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3349 3350 3351
}
#endif

3352
static void age_active_anon(struct pglist_data *pgdat,
3353
				struct scan_control *sc)
3354
{
3355
	struct mem_cgroup *memcg;
3356

3357 3358 3359 3360 3361
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3362
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3363

3364
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3365
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3366
					   sc, LRU_ACTIVE_ANON);
3367 3368 3369

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3370 3371
}

3372 3373 3374 3375 3376
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3377
{
3378 3379 3380
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3381

3382 3383
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3384

3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3402 3403
}

3404 3405 3406 3407 3408 3409 3410 3411
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3412 3413 3414 3415 3416 3417
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3418
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3419
{
3420
	/*
3421
	 * The throttled processes are normally woken up in balance_pgdat() as
3422
	 * soon as allow_direct_reclaim() is true. But there is a potential
3423 3424 3425 3426 3427 3428 3429 3430 3431
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3432
	 */
3433 3434
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3435

3436 3437 3438 3439
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3440 3441 3442
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3443 3444
	}

3445
	return false;
3446 3447
}

3448
/*
3449 3450
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3451 3452
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3453 3454
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3455
 */
3456
static bool kswapd_shrink_node(pg_data_t *pgdat,
3457
			       struct scan_control *sc)
3458
{
3459 3460
	struct zone *zone;
	int z;
3461

3462 3463
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3464
	for (z = 0; z <= sc->reclaim_idx; z++) {
3465
		zone = pgdat->node_zones + z;
3466
		if (!managed_zone(zone))
3467
			continue;
3468

3469 3470
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3471 3472

	/*
3473 3474
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3475
	 */
3476
	shrink_node(pgdat, sc);
3477

3478
	/*
3479 3480 3481 3482 3483
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3484
	 */
3485
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3486
		sc->order = 0;
3487

3488
	return sc->nr_scanned >= sc->nr_to_reclaim;
3489 3490
}

L
Linus Torvalds 已提交
3491
/*
3492 3493 3494
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3495
 *
3496
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3497 3498
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3499
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3500 3501 3502
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3503
 */
3504
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3505 3506
{
	int i;
3507 3508
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3509
	unsigned long pflags;
3510
	struct zone *zone;
3511 3512
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3513
		.order = order,
3514
		.priority = DEF_PRIORITY,
3515
		.may_writepage = !laptop_mode,
3516
		.may_unmap = 1,
3517
		.may_swap = 1,
3518
	};
3519

3520
	psi_memstall_enter(&pflags);
3521 3522
	__fs_reclaim_acquire();

3523
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3524

3525
	do {
3526
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3527
		bool raise_priority = true;
3528
		bool ret;
3529

3530
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3531

3532
		/*
3533 3534 3535 3536 3537 3538 3539 3540
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3541 3542 3543 3544
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3545
				if (!managed_zone(zone))
3546
					continue;
3547

3548
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3549
				break;
L
Linus Torvalds 已提交
3550 3551
			}
		}
3552

3553
		/*
3554 3555 3556
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3557
		 */
3558 3559
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3560

3561 3562 3563 3564 3565 3566
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3567
		age_active_anon(pgdat, &sc);
3568

3569 3570 3571 3572
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3573
		if (sc.priority < DEF_PRIORITY - 2)
3574 3575
			sc.may_writepage = 1;

3576 3577 3578
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3579
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3580 3581 3582
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3583
		/*
3584 3585 3586
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3587
		 */
3588
		if (kswapd_shrink_node(pgdat, &sc))
3589
			raise_priority = false;
3590 3591 3592 3593 3594 3595 3596

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3597
				allow_direct_reclaim(pgdat))
3598
			wake_up_all(&pgdat->pfmemalloc_wait);
3599

3600
		/* Check if kswapd should be suspending */
3601 3602 3603 3604
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3605
			break;
3606

3607
		/*
3608 3609
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3610
		 */
3611 3612
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3613
			sc.priority--;
3614
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3615

3616 3617 3618
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3619
out:
3620
	snapshot_refaults(NULL, pgdat);
3621
	__fs_reclaim_release();
3622
	psi_memstall_leave(&pflags);
3623
	/*
3624 3625 3626 3627
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3628
	 */
3629
	return sc.order;
L
Linus Torvalds 已提交
3630 3631
}

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3648 3649
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3650 3651 3652 3653 3654 3655 3656 3657 3658
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3659 3660 3661 3662 3663 3664 3665
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3666
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3679
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3680

3681
		remaining = schedule_timeout(HZ/10);
3682 3683 3684 3685 3686 3687 3688

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3689
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3690 3691 3692
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3693 3694 3695 3696 3697 3698 3699 3700
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3701 3702
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3714 3715 3716 3717

		if (!kthread_should_stop())
			schedule();

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3728 3729
/*
 * The background pageout daemon, started as a kernel thread
3730
 * from the init process.
L
Linus Torvalds 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3743 3744
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3745 3746
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3747

L
Linus Torvalds 已提交
3748 3749 3750
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3751
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3752

R
Rusty Russell 已提交
3753
	if (!cpumask_empty(cpumask))
3754
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3769
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3770
	set_freezable();
L
Linus Torvalds 已提交
3771

3772 3773
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3774
	for ( ; ; ) {
3775
		bool ret;
3776

3777 3778 3779
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3780 3781 3782
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3783

3784 3785
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3786
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3787
		pgdat->kswapd_order = 0;
3788
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3789

3790 3791 3792 3793 3794 3795 3796 3797
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3809 3810
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3811 3812 3813
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3814
	}
3815

3816
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3817
	current->reclaim_state = NULL;
3818

L
Linus Torvalds 已提交
3819 3820 3821 3822
	return 0;
}

/*
3823 3824 3825 3826 3827
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3828
 */
3829 3830
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3831 3832 3833
{
	pg_data_t *pgdat;

3834
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3835 3836
		return;

3837
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3838
		return;
3839
	pgdat = zone->zone_pgdat;
3840 3841
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3842
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3843
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3844
		return;
3845

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
	    pgdat_balanced(pgdat, order, classzone_idx)) {
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3858
		return;
3859
	}
3860

3861 3862
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3863
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3864 3865
}

3866
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3867
/*
3868
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3869 3870 3871 3872 3873
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3874
 */
3875
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3876
{
3877 3878
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3879
		.nr_to_reclaim = nr_to_reclaim,
3880
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3881
		.reclaim_idx = MAX_NR_ZONES - 1,
3882
		.priority = DEF_PRIORITY,
3883
		.may_writepage = 1,
3884 3885
		.may_unmap = 1,
		.may_swap = 1,
3886
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3887
	};
3888
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3889 3890
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3891
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3892

3893
	fs_reclaim_acquire(sc.gfp_mask);
3894
	noreclaim_flag = memalloc_noreclaim_save();
3895 3896
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3897

3898
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3899

3900
	p->reclaim_state = NULL;
3901
	memalloc_noreclaim_restore(noreclaim_flag);
3902
	fs_reclaim_release(sc.gfp_mask);
3903

3904
	return nr_reclaimed;
L
Linus Torvalds 已提交
3905
}
3906
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3907 3908 3909 3910 3911

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3912
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3913
{
3914
	int nid;
L
Linus Torvalds 已提交
3915

3916 3917 3918
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3919

3920
		mask = cpumask_of_node(pgdat->node_id);
3921

3922 3923 3924
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3925
	}
3926
	return 0;
L
Linus Torvalds 已提交
3927 3928
}

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3944
		BUG_ON(system_state < SYSTEM_RUNNING);
3945 3946
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3947
		pgdat->kswapd = NULL;
3948 3949 3950 3951
	}
	return ret;
}

3952
/*
3953
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3954
 * hold mem_hotplug_begin/end().
3955 3956 3957 3958 3959
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3960
	if (kswapd) {
3961
		kthread_stop(kswapd);
3962 3963
		NODE_DATA(nid)->kswapd = NULL;
	}
3964 3965
}

L
Linus Torvalds 已提交
3966 3967
static int __init kswapd_init(void)
{
3968
	int nid, ret;
3969

L
Linus Torvalds 已提交
3970
	swap_setup();
3971
	for_each_node_state(nid, N_MEMORY)
3972
 		kswapd_run(nid);
3973 3974 3975 3976
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3977 3978 3979 3980
	return 0;
}

module_init(kswapd_init)
3981 3982 3983

#ifdef CONFIG_NUMA
/*
3984
 * Node reclaim mode
3985
 *
3986
 * If non-zero call node_reclaim when the number of free pages falls below
3987 3988
 * the watermarks.
 */
3989
int node_reclaim_mode __read_mostly;
3990

3991
#define RECLAIM_OFF 0
3992
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3993
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3994
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3995

3996
/*
3997
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3998 3999 4000
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4001
#define NODE_RECLAIM_PRIORITY 4
4002

4003
/*
4004
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4005 4006 4007 4008
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4009 4010 4011 4012 4013 4014
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4015
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4016
{
4017 4018 4019
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4030
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4031
{
4032 4033
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4034 4035

	/*
4036
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4037
	 * potentially reclaimable. Otherwise, we have to worry about
4038
	 * pages like swapcache and node_unmapped_file_pages() provides
4039 4040
	 * a better estimate
	 */
4041 4042
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4043
	else
4044
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4045 4046

	/* If we can't clean pages, remove dirty pages from consideration */
4047 4048
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4049 4050 4051 4052 4053 4054 4055 4056

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4057
/*
4058
 * Try to free up some pages from this node through reclaim.
4059
 */
4060
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4061
{
4062
	/* Minimum pages needed in order to stay on node */
4063
	const unsigned long nr_pages = 1 << order;
4064 4065
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4066
	unsigned int noreclaim_flag;
4067
	struct scan_control sc = {
4068
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4069
		.gfp_mask = current_gfp_context(gfp_mask),
4070
		.order = order,
4071 4072 4073
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4074
		.may_swap = 1,
4075
		.reclaim_idx = gfp_zone(gfp_mask),
4076
	};
4077 4078

	cond_resched();
4079
	fs_reclaim_acquire(sc.gfp_mask);
4080
	/*
4081
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4082
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4083
	 * and RECLAIM_UNMAP.
4084
	 */
4085 4086
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4087 4088
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4089

4090
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4091
		/*
4092
		 * Free memory by calling shrink node with increasing
4093 4094 4095
		 * priorities until we have enough memory freed.
		 */
		do {
4096
			shrink_node(pgdat, &sc);
4097
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4098
	}
4099

4100
	p->reclaim_state = NULL;
4101 4102
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4103
	fs_reclaim_release(sc.gfp_mask);
4104
	return sc.nr_reclaimed >= nr_pages;
4105
}
4106

4107
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4108
{
4109
	int ret;
4110 4111

	/*
4112
	 * Node reclaim reclaims unmapped file backed pages and
4113
	 * slab pages if we are over the defined limits.
4114
	 *
4115 4116
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4117 4118
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4119
	 * unmapped file backed pages.
4120
	 */
4121
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4122
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4123
		return NODE_RECLAIM_FULL;
4124 4125

	/*
4126
	 * Do not scan if the allocation should not be delayed.
4127
	 */
4128
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4129
		return NODE_RECLAIM_NOSCAN;
4130 4131

	/*
4132
	 * Only run node reclaim on the local node or on nodes that do not
4133 4134 4135 4136
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4137 4138
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4139

4140 4141
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4142

4143 4144
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4145

4146 4147 4148
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4149
	return ret;
4150
}
4151
#endif
L
Lee Schermerhorn 已提交
4152 4153 4154 4155 4156 4157

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4158
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4159 4160
 *
 * Reasons page might not be evictable:
4161
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4162
 * (2) page is part of an mlocked VMA
4163
 *
L
Lee Schermerhorn 已提交
4164
 */
4165
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4166
{
4167 4168 4169 4170 4171 4172 4173
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4174
}
4175

4176
#ifdef CONFIG_SHMEM
4177
/**
4178 4179 4180
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
4181
 *
4182
 * Checks pages for evictability and moves them to the appropriate lru list.
4183 4184
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
4185
 */
4186
void check_move_unevictable_pages(struct page **pages, int nr_pages)
4187
{
4188
	struct lruvec *lruvec;
4189
	struct pglist_data *pgdat = NULL;
4190 4191 4192
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4193

4194 4195
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
4196
		struct pglist_data *pagepgdat = page_pgdat(page);
4197

4198
		pgscanned++;
4199 4200 4201 4202 4203
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4204
		}
4205
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4206

4207 4208
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4209

4210
		if (page_evictable(page)) {
4211 4212
			enum lru_list lru = page_lru_base_type(page);

4213
			VM_BUG_ON_PAGE(PageActive(page), page);
4214
			ClearPageUnevictable(page);
4215 4216
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4217
			pgrescued++;
4218
		}
4219
	}
4220

4221
	if (pgdat) {
4222 4223
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4224
		spin_unlock_irq(&pgdat->lru_lock);
4225 4226
	}
}
4227
#endif /* CONFIG_SHMEM */