vmscan.c 109.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
L
Linus Torvalds 已提交
49 50 51 52 53

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
54
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
55

56 57
#include "internal.h"

58 59 60
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
61
struct scan_control {
62 63 64
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
65
	/* This context's GFP mask */
A
Al Viro 已提交
66
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
67

68
	/* Allocation order */
A
Andy Whitcroft 已提交
69
	int order;
70

71 72 73 74 75
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
76

77 78 79 80 81
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
82

83 84 85 86 87 88 89 90 91 92 93
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

94 95 96
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

97 98 99 100 101 102 103 104 105 106
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
143 144 145 146 147
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
148 149 150 151

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
152
#ifdef CONFIG_MEMCG
153 154
static bool global_reclaim(struct scan_control *sc)
{
155
	return !sc->target_mem_cgroup;
156
}
157
#else
158 159 160 161
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
162 163
#endif

164
static unsigned long zone_reclaimable_pages(struct zone *zone)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
180 181
	return zone_page_state(zone, NR_PAGES_SCANNED) <
		zone_reclaimable_pages(zone) * 6;
182 183
}

184
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
185
{
186
	if (!mem_cgroup_disabled())
187
		return mem_cgroup_get_lru_size(lruvec, lru);
188

189
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
190 191
}

L
Linus Torvalds 已提交
192
/*
G
Glauber Costa 已提交
193
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
194
 */
G
Glauber Costa 已提交
195
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
196
{
G
Glauber Costa 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

214 215 216
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
217
	return 0;
L
Linus Torvalds 已提交
218
}
219
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
220 221 222 223

/*
 * Remove one
 */
224
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
225 226 227 228
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
229
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
230
}
231
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
232 233

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
234

235 236 237 238
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
239 240 241 242
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
243
	long freeable;
G
Glauber Costa 已提交
244 245 246 247 248 249
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

250 251
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
252 253 254 255 256 257 258 259 260 261
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
262
	delta = (4 * nr_scanned) / shrinker->seeks;
263
	delta *= freeable;
264
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
265 266
	total_scan += delta;
	if (total_scan < 0) {
267
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
268
		       shrinker->scan_objects, total_scan);
269
		total_scan = freeable;
G
Glauber Costa 已提交
270 271 272 273 274 275 276 277
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
278
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
279 280 281 282 283
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
284 285
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
286 287 288 289 290 291

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
292 293
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
294 295

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
296 297
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
298

299 300 301 302 303 304 305 306 307 308 309
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
310
	 * than the total number of objects on slab (freeable), we must be
311 312 313 314
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
315
	       total_scan >= freeable) {
D
Dave Chinner 已提交
316
		unsigned long ret;
317
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
318

319
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
320 321 322 323
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
324

325 326
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

342
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
343
	return freed;
344 345
}

346
/**
347
 * shrink_slab - shrink slab caches
348 349
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
350
 * @memcg: memory cgroup whose slab caches to target
351 352
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
353
 *
354
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
355
 *
356 357
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
358
 *
359 360 361 362 363 364
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 * objects from the memory cgroup specified. Otherwise all shrinkers
 * are called, and memcg aware shrinkers are supposed to scan the
 * global list then.
 *
365 366 367 368 369 370 371
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
372
 *
373
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
374
 */
375 376 377 378
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
379 380
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
381
	unsigned long freed = 0;
L
Linus Torvalds 已提交
382

383 384 385
	if (memcg && !memcg_kmem_is_active(memcg))
		return 0;

386 387
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
388

389
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
390 391 392 393 394 395 396
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
397 398
		goto out;
	}
L
Linus Torvalds 已提交
399 400

	list_for_each_entry(shrinker, &shrinker_list, list) {
401 402 403
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
404
			.memcg = memcg,
405
		};
406

407 408 409
		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
			continue;

410 411
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
412

413
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
414
	}
415

L
Linus Torvalds 已提交
416
	up_read(&shrinker_rwsem);
417 418
out:
	cond_resched();
D
Dave Chinner 已提交
419
	return freed;
L
Linus Torvalds 已提交
420 421
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
445 446
static inline int is_page_cache_freeable(struct page *page)
{
447 448 449 450 451
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
452
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
453 454
}

455 456
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
457
{
458
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
482
	lock_page(page);
483 484
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
485 486 487
	unlock_page(page);
}

488 489 490 491 492 493 494 495 496 497 498 499
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
500
/*
A
Andrew Morton 已提交
501 502
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
503
 */
504
static pageout_t pageout(struct page *page, struct address_space *mapping,
505
			 struct scan_control *sc)
L
Linus Torvalds 已提交
506 507 508 509 510 511 512 513
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
514
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
530
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
531 532
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
533
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
534 535 536 537 538 539 540
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
541
	if (!may_write_to_queue(inode_to_bdi(mapping->host), sc))
L
Linus Torvalds 已提交
542 543 544 545 546 547 548
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
549 550
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
551 552 553 554 555 556 557
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
558
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
559 560 561
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
562

L
Linus Torvalds 已提交
563 564 565 566
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
567
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
568
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
569 570 571 572 573 574
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

575
/*
N
Nick Piggin 已提交
576 577
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
578
 */
579 580
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
581
{
582 583
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
584

N
Nick Piggin 已提交
585
	spin_lock_irq(&mapping->tree_lock);
586
	/*
N
Nick Piggin 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
610
	 */
N
Nick Piggin 已提交
611
	if (!page_freeze_refs(page, 2))
612
		goto cannot_free;
N
Nick Piggin 已提交
613 614 615
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
616
		goto cannot_free;
N
Nick Piggin 已提交
617
	}
618 619 620

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
621
		mem_cgroup_swapout(page, swap);
622
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
623
		spin_unlock_irq(&mapping->tree_lock);
624
		swapcache_free(swap);
N
Nick Piggin 已提交
625
	} else {
626
		void (*freepage)(struct page *);
627
		void *shadow = NULL;
628 629

		freepage = mapping->a_ops->freepage;
630 631 632 633 634 635 636 637 638 639 640 641 642 643
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
		 */
		if (reclaimed && page_is_file_cache(page) &&
		    !mapping_exiting(mapping))
			shadow = workingset_eviction(mapping, page);
		__delete_from_page_cache(page, shadow);
N
Nick Piggin 已提交
644
		spin_unlock_irq(&mapping->tree_lock);
645 646 647

		if (freepage != NULL)
			freepage(page);
648 649 650 651 652
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
653
	spin_unlock_irq(&mapping->tree_lock);
654 655 656
	return 0;
}

N
Nick Piggin 已提交
657 658 659 660 661 662 663 664
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
665
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
666 667 668 669 670 671 672 673 674 675 676
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
677 678 679 680 681 682 683 684 685 686 687
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
688
	bool is_unevictable;
689
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
690

691
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
692 693 694 695

redo:
	ClearPageUnevictable(page);

696
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
697 698 699 700 701 702
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
703
		is_unevictable = false;
704
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
705 706 707 708 709
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
710
		is_unevictable = true;
L
Lee Schermerhorn 已提交
711
		add_page_to_unevictable_list(page);
712
		/*
713 714 715
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
716
		 * isolation/check_move_unevictable_pages,
717
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
718 719
		 * the page back to the evictable list.
		 *
720
		 * The other side is TestClearPageMlocked() or shmem_lock().
721 722
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
723 724 725 726 727 728 729
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
730
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
731 732 733 734 735 736 737 738 739 740
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

741
	if (was_unevictable && !is_unevictable)
742
		count_vm_event(UNEVICTABLE_PGRESCUED);
743
	else if (!was_unevictable && is_unevictable)
744 745
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
746 747 748
	put_page(page);		/* drop ref from isolate */
}

749 750 751
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
752
	PAGEREF_KEEP,
753 754 755 756 757 758
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
759
	int referenced_ptes, referenced_page;
760 761
	unsigned long vm_flags;

762 763
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
764
	referenced_page = TestClearPageReferenced(page);
765 766 767 768 769 770 771 772

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

773
	if (referenced_ptes) {
774
		if (PageSwapBacked(page))
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

792
		if (referenced_page || referenced_ptes > 1)
793 794
			return PAGEREF_ACTIVATE;

795 796 797 798 799 800
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

801 802
		return PAGEREF_KEEP;
	}
803 804

	/* Reclaim if clean, defer dirty pages to writeback */
805
	if (referenced_page && !PageSwapBacked(page))
806 807 808
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
809 810
}

811 812 813 814
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
815 816
	struct address_space *mapping;

817 818 819 820 821 822 823 824 825 826 827 828 829
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
830 831 832 833 834 835 836 837

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
838 839
}

L
Linus Torvalds 已提交
840
/*
A
Andrew Morton 已提交
841
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
842
 */
A
Andrew Morton 已提交
843
static unsigned long shrink_page_list(struct list_head *page_list,
844
				      struct zone *zone,
845
				      struct scan_control *sc,
846
				      enum ttu_flags ttu_flags,
847
				      unsigned long *ret_nr_dirty,
848
				      unsigned long *ret_nr_unqueued_dirty,
849
				      unsigned long *ret_nr_congested,
850
				      unsigned long *ret_nr_writeback,
851
				      unsigned long *ret_nr_immediate,
852
				      bool force_reclaim)
L
Linus Torvalds 已提交
853 854
{
	LIST_HEAD(ret_pages);
855
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
856
	int pgactivate = 0;
857
	unsigned long nr_unqueued_dirty = 0;
858 859
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
860
	unsigned long nr_reclaimed = 0;
861
	unsigned long nr_writeback = 0;
862
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
863 864 865 866 867 868 869

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
870
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
871
		bool dirty, writeback;
L
Linus Torvalds 已提交
872 873 874 875 876 877

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
878
		if (!trylock_page(page))
L
Linus Torvalds 已提交
879 880
			goto keep;

881 882
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
883 884

		sc->nr_scanned++;
885

886
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
887
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
888

889
		if (!sc->may_unmap && page_mapped(page))
890 891
			goto keep_locked;

L
Linus Torvalds 已提交
892 893 894 895
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

896 897 898
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

899 900 901 902 903 904 905 906 907 908 909 910 911
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

912 913 914 915 916 917
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
918
		mapping = page_mapping(page);
919
		if (((dirty || writeback) && mapping &&
920
		     bdi_write_congested(inode_to_bdi(mapping->host))) ||
921
		    (writeback && PageReclaim(page)))
922 923
			nr_congested++;

924 925 926 927 928 929 930 931 932 933 934
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
935 936
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
961
		if (PageWriteback(page)) {
962 963 964
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
J
Johannes Weiner 已提交
965
			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
966 967
				nr_immediate++;
				goto keep_locked;
968 969 970

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
971 972 973 974 975 976 977 978 979 980 981 982 983
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
984
				nr_writeback++;
985

986
				goto keep_locked;
987 988 989 990

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
991
			}
992
		}
L
Linus Torvalds 已提交
993

994 995 996
		if (!force_reclaim)
			references = page_check_references(page, sc);

997 998
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
999
			goto activate_locked;
1000 1001
		case PAGEREF_KEEP:
			goto keep_locked;
1002 1003 1004 1005
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1011
		if (PageAnon(page) && !PageSwapCache(page)) {
1012 1013
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1014
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1015
				goto activate_locked;
1016
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1017

1018 1019 1020
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
1021 1022 1023 1024 1025 1026

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
1027
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
1028 1029 1030 1031
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1032 1033
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
1034 1035 1036 1037 1038 1039
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1040 1041
			/*
			 * Only kswapd can writeback filesystem pages to
1042 1043
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1044
			 */
1045
			if (page_is_file_cache(page) &&
1046
					(!current_is_kswapd() ||
J
Johannes Weiner 已提交
1047
					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1048 1049 1050 1051 1052 1053 1054 1055 1056
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1057 1058 1059
				goto keep_locked;
			}

1060
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1061
				goto keep_locked;
1062
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1063
				goto keep_locked;
1064
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1065 1066 1067
				goto keep_locked;

			/* Page is dirty, try to write it out here */
1068
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1069 1070 1071 1072 1073
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1074
				if (PageWriteback(page))
1075
					goto keep;
1076
				if (PageDirty(page))
L
Linus Torvalds 已提交
1077
					goto keep;
1078

L
Linus Torvalds 已提交
1079 1080 1081 1082
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1083
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1103
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1114
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1115 1116
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1133 1134
		}

1135
		if (!mapping || !__remove_mapping(mapping, page, true))
1136
			goto keep_locked;
L
Linus Torvalds 已提交
1137

N
Nick Piggin 已提交
1138 1139 1140 1141 1142 1143 1144 1145
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1146
free_it:
1147
		nr_reclaimed++;
1148 1149 1150 1151 1152 1153

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1154 1155
		continue;

N
Nick Piggin 已提交
1156
cull_mlocked:
1157 1158
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1159 1160 1161 1162
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1163
activate_locked:
1164 1165
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1166
			try_to_free_swap(page);
1167
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1168 1169 1170 1171 1172 1173
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1174
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1175
	}
1176

1177
	mem_cgroup_uncharge_list(&free_pages);
1178
	free_hot_cold_page_list(&free_pages, true);
1179

L
Linus Torvalds 已提交
1180
	list_splice(&ret_pages, page_list);
1181
	count_vm_events(PGACTIVATE, pgactivate);
1182

1183 1184
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1185
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1186
	*ret_nr_writeback += nr_writeback;
1187
	*ret_nr_immediate += nr_immediate;
1188
	return nr_reclaimed;
L
Linus Torvalds 已提交
1189 1190
}

1191 1192 1193 1194 1195 1196 1197 1198
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1199
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1200 1201 1202 1203
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1204 1205
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1206 1207 1208 1209 1210 1211
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1212 1213
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1214
	list_splice(&clean_pages, page_list);
1215
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1216 1217 1218
	return ret;
}

A
Andy Whitcroft 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1229
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1230 1231 1232 1233 1234 1235 1236
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1237 1238
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1239 1240
		return ret;

A
Andy Whitcroft 已提交
1241
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1276

1277 1278 1279
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1304
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1305
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1306
 * @nr_scanned:	The number of pages that were scanned.
1307
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1308
 * @mode:	One of the LRU isolation modes
1309
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1310 1311 1312
 *
 * returns how many pages were moved onto *@dst.
 */
1313
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1314
		struct lruvec *lruvec, struct list_head *dst,
1315
		unsigned long *nr_scanned, struct scan_control *sc,
1316
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1317
{
H
Hugh Dickins 已提交
1318
	struct list_head *src = &lruvec->lists[lru];
1319
	unsigned long nr_taken = 0;
1320
	unsigned long scan;
L
Linus Torvalds 已提交
1321

1322
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1323
		struct page *page;
1324
		int nr_pages;
A
Andy Whitcroft 已提交
1325

L
Linus Torvalds 已提交
1326 1327 1328
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1329
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1330

1331
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1332
		case 0:
1333 1334
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1335
			list_move(&page->lru, dst);
1336
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1337 1338 1339 1340 1341 1342
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1343

A
Andy Whitcroft 已提交
1344 1345 1346
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1347 1348
	}

H
Hugh Dickins 已提交
1349
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1350 1351
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1352 1353 1354
	return nr_taken;
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1366 1367 1368
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1384
	VM_BUG_ON_PAGE(!page_count(page), page);
1385

1386 1387
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1388
		struct lruvec *lruvec;
1389 1390

		spin_lock_irq(&zone->lru_lock);
1391
		lruvec = mem_cgroup_page_lruvec(page, zone);
1392
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1393
			int lru = page_lru(page);
1394
			get_page(page);
1395
			ClearPageLRU(page);
1396 1397
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1398 1399 1400 1401 1402 1403
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1404
/*
F
Fengguang Wu 已提交
1405 1406 1407 1408 1409
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1410 1411 1412 1413 1414 1415 1416 1417 1418
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1419
	if (!global_reclaim(sc))
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1438 1439 1440
	return isolated > inactive;
}

1441
static noinline_for_stack void
H
Hugh Dickins 已提交
1442
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1443
{
1444 1445
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1446
	LIST_HEAD(pages_to_free);
1447 1448 1449 1450 1451

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1452
		struct page *page = lru_to_page(page_list);
1453
		int lru;
1454

1455
		VM_BUG_ON_PAGE(PageLRU(page), page);
1456
		list_del(&page->lru);
1457
		if (unlikely(!page_evictable(page))) {
1458 1459 1460 1461 1462
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1463 1464 1465

		lruvec = mem_cgroup_page_lruvec(page, zone);

1466
		SetPageLRU(page);
1467
		lru = page_lru(page);
1468 1469
		add_page_to_lru_list(page, lruvec, lru);

1470 1471
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1472 1473
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1474
		}
1475 1476 1477
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1478
			del_page_from_lru_list(page, lruvec, lru);
1479 1480 1481

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1482
				mem_cgroup_uncharge(page);
1483 1484 1485 1486
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1487 1488 1489
		}
	}

1490 1491 1492 1493
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1494 1495
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1509
/*
A
Andrew Morton 已提交
1510 1511
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1512
 */
1513
static noinline_for_stack unsigned long
1514
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1515
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1516 1517
{
	LIST_HEAD(page_list);
1518
	unsigned long nr_scanned;
1519
	unsigned long nr_reclaimed = 0;
1520
	unsigned long nr_taken;
1521 1522
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1523
	unsigned long nr_unqueued_dirty = 0;
1524
	unsigned long nr_writeback = 0;
1525
	unsigned long nr_immediate = 0;
1526
	isolate_mode_t isolate_mode = 0;
1527
	int file = is_file_lru(lru);
1528 1529
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1530

1531
	while (unlikely(too_many_isolated(zone, file, sc))) {
1532
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1533 1534 1535 1536 1537 1538

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1539
	lru_add_drain();
1540 1541

	if (!sc->may_unmap)
1542
		isolate_mode |= ISOLATE_UNMAPPED;
1543
	if (!sc->may_writepage)
1544
		isolate_mode |= ISOLATE_CLEAN;
1545

L
Linus Torvalds 已提交
1546
	spin_lock_irq(&zone->lru_lock);
1547

1548 1549
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1550 1551 1552 1553

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1554
	if (global_reclaim(sc)) {
1555
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1556
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1557
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1558
		else
H
Hugh Dickins 已提交
1559
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1560
	}
1561
	spin_unlock_irq(&zone->lru_lock);
1562

1563
	if (nr_taken == 0)
1564
		return 0;
A
Andy Whitcroft 已提交
1565

1566
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1567 1568 1569
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1570

1571 1572
	spin_lock_irq(&zone->lru_lock);

1573
	reclaim_stat->recent_scanned[file] += nr_taken;
1574

Y
Ying Han 已提交
1575 1576 1577 1578 1579 1580 1581 1582
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1583

1584
	putback_inactive_pages(lruvec, &page_list);
1585

1586
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1587 1588 1589

	spin_unlock_irq(&zone->lru_lock);

1590
	mem_cgroup_uncharge_list(&page_list);
1591
	free_hot_cold_page_list(&page_list, true);
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1603 1604 1605
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1606
	 */
1607
	if (nr_writeback && nr_writeback == nr_taken)
J
Johannes Weiner 已提交
1608
		set_bit(ZONE_WRITEBACK, &zone->flags);
1609

1610
	/*
1611 1612
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1613
	 */
1614
	if (global_reclaim(sc)) {
1615 1616 1617 1618 1619
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
J
Johannes Weiner 已提交
1620
			set_bit(ZONE_CONGESTED, &zone->flags);
1621

1622 1623 1624
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
J
Johannes Weiner 已提交
1625 1626
		 * the zone ZONE_DIRTY and kswapd will start writing pages from
		 * reclaim context.
1627 1628
		 */
		if (nr_unqueued_dirty == nr_taken)
J
Johannes Weiner 已提交
1629
			set_bit(ZONE_DIRTY, &zone->flags);
1630 1631

		/*
1632 1633 1634
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1635 1636
		 * they are written so also forcibly stall.
		 */
1637
		if (nr_immediate && current_may_throttle())
1638
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1639
	}
1640

1641 1642 1643 1644 1645
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1646 1647
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
1648 1649
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1650 1651 1652
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1653
		sc->priority,
M
Mel Gorman 已提交
1654
		trace_shrink_flags(file));
1655
	return nr_reclaimed;
L
Linus Torvalds 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1675

1676
static void move_active_pages_to_lru(struct lruvec *lruvec,
1677
				     struct list_head *list,
1678
				     struct list_head *pages_to_free,
1679 1680
				     enum lru_list lru)
{
1681
	struct zone *zone = lruvec_zone(lruvec);
1682 1683
	unsigned long pgmoved = 0;
	struct page *page;
1684
	int nr_pages;
1685 1686 1687

	while (!list_empty(list)) {
		page = lru_to_page(list);
1688
		lruvec = mem_cgroup_page_lruvec(page, zone);
1689

1690
		VM_BUG_ON_PAGE(PageLRU(page), page);
1691 1692
		SetPageLRU(page);

1693 1694
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1695
		list_move(&page->lru, &lruvec->lists[lru]);
1696
		pgmoved += nr_pages;
1697

1698 1699 1700
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1701
			del_page_from_lru_list(page, lruvec, lru);
1702 1703 1704

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1705
				mem_cgroup_uncharge(page);
1706 1707 1708 1709
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1710 1711 1712 1713 1714 1715
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1716

H
Hugh Dickins 已提交
1717
static void shrink_active_list(unsigned long nr_to_scan,
1718
			       struct lruvec *lruvec,
1719
			       struct scan_control *sc,
1720
			       enum lru_list lru)
L
Linus Torvalds 已提交
1721
{
1722
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1723
	unsigned long nr_scanned;
1724
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1725
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1726
	LIST_HEAD(l_active);
1727
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1728
	struct page *page;
1729
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1730
	unsigned long nr_rotated = 0;
1731
	isolate_mode_t isolate_mode = 0;
1732
	int file = is_file_lru(lru);
1733
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1734 1735

	lru_add_drain();
1736 1737

	if (!sc->may_unmap)
1738
		isolate_mode |= ISOLATE_UNMAPPED;
1739
	if (!sc->may_writepage)
1740
		isolate_mode |= ISOLATE_CLEAN;
1741

L
Linus Torvalds 已提交
1742
	spin_lock_irq(&zone->lru_lock);
1743

1744 1745
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1746
	if (global_reclaim(sc))
1747
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1748

1749
	reclaim_stat->recent_scanned[file] += nr_taken;
1750

H
Hugh Dickins 已提交
1751
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1752
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1753
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1754 1755 1756 1757 1758 1759
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1760

1761
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1762 1763 1764 1765
			putback_lru_page(page);
			continue;
		}

1766 1767 1768 1769 1770 1771 1772 1773
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1774 1775
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1776
			nr_rotated += hpage_nr_pages(page);
1777 1778 1779 1780 1781 1782 1783 1784 1785
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1786
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1787 1788 1789 1790
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1791

1792
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1793 1794 1795
		list_add(&page->lru, &l_inactive);
	}

1796
	/*
1797
	 * Move pages back to the lru list.
1798
	 */
1799
	spin_lock_irq(&zone->lru_lock);
1800
	/*
1801 1802 1803
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1804
	 * get_scan_count.
1805
	 */
1806
	reclaim_stat->recent_rotated[file] += nr_rotated;
1807

1808 1809
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1810
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1811
	spin_unlock_irq(&zone->lru_lock);
1812

1813
	mem_cgroup_uncharge_list(&l_hold);
1814
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1815 1816
}

1817
#ifdef CONFIG_SWAP
1818
static int inactive_anon_is_low_global(struct zone *zone)
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1831 1832
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1833
 * @lruvec: LRU vector to check
1834 1835 1836 1837
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1838
static int inactive_anon_is_low(struct lruvec *lruvec)
1839
{
1840 1841 1842 1843 1844 1845 1846
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1847
	if (!mem_cgroup_disabled())
1848
		return mem_cgroup_inactive_anon_is_low(lruvec);
1849

1850
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1851
}
1852
#else
1853
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1854 1855 1856 1857
{
	return 0;
}
#endif
1858

1859 1860
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1861
 * @lruvec: LRU vector to check
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1873
static int inactive_file_is_low(struct lruvec *lruvec)
1874
{
1875 1876 1877 1878 1879
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1880

1881
	return active > inactive;
1882 1883
}

H
Hugh Dickins 已提交
1884
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1885
{
H
Hugh Dickins 已提交
1886
	if (is_file_lru(lru))
1887
		return inactive_file_is_low(lruvec);
1888
	else
1889
		return inactive_anon_is_low(lruvec);
1890 1891
}

1892
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1893
				 struct lruvec *lruvec, struct scan_control *sc)
1894
{
1895
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1896
		if (inactive_list_is_low(lruvec, lru))
1897
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1898 1899 1900
		return 0;
	}

1901
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1902 1903
}

1904 1905 1906 1907 1908 1909 1910
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1911 1912 1913 1914 1915 1916
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1917 1918
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1919
 */
1920
static void get_scan_count(struct lruvec *lruvec, int swappiness,
1921 1922
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
1923
{
1924 1925 1926 1927
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1928
	unsigned long anon_prio, file_prio;
1929
	enum scan_balance scan_balance;
1930
	unsigned long anon, file;
1931
	bool force_scan = false;
1932
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1933
	enum lru_list lru;
1934 1935
	bool some_scanned;
	int pass;
1936

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1947 1948 1949 1950 1951 1952
	if (current_is_kswapd()) {
		if (!zone_reclaimable(zone))
			force_scan = true;
		if (!mem_cgroup_lruvec_online(lruvec))
			force_scan = true;
	}
1953
	if (!global_reclaim(sc))
1954
		force_scan = true;
1955 1956

	/* If we have no swap space, do not bother scanning anon pages. */
1957
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1958
		scan_balance = SCAN_FILE;
1959 1960
		goto out;
	}
1961

1962 1963 1964 1965 1966 1967 1968
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
1969
	if (!global_reclaim(sc) && !swappiness) {
1970
		scan_balance = SCAN_FILE;
1971 1972 1973 1974 1975 1976 1977 1978
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
1979
	if (!sc->priority && swappiness) {
1980
		scan_balance = SCAN_EQUAL;
1981 1982 1983
		goto out;
	}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
1994 1995 1996 1997 1998 1999
		unsigned long zonefile;
		unsigned long zonefree;

		zonefree = zone_page_state(zone, NR_FREE_PAGES);
		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
			   zone_page_state(zone, NR_INACTIVE_FILE);
2000

2001
		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2002 2003 2004 2005 2006
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2007 2008 2009 2010 2011
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
2012
		scan_balance = SCAN_FILE;
2013 2014 2015
		goto out;
	}

2016 2017
	scan_balance = SCAN_FRACT;

2018 2019 2020 2021
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2022
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2023
	file_prio = 200 - anon_prio;
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2036 2037 2038 2039 2040 2041

	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);

2042
	spin_lock_irq(&zone->lru_lock);
2043 2044 2045
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2046 2047
	}

2048 2049 2050
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2051 2052 2053
	}

	/*
2054 2055 2056
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2057
	 */
2058
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2059
	ap /= reclaim_stat->recent_rotated[0] + 1;
2060

2061
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2062
	fp /= reclaim_stat->recent_rotated[1] + 1;
2063
	spin_unlock_irq(&zone->lru_lock);
2064

2065 2066 2067 2068
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2069 2070 2071
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2072
		*lru_pages = 0;
2073 2074 2075 2076
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2077

2078 2079
			size = get_lru_size(lruvec, lru);
			scan = size >> sc->priority;
2080

2081 2082
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2083

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2099 2100
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2101
					scan = 0;
2102
				}
2103 2104 2105 2106 2107
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2108 2109

			*lru_pages += size;
2110
			nr[lru] = scan;
2111

2112
			/*
2113 2114
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2115
			 */
2116
			some_scanned |= !!scan;
2117
		}
2118
	}
2119
}
2120

2121 2122 2123
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2124
static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2125
			  struct scan_control *sc, unsigned long *lru_pages)
2126 2127
{
	unsigned long nr[NR_LRU_LISTS];
2128
	unsigned long targets[NR_LRU_LISTS];
2129 2130 2131 2132 2133
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2134
	bool scan_adjusted;
2135

2136
	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2137

2138 2139 2140
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2155 2156 2157
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2158 2159 2160
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2161 2162 2163 2164 2165 2166 2167 2168 2169
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2170 2171 2172 2173 2174 2175

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2176
		 * requested. Ensure that the anon and file LRUs are scanned
2177 2178 2179 2180 2181 2182 2183
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2184 2185 2186 2187 2188 2189 2190 2191 2192
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2239
/* Use reclaim/compaction for costly allocs or under memory pressure */
2240
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2241
{
2242
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2243
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2244
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2245 2246 2247 2248 2249
		return true;

	return false;
}

2250
/*
M
Mel Gorman 已提交
2251 2252 2253 2254 2255
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2256
 */
2257
static inline bool should_continue_reclaim(struct zone *zone,
2258 2259 2260 2261 2262 2263 2264 2265
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2266
	if (!in_reclaim_compaction(sc))
2267 2268
		return false;

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2291 2292 2293 2294 2295 2296

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2297
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2298
	if (get_nr_swap_pages() > 0)
2299
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2300 2301 2302 2303 2304
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2305
	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2306 2307 2308 2309 2310 2311 2312 2313
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2314 2315
static bool shrink_zone(struct zone *zone, struct scan_control *sc,
			bool is_classzone)
L
Linus Torvalds 已提交
2316
{
2317
	struct reclaim_state *reclaim_state = current->reclaim_state;
2318
	unsigned long nr_reclaimed, nr_scanned;
2319
	bool reclaimable = false;
L
Linus Torvalds 已提交
2320

2321 2322 2323 2324 2325 2326
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2327
		unsigned long zone_lru_pages = 0;
2328
		struct mem_cgroup *memcg;
2329

2330 2331
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2332

2333 2334
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2335
			unsigned long lru_pages;
2336
			unsigned long scanned;
2337
			struct lruvec *lruvec;
2338
			int swappiness;
2339

2340 2341 2342 2343 2344 2345
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2346
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2347
			swappiness = mem_cgroup_swappiness(memcg);
2348
			scanned = sc->nr_scanned;
2349

2350 2351
			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
			zone_lru_pages += lru_pages;
2352

2353 2354 2355 2356 2357
			if (memcg && is_classzone)
				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2358
			/*
2359 2360
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2361
			 * zone.
2362 2363 2364 2365 2366
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2367
			 */
2368 2369
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2370 2371 2372
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2373
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2374

2375 2376 2377 2378
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2379 2380 2381 2382 2383 2384 2385 2386
		if (global_reclaim(sc) && is_classzone)
			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
				    sc->nr_scanned - nr_scanned,
				    zone_lru_pages);

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2387 2388
		}

2389 2390 2391 2392
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2393 2394 2395
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2396 2397
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2398 2399

	return reclaimable;
2400 2401
}

2402 2403 2404 2405
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2406
static inline bool compaction_ready(struct zone *zone, int order)
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2417 2418
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2419
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2420 2421 2422 2423 2424 2425
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2426
	if (compaction_deferred(zone, order))
2427 2428
		return watermark_ok;

2429 2430 2431 2432
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2433
	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2434 2435 2436 2437 2438
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2439 2440 2441 2442 2443
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2444 2445
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2446 2447
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2448 2449 2450
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2451 2452 2453
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2454 2455
 *
 * Returns true if a zone was reclaimable.
L
Linus Torvalds 已提交
2456
 */
2457
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2458
{
2459
	struct zoneref *z;
2460
	struct zone *zone;
2461 2462
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2463
	gfp_t orig_mask;
2464
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2465
	bool reclaimable = false;
2466

2467 2468 2469 2470 2471
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2472
	orig_mask = sc->gfp_mask;
2473 2474 2475
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2476
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2477 2478 2479
					requested_highidx, sc->nodemask) {
		enum zone_type classzone_idx;

2480
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2481
			continue;
2482 2483 2484 2485 2486 2487

		classzone_idx = requested_highidx;
		while (!populated_zone(zone->zone_pgdat->node_zones +
							classzone_idx))
			classzone_idx--;

2488 2489 2490 2491
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2492
		if (global_reclaim(sc)) {
2493 2494
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2495
				continue;
2496

2497 2498
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2499
				continue;	/* Let kswapd poll it */
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
			    compaction_ready(zone, sc->order)) {
				sc->compaction_ready = true;
				continue;
2516
			}
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2530 2531
			if (nr_soft_reclaimed)
				reclaimable = true;
2532
			/* need some check for avoid more shrink_zone() */
2533
		}
2534

2535
		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2536 2537 2538 2539 2540
			reclaimable = true;

		if (global_reclaim(sc) &&
		    !reclaimable && zone_reclaimable(zone))
			reclaimable = true;
L
Linus Torvalds 已提交
2541
	}
2542

2543 2544 2545 2546 2547
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
2548

2549
	return reclaimable;
L
Linus Torvalds 已提交
2550
}
2551

L
Linus Torvalds 已提交
2552 2553 2554 2555 2556 2557 2558 2559
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2560 2561 2562 2563
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2564 2565 2566
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2567
 */
2568
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2569
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2570
{
2571
	int initial_priority = sc->priority;
2572
	unsigned long total_scanned = 0;
2573
	unsigned long writeback_threshold;
2574
	bool zones_reclaimable;
2575
retry:
2576 2577
	delayacct_freepages_start();

2578
	if (global_reclaim(sc))
2579
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2580

2581
	do {
2582 2583
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2584
		sc->nr_scanned = 0;
2585
		zones_reclaimable = shrink_zones(zonelist, sc);
2586

2587
		total_scanned += sc->nr_scanned;
2588
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2589 2590 2591 2592
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2593

2594 2595 2596 2597 2598 2599 2600
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2601 2602 2603 2604 2605 2606 2607
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2608 2609
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2610 2611
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2612
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2613
		}
2614
	} while (--sc->priority >= 0);
2615

2616 2617
	delayacct_freepages_end();

2618 2619 2620
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2621
	/* Aborted reclaim to try compaction? don't OOM, then */
2622
	if (sc->compaction_ready)
2623 2624
		return 1;

2625 2626 2627 2628 2629 2630 2631
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2632 2633
	/* Any of the zones still reclaimable?  Don't OOM. */
	if (zones_reclaimable)
2634 2635 2636
		return 1;

	return 0;
L
Linus Torvalds 已提交
2637 2638
}

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2649 2650 2651
		if (!populated_zone(zone))
			continue;

2652 2653 2654 2655
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2656 2657 2658 2659
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2676 2677 2678 2679
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2680
 */
2681
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2682 2683
					nodemask_t *nodemask)
{
2684
	struct zoneref *z;
2685
	struct zone *zone;
2686
	pg_data_t *pgdat = NULL;
2687 2688 2689 2690 2691 2692 2693 2694 2695

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2696 2697 2698 2699 2700 2701 2702 2703
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2704

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2720
					gfp_zone(gfp_mask), nodemask) {
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2733
		goto out;
2734

2735 2736 2737
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2749 2750

		goto check_pending;
2751 2752 2753 2754 2755
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2756 2757 2758 2759 2760 2761 2762

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2763 2764
}

2765
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2766
				gfp_t gfp_mask, nodemask_t *nodemask)
2767
{
2768
	unsigned long nr_reclaimed;
2769
	struct scan_control sc = {
2770
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2771
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2772 2773 2774
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2775
		.may_writepage = !laptop_mode,
2776
		.may_unmap = 1,
2777
		.may_swap = 1,
2778 2779
	};

2780
	/*
2781 2782 2783
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2784
	 */
2785
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2786 2787
		return 1;

2788 2789 2790 2791
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2792
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2793 2794 2795 2796

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2797 2798
}

A
Andrew Morton 已提交
2799
#ifdef CONFIG_MEMCG
2800

2801
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2802
						gfp_t gfp_mask, bool noswap,
2803 2804
						struct zone *zone,
						unsigned long *nr_scanned)
2805 2806
{
	struct scan_control sc = {
2807
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2808
		.target_mem_cgroup = memcg,
2809 2810 2811 2812
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2813
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2814
	int swappiness = mem_cgroup_swappiness(memcg);
2815
	unsigned long lru_pages;
2816

2817 2818
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2819

2820
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2821 2822 2823
						      sc.may_writepage,
						      sc.gfp_mask);

2824 2825 2826 2827 2828 2829 2830
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2831
	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2832 2833 2834

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2835
	*nr_scanned = sc.nr_scanned;
2836 2837 2838
	return sc.nr_reclaimed;
}

2839
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2840
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2841
					   gfp_t gfp_mask,
2842
					   bool may_swap)
2843
{
2844
	struct zonelist *zonelist;
2845
	unsigned long nr_reclaimed;
2846
	int nid;
2847
	struct scan_control sc = {
2848
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2849 2850
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2851 2852 2853 2854
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2855
		.may_swap = may_swap,
2856
	};
2857

2858 2859 2860 2861 2862
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2863
	nid = mem_cgroup_select_victim_node(memcg);
2864 2865

	zonelist = NODE_DATA(nid)->node_zonelists;
2866 2867 2868 2869 2870

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2871
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2872 2873 2874 2875

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2876 2877 2878
}
#endif

2879
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2880
{
2881
	struct mem_cgroup *memcg;
2882

2883 2884 2885 2886 2887
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2888
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2889

2890
		if (inactive_anon_is_low(lruvec))
2891
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2892
					   sc, LRU_ACTIVE_ANON);
2893 2894 2895

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2896 2897
}

2898 2899 2900 2901 2902 2903 2904
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2905 2906
	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
				order, 0, classzone_idx) == COMPACT_SKIPPED)
2907 2908 2909 2910 2911
		return false;

	return true;
}

2912
/*
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2923 2924 2925 2926
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2927
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2928 2929 2930 2931
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2932
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2933
{
2934
	unsigned long managed_pages = 0;
2935
	unsigned long balanced_pages = 0;
2936 2937
	int i;

2938 2939 2940
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2941

2942 2943 2944
		if (!populated_zone(zone))
			continue;

2945
		managed_pages += zone->managed_pages;
2946 2947 2948 2949 2950 2951 2952 2953

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2954
		if (!zone_reclaimable(zone)) {
2955
			balanced_pages += zone->managed_pages;
2956 2957 2958 2959
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2960
			balanced_pages += zone->managed_pages;
2961 2962 2963 2964 2965
		else if (!order)
			return false;
	}

	if (order)
2966
		return balanced_pages >= (managed_pages >> 2);
2967 2968
	else
		return true;
2969 2970
}

2971 2972 2973 2974 2975 2976 2977
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2978
					int classzone_idx)
2979 2980 2981
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2982 2983 2984
		return false;

	/*
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
2996
	 */
2997 2998
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
2999

3000
	return pgdat_balanced(pgdat, order, classzone_idx);
3001 3002
}

3003 3004 3005
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
3006 3007
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3008 3009
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3010
 */
3011
static bool kswapd_shrink_zone(struct zone *zone,
3012
			       int classzone_idx,
3013
			       struct scan_control *sc,
3014
			       unsigned long *nr_attempted)
3015
{
3016 3017 3018
	int testorder = sc->order;
	unsigned long balance_gap;
	bool lowmem_pressure;
3019 3020 3021

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3022 3023 3024 3025 3026 3027 3028 3029

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3030 3031
			compaction_suitable(zone, sc->order, 0, classzone_idx)
							!= COMPACT_SKIPPED)
3032 3033 3034 3035 3036 3037 3038 3039
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
3040 3041
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

3052
	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3053

3054 3055 3056
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

J
Johannes Weiner 已提交
3057
	clear_bit(ZONE_WRITEBACK, &zone->flags);
3058

3059 3060 3061 3062 3063 3064
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
3065
	if (zone_reclaimable(zone) &&
3066
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
J
Johannes Weiner 已提交
3067 3068
		clear_bit(ZONE_CONGESTED, &zone->flags);
		clear_bit(ZONE_DIRTY, &zone->flags);
3069 3070
	}

3071
	return sc->nr_scanned >= sc->nr_to_reclaim;
3072 3073
}

L
Linus Torvalds 已提交
3074 3075
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
3076
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
3077
 *
3078
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3089 3090 3091 3092 3093
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
3094
 */
3095
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3096
							int *classzone_idx)
L
Linus Torvalds 已提交
3097 3098
{
	int i;
3099
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3100 3101
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3102 3103
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3104
		.order = order,
3105
		.priority = DEF_PRIORITY,
3106
		.may_writepage = !laptop_mode,
3107
		.may_unmap = 1,
3108
		.may_swap = 1,
3109
	};
3110
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3111

3112
	do {
3113
		unsigned long nr_attempted = 0;
3114
		bool raise_priority = true;
3115
		bool pgdat_needs_compaction = (order > 0);
3116 3117

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3118

3119 3120 3121 3122 3123 3124
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3125

3126 3127
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3128

3129 3130
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3131
				continue;
L
Linus Torvalds 已提交
3132

3133 3134 3135 3136
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3137
			age_active_anon(zone, &sc);
3138

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3150
			if (!zone_balanced(zone, order, 0, 0)) {
3151
				end_zone = i;
A
Andrew Morton 已提交
3152
				break;
3153
			} else {
3154 3155 3156 3157
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
J
Johannes Weiner 已提交
3158 3159
				clear_bit(ZONE_CONGESTED, &zone->flags);
				clear_bit(ZONE_DIRTY, &zone->flags);
L
Linus Torvalds 已提交
3160 3161
			}
		}
3162

3163
		if (i < 0)
A
Andrew Morton 已提交
3164 3165
			goto out;

L
Linus Torvalds 已提交
3166 3167 3168
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
			if (!populated_zone(zone))
				continue;

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3182 3183
		}

3184 3185 3186 3187 3188 3189 3190
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3203
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3204 3205
				continue;

3206 3207
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3208 3209 3210
				continue;

			sc.nr_scanned = 0;
3211

3212 3213 3214 3215 3216 3217 3218 3219 3220
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3221
			/*
3222 3223 3224 3225
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3226
			 */
3227 3228
			if (kswapd_shrink_zone(zone, end_zone,
					       &sc, &nr_attempted))
3229
				raise_priority = false;
L
Linus Torvalds 已提交
3230
		}
3231 3232 3233 3234 3235 3236 3237 3238

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3239
			wake_up_all(&pgdat->pfmemalloc_wait);
3240

L
Linus Torvalds 已提交
3241
		/*
3242 3243 3244 3245 3246 3247
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3248
		 */
3249 3250
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3251

3252 3253 3254
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3255

3256 3257 3258 3259 3260 3261 3262
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3263
		/*
3264 3265
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3266
		 */
3267 3268
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3269
	} while (sc.priority >= 1 &&
3270
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3271

3272
out:
3273
	/*
3274
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3275 3276 3277 3278
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3279
	*classzone_idx = end_zone;
3280
	return order;
L
Linus Torvalds 已提交
3281 3282
}

3283
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3294
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3295 3296 3297 3298 3299 3300 3301 3302 3303
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3304
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3316

3317 3318 3319 3320 3321 3322 3323 3324
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3325 3326 3327
		if (!kthread_should_stop())
			schedule();

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3338 3339
/*
 * The background pageout daemon, started as a kernel thread
3340
 * from the init process.
L
Linus Torvalds 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3353
	unsigned long order, new_order;
3354
	unsigned balanced_order;
3355
	int classzone_idx, new_classzone_idx;
3356
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3357 3358
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3359

L
Linus Torvalds 已提交
3360 3361 3362
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3363
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3364

3365 3366
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3367
	if (!cpumask_empty(cpumask))
3368
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3383
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3384
	set_freezable();
L
Linus Torvalds 已提交
3385

3386
	order = new_order = 0;
3387
	balanced_order = 0;
3388
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3389
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3390
	for ( ; ; ) {
3391
		bool ret;
3392

3393 3394 3395 3396 3397
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3398 3399
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3400 3401 3402 3403 3404 3405
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3406
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3407 3408
			/*
			 * Don't sleep if someone wants a larger 'order'
3409
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3410 3411
			 */
			order = new_order;
3412
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3413
		} else {
3414 3415
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3416
			order = pgdat->kswapd_max_order;
3417
			classzone_idx = pgdat->classzone_idx;
3418 3419
			new_order = order;
			new_classzone_idx = classzone_idx;
3420
			pgdat->kswapd_max_order = 0;
3421
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3422 3423
		}

3424 3425 3426 3427 3428 3429 3430 3431
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3432 3433
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3434 3435 3436
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3437
		}
L
Linus Torvalds 已提交
3438
	}
3439

3440
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3441
	current->reclaim_state = NULL;
3442 3443
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3444 3445 3446 3447 3448 3449
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3450
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3451 3452 3453
{
	pg_data_t *pgdat;

3454
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3455 3456
		return;

3457
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3458
		return;
3459
	pgdat = zone->zone_pgdat;
3460
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3461
		pgdat->kswapd_max_order = order;
3462 3463
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3464
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3465
		return;
3466
	if (zone_balanced(zone, order, 0, 0))
3467 3468 3469
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3470
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3471 3472
}

3473
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3474
/*
3475
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3476 3477 3478 3479 3480
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3481
 */
3482
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3483
{
3484 3485
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3486
		.nr_to_reclaim = nr_to_reclaim,
3487
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3488
		.priority = DEF_PRIORITY,
3489
		.may_writepage = 1,
3490 3491
		.may_unmap = 1,
		.may_swap = 1,
3492
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3493
	};
3494
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3495 3496
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3497

3498 3499 3500 3501
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3502

3503
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3504

3505 3506 3507
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3508

3509
	return nr_reclaimed;
L
Linus Torvalds 已提交
3510
}
3511
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3512 3513 3514 3515 3516

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3517 3518
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3519
{
3520
	int nid;
L
Linus Torvalds 已提交
3521

3522
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3523
		for_each_node_state(nid, N_MEMORY) {
3524
			pg_data_t *pgdat = NODE_DATA(nid);
3525 3526 3527
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3528

3529
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3530
				/* One of our CPUs online: restore mask */
3531
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536
		}
	}
	return NOTIFY_OK;
}

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3553 3554
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3555
		pgdat->kswapd = NULL;
3556 3557 3558 3559
	}
	return ret;
}

3560
/*
3561
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3562
 * hold mem_hotplug_begin/end().
3563 3564 3565 3566 3567
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3568
	if (kswapd) {
3569
		kthread_stop(kswapd);
3570 3571
		NODE_DATA(nid)->kswapd = NULL;
	}
3572 3573
}

L
Linus Torvalds 已提交
3574 3575
static int __init kswapd_init(void)
{
3576
	int nid;
3577

L
Linus Torvalds 已提交
3578
	swap_setup();
3579
	for_each_node_state(nid, N_MEMORY)
3580
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3596
#define RECLAIM_OFF 0
3597
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3598 3599 3600
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3601 3602 3603 3604 3605 3606 3607
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3608 3609 3610 3611 3612 3613
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3614 3615 3616 3617 3618 3619
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3662 3663 3664
/*
 * Try to free up some pages from this zone through reclaim.
 */
3665
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3666
{
3667
	/* Minimum pages needed in order to stay on node */
3668
	const unsigned long nr_pages = 1 << order;
3669 3670
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3671
	struct scan_control sc = {
3672
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3673
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3674
		.order = order,
3675
		.priority = ZONE_RECLAIM_PRIORITY,
3676 3677 3678
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
		.may_swap = 1,
3679
	};
3680 3681

	cond_resched();
3682 3683 3684 3685 3686 3687
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3688
	lockdep_set_current_reclaim_state(gfp_mask);
3689 3690
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3691

3692
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3693 3694 3695 3696 3697
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3698
			shrink_zone(zone, &sc, true);
3699
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3700
	}
3701

3702
	p->reclaim_state = NULL;
3703
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3704
	lockdep_clear_current_reclaim_state();
3705
	return sc.nr_reclaimed >= nr_pages;
3706
}
3707 3708 3709 3710

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3711
	int ret;
3712 3713

	/*
3714 3715
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3716
	 *
3717 3718 3719 3720 3721
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3722
	 */
3723 3724
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3725
		return ZONE_RECLAIM_FULL;
3726

3727
	if (!zone_reclaimable(zone))
3728
		return ZONE_RECLAIM_FULL;
3729

3730
	/*
3731
	 * Do not scan if the allocation should not be delayed.
3732
	 */
3733
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3734
		return ZONE_RECLAIM_NOSCAN;
3735 3736 3737 3738 3739 3740 3741

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3742
	node_id = zone_to_nid(zone);
3743
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3744
		return ZONE_RECLAIM_NOSCAN;
3745

J
Johannes Weiner 已提交
3746
	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3747 3748
		return ZONE_RECLAIM_NOSCAN;

3749
	ret = __zone_reclaim(zone, gfp_mask, order);
J
Johannes Weiner 已提交
3750
	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3751

3752 3753 3754
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3755
	return ret;
3756
}
3757
#endif
L
Lee Schermerhorn 已提交
3758 3759 3760 3761 3762 3763

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3764
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3765 3766
 *
 * Reasons page might not be evictable:
3767
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3768
 * (2) page is part of an mlocked VMA
3769
 *
L
Lee Schermerhorn 已提交
3770
 */
3771
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3772
{
3773
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3774
}
3775

3776
#ifdef CONFIG_SHMEM
3777
/**
3778 3779 3780
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3781
 *
3782
 * Checks pages for evictability and moves them to the appropriate lru list.
3783 3784
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3785
 */
3786
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3787
{
3788
	struct lruvec *lruvec;
3789 3790 3791 3792
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3793

3794 3795 3796
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3797

3798 3799 3800 3801 3802 3803 3804 3805
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3806
		lruvec = mem_cgroup_page_lruvec(page, zone);
3807

3808 3809
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3810

3811
		if (page_evictable(page)) {
3812 3813
			enum lru_list lru = page_lru_base_type(page);

3814
			VM_BUG_ON_PAGE(PageActive(page), page);
3815
			ClearPageUnevictable(page);
3816 3817
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3818
			pgrescued++;
3819
		}
3820
	}
3821

3822 3823 3824 3825
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3826 3827
	}
}
3828
#endif /* CONFIG_SHMEM */