vmscan.c 111.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
L
Linus Torvalds 已提交
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68

69
	/* Allocation order */
A
Andy Whitcroft 已提交
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86
	/* Scan (total_size >> priority) pages at once */
	int priority;

87 88 89
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

90
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
91 92 93 94 95 96 97 98
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

99 100 101
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

102 103 104 105 106 107 108 109 110 111
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
146 147 148 149 150
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
151 152 153 154

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
155
#ifdef CONFIG_MEMCG
156 157
static bool global_reclaim(struct scan_control *sc)
{
158
	return !sc->target_mem_cgroup;
159
}
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
181
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
182 183 184 185
		return true;
#endif
	return false;
}
186
#else
187 188 189 190
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
191 192 193 194 195

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
196 197
#endif

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
216 217 218 219 220 221 222
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
223 224

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
225 226 227
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
228 229 230 231

	return nr;
}

M
Mel Gorman 已提交
232
bool pgdat_reclaimable(struct pglist_data *pgdat)
233
{
M
Mel Gorman 已提交
234 235
	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
		pgdat_reclaimable_pages(pgdat) * 6;
236 237
}

238 239 240 241 242 243 244
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245
{
246 247 248
	unsigned long lru_size;
	int zid;

249
	if (!mem_cgroup_disabled())
250 251 252
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253

254 255 256
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
257

258 259 260 261 262 263 264 265 266 267 268 269
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
270 271 272

}

L
Linus Torvalds 已提交
273
/*
G
Glauber Costa 已提交
274
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
275
 */
G
Glauber Costa 已提交
276
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
277
{
G
Glauber Costa 已提交
278 279 280 281 282 283 284 285 286
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

287 288 289
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
290
	return 0;
L
Linus Torvalds 已提交
291
}
292
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
293 294 295 296

/*
 * Remove one
 */
297
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
298 299 300 301
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
302
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
303
}
304
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
305 306

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
307

308 309 310 311
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
312 313 314 315
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
316
	long freeable;
G
Glauber Costa 已提交
317 318 319 320 321
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
322
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
323

324 325
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
326 327 328 329 330 331 332 333 334 335
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
336
	delta = (4 * nr_scanned) / shrinker->seeks;
337
	delta *= freeable;
338
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
339 340
	total_scan += delta;
	if (total_scan < 0) {
341
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
342
		       shrinker->scan_objects, total_scan);
343
		total_scan = freeable;
344 345 346
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
347 348 349 350 351 352 353

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
354
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
355 356 357 358 359
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
360 361
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
362 363 364 365 366 367

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
368 369
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
370 371

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 373
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
374

375 376 377 378 379 380 381 382 383 384 385
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
386
	 * than the total number of objects on slab (freeable), we must be
387 388 389 390
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
391
	       total_scan >= freeable) {
D
Dave Chinner 已提交
392
		unsigned long ret;
393
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
394

395
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
396 397 398 399
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
400

401 402
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
403
		scanned += nr_to_scan;
G
Glauber Costa 已提交
404 405 406 407

		cond_resched();
	}

408 409 410 411
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
412 413 414 415 416
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
417 418
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
419 420 421 422
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

423
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
424
	return freed;
425 426
}

427
/**
428
 * shrink_slab - shrink slab caches
429 430
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
431
 * @memcg: memory cgroup whose slab caches to target
432 433
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
434
 *
435
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
436
 *
437 438
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
439
 *
440 441
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 443
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
444
 *
445 446 447 448 449 450 451
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
452
 *
453
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
454
 */
455 456 457 458
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
459 460
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
461
	unsigned long freed = 0;
L
Linus Torvalds 已提交
462

463
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 465
		return 0;

466 467
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
468

469
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
470 471 472 473 474 475 476
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
477 478
		goto out;
	}
L
Linus Torvalds 已提交
479 480

	list_for_each_entry(shrinker, &shrinker_list, list) {
481 482 483
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
484
			.memcg = memcg,
485
		};
486

487 488 489 490 491 492 493
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 495
			continue;

496 497
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
498

499
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
500
	}
501

L
Linus Torvalds 已提交
502
	up_read(&shrinker_rwsem);
503 504
out:
	cond_resched();
D
Dave Chinner 已提交
505
	return freed;
L
Linus Torvalds 已提交
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
531 532
static inline int is_page_cache_freeable(struct page *page)
{
533 534 535 536 537
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
538
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
539 540
}

541
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
542
{
543
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
544
		return 1;
545
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
546
		return 1;
547
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
567
	lock_page(page);
568 569
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
570 571 572
	unlock_page(page);
}

573 574 575 576 577 578 579 580 581 582 583 584
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
585
/*
A
Andrew Morton 已提交
586 587
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
588
 */
589
static pageout_t pageout(struct page *page, struct address_space *mapping,
590
			 struct scan_control *sc)
L
Linus Torvalds 已提交
591 592 593 594 595 596 597 598
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
599
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
615
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
616 617
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
618
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
619 620 621 622 623 624 625
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
626
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
627 628 629 630 631 632 633
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
634 635
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
636 637 638 639 640 641 642
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
643
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
644 645 646
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
647

L
Linus Torvalds 已提交
648 649 650 651
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
652
		trace_mm_vmscan_writepage(page);
653
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
654 655 656 657 658 659
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

660
/*
N
Nick Piggin 已提交
661 662
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
663
 */
664 665
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
666
{
667 668
	unsigned long flags;

669 670
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
671

672
	spin_lock_irqsave(&mapping->tree_lock, flags);
673
	/*
N
Nick Piggin 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
694 695 696
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
697
	 */
698
	if (!page_ref_freeze(page, 2))
699
		goto cannot_free;
N
Nick Piggin 已提交
700 701
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
702
		page_ref_unfreeze(page, 2);
703
		goto cannot_free;
N
Nick Piggin 已提交
704
	}
705 706 707

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
708
		mem_cgroup_swapout(page, swap);
709
		__delete_from_swap_cache(page);
710
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
711
		swapcache_free(swap);
N
Nick Piggin 已提交
712
	} else {
713
		void (*freepage)(struct page *);
714
		void *shadow = NULL;
715 716

		freepage = mapping->a_ops->freepage;
717 718 719 720 721 722 723 724 725
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
726 727 728 729 730 731
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
732 733
		 */
		if (reclaimed && page_is_file_cache(page) &&
734
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
735
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
736
		__delete_from_page_cache(page, shadow);
737
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 739 740

		if (freepage != NULL)
			freepage(page);
741 742 743 744 745
	}

	return 1;

cannot_free:
746
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 748 749
	return 0;
}

N
Nick Piggin 已提交
750 751 752 753 754 755 756 757
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
758
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
759 760 761 762 763
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
764
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
765 766 767 768 769
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
770 771 772 773 774 775 776 777 778 779 780
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
781
	bool is_unevictable;
782
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
783

784
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
785 786 787 788

redo:
	ClearPageUnevictable(page);

789
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
790 791 792 793 794 795
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
796
		is_unevictable = false;
797
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
798 799 800 801 802
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
803
		is_unevictable = true;
L
Lee Schermerhorn 已提交
804
		add_page_to_unevictable_list(page);
805
		/*
806 807 808
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
809
		 * isolation/check_move_unevictable_pages,
810
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 812
		 * the page back to the evictable list.
		 *
813
		 * The other side is TestClearPageMlocked() or shmem_lock().
814 815
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
816 817 818 819 820 821 822
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
823
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
824 825 826 827 828 829 830 831 832 833
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

834
	if (was_unevictable && !is_unevictable)
835
		count_vm_event(UNEVICTABLE_PGRESCUED);
836
	else if (!was_unevictable && is_unevictable)
837 838
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
839 840 841
	put_page(page);		/* drop ref from isolate */
}

842 843 844
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
845
	PAGEREF_KEEP,
846 847 848 849 850 851
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
852
	int referenced_ptes, referenced_page;
853 854
	unsigned long vm_flags;

855 856
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
857
	referenced_page = TestClearPageReferenced(page);
858 859 860 861 862 863 864 865

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

866
	if (referenced_ptes) {
867
		if (PageSwapBacked(page))
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

885
		if (referenced_page || referenced_ptes > 1)
886 887
			return PAGEREF_ACTIVATE;

888 889 890 891 892 893
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

894 895
		return PAGEREF_KEEP;
	}
896 897

	/* Reclaim if clean, defer dirty pages to writeback */
898
	if (referenced_page && !PageSwapBacked(page))
899 900 901
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
902 903
}

904 905 906 907
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
908 909
	struct address_space *mapping;

910 911 912 913 914 915 916 917 918 919 920 921 922
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
923 924 925 926 927 928 929 930

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
931 932
}

933 934 935 936 937 938
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
939 940 941
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
942 943
};

L
Linus Torvalds 已提交
944
/*
A
Andrew Morton 已提交
945
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
946
 */
A
Andrew Morton 已提交
947
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
948
				      struct pglist_data *pgdat,
949
				      struct scan_control *sc,
950
				      enum ttu_flags ttu_flags,
951
				      struct reclaim_stat *stat,
952
				      bool force_reclaim)
L
Linus Torvalds 已提交
953 954
{
	LIST_HEAD(ret_pages);
955
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
956
	int pgactivate = 0;
957 958 959 960 961 962
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
963 964
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
965 966 967 968 969 970 971

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
972
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
973
		bool dirty, writeback;
M
Minchan Kim 已提交
974 975
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
976 977 978 979 980 981

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
982
		if (!trylock_page(page))
L
Linus Torvalds 已提交
983 984
			goto keep;

985
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
986 987

		sc->nr_scanned++;
988

989
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
990
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
991

992
		if (!sc->may_unmap && page_mapped(page))
993 994
			goto keep_locked;

L
Linus Torvalds 已提交
995 996 997 998
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

999 1000 1001
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1015 1016 1017 1018 1019 1020
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1021
		mapping = page_mapping(page);
1022
		if (((dirty || writeback) && mapping &&
1023
		     inode_write_congested(mapping->host)) ||
1024
		    (writeback && PageReclaim(page)))
1025 1026
			nr_congested++;

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1038 1039
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1040
		 *
1041
		 * 2) Global or new memcg reclaim encounters a page that is
1042 1043 1044
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1045
		 *    reclaim and continue scanning.
1046
		 *
1047 1048
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1049 1050 1051 1052 1053
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1054
		 * 3) Legacy memcg encounters a page that is already marked
1055 1056 1057 1058 1059
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
1060
		if (PageWriteback(page)) {
1061 1062 1063
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1064
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1065 1066
				nr_immediate++;
				goto keep_locked;
1067 1068

			/* Case 2 above */
1069
			} else if (sane_reclaim(sc) ||
1070
			    !PageReclaim(page) || !may_enter_fs) {
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1083
				nr_writeback++;
1084
				goto keep_locked;
1085 1086 1087

			/* Case 3 above */
			} else {
1088
				unlock_page(page);
1089
				wait_on_page_writeback(page);
1090 1091 1092
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1093
			}
1094
		}
L
Linus Torvalds 已提交
1095

1096 1097 1098
		if (!force_reclaim)
			references = page_check_references(page, sc);

1099 1100
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1101
			goto activate_locked;
1102
		case PAGEREF_KEEP:
1103
			nr_ref_keep++;
1104
			goto keep_locked;
1105 1106 1107 1108
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1109 1110 1111 1112 1113

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1114
		if (PageAnon(page) && !PageSwapCache(page)) {
1115 1116
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1117
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1118
				goto activate_locked;
M
Minchan Kim 已提交
1119
			lazyfree = true;
1120
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1121

1122 1123
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1124 1125 1126 1127
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1128
		}
L
Linus Torvalds 已提交
1129

1130 1131
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1132 1133 1134 1135 1136
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1137 1138 1139
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1140
			case SWAP_FAIL:
1141
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1142 1143 1144
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1145 1146
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1147 1148
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1149 1150 1151 1152 1153 1154
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1155
			/*
1156 1157 1158 1159 1160 1161 1162 1163
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1164
			 */
1165
			if (page_is_file_cache(page) &&
1166 1167
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1168 1169 1170 1171 1172 1173
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1174
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1175 1176
				SetPageReclaim(page);

1177 1178 1179
				goto keep_locked;
			}

1180
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1181
				goto keep_locked;
1182
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1183
				goto keep_locked;
1184
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1185 1186
				goto keep_locked;

1187 1188 1189 1190 1191 1192
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1193
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1194 1195 1196 1197 1198
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1199
				if (PageWriteback(page))
1200
					goto keep;
1201
				if (PageDirty(page))
L
Linus Torvalds 已提交
1202
					goto keep;
1203

L
Linus Torvalds 已提交
1204 1205 1206 1207
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1208
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1228
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1239
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1240 1241
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1258 1259
		}

M
Minchan Kim 已提交
1260
lazyfree:
1261
		if (!mapping || !__remove_mapping(mapping, page, true))
1262
			goto keep_locked;
L
Linus Torvalds 已提交
1263

N
Nick Piggin 已提交
1264 1265 1266 1267 1268 1269 1270
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1271
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1272
free_it:
M
Minchan Kim 已提交
1273 1274 1275
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1276
		nr_reclaimed++;
1277 1278 1279 1280 1281 1282

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1283 1284
		continue;

N
Nick Piggin 已提交
1285
cull_mlocked:
1286 1287
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1288
		unlock_page(page);
1289
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1290 1291
		continue;

L
Linus Torvalds 已提交
1292
activate_locked:
1293
		/* Not a candidate for swapping, so reclaim swap space. */
1294
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1295
			try_to_free_swap(page);
1296
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1297 1298 1299 1300 1301 1302
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1303
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1304
	}
1305

1306
	mem_cgroup_uncharge_list(&free_pages);
1307
	try_to_unmap_flush();
1308
	free_hot_cold_page_list(&free_pages, true);
1309

L
Linus Torvalds 已提交
1310
	list_splice(&ret_pages, page_list);
1311
	count_vm_events(PGACTIVATE, pgactivate);
1312

1313 1314 1315 1316 1317 1318
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1319 1320 1321
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1322
	}
1323
	return nr_reclaimed;
L
Linus Torvalds 已提交
1324 1325
}

1326 1327 1328 1329 1330 1331 1332 1333
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1334
	unsigned long ret;
1335 1336 1337 1338
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1339
		if (page_is_file_cache(page) && !PageDirty(page) &&
1340
		    !__PageMovable(page)) {
1341 1342 1343 1344 1345
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1346
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1347
			TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1348
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1349
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1350 1351 1352
	return ret;
}

A
Andy Whitcroft 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1363
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1364 1365 1366 1367 1368 1369 1370
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1371 1372
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1373 1374
		return ret;

A
Andy Whitcroft 已提交
1375
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1376

1377 1378 1379 1380 1381 1382 1383 1384
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1385
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1403

1404 1405 1406
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1420 1421 1422 1423 1424 1425

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1426
			enum lru_list lru, unsigned long *nr_zone_taken)
1427 1428 1429 1430 1431 1432 1433 1434 1435
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1436
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1437
#endif
1438 1439
	}

1440 1441
}

L
Linus Torvalds 已提交
1442
/*
1443
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1453
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1454
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1455
 * @nr_scanned:	The number of pages that were scanned.
1456
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1457
 * @mode:	One of the LRU isolation modes
1458
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1459 1460 1461
 *
 * returns how many pages were moved onto *@dst.
 */
1462
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1463
		struct lruvec *lruvec, struct list_head *dst,
1464
		unsigned long *nr_scanned, struct scan_control *sc,
1465
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1466
{
H
Hugh Dickins 已提交
1467
	struct list_head *src = &lruvec->lists[lru];
1468
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1469
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1470
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1471
	unsigned long skipped = 0, total_skipped = 0;
M
Mel Gorman 已提交
1472
	unsigned long scan, nr_pages;
1473
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1474

1475
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1476
					!list_empty(src);) {
A
Andy Whitcroft 已提交
1477 1478
		struct page *page;

L
Linus Torvalds 已提交
1479 1480 1481
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1482
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1483

1484 1485
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1486
			nr_skipped[page_zonenum(page)]++;
1487 1488 1489
			continue;
		}

1490 1491 1492 1493 1494 1495
		/*
		 * Account for scanned and skipped separetly to avoid the pgdat
		 * being prematurely marked unreclaimable by pgdat_reclaimable.
		 */
		scan++;

1496
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1497
		case 0:
M
Mel Gorman 已提交
1498 1499 1500
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1501 1502 1503 1504 1505 1506 1507
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1508

A
Andy Whitcroft 已提交
1509 1510 1511
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1512 1513
	}

1514 1515 1516 1517 1518 1519 1520
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1521 1522 1523 1524 1525 1526 1527 1528
	if (!list_empty(&pages_skipped)) {
		int zid;

		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1529
			skipped += nr_skipped[zid];
1530
		}
1531 1532 1533 1534 1535 1536

		/*
		 * Account skipped pages as a partial scan as the pgdat may be
		 * close to unreclaimable. If the LRU list is empty, account
		 * skipped pages as a full scan.
		 */
1537
		total_skipped = list_empty(src) ? skipped : skipped >> 2;
1538 1539

		list_splice(&pages_skipped, src);
1540
	}
1541 1542
	*nr_scanned = scan + total_skipped;
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1543
				    scan, skipped, nr_taken, mode, lru);
1544
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1545 1546 1547
	return nr_taken;
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1559 1560 1561
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1577
	VM_BUG_ON_PAGE(!page_count(page), page);
1578
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1579

1580 1581
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1582
		struct lruvec *lruvec;
1583

1584
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1585
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1586
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1587
			int lru = page_lru(page);
1588
			get_page(page);
1589
			ClearPageLRU(page);
1590 1591
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1592
		}
1593
		spin_unlock_irq(zone_lru_lock(zone));
1594 1595 1596 1597
	}
	return ret;
}

1598
/*
F
Fengguang Wu 已提交
1599 1600 1601 1602 1603
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1604
 */
M
Mel Gorman 已提交
1605
static int too_many_isolated(struct pglist_data *pgdat, int file,
1606 1607 1608 1609 1610 1611 1612
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1613
	if (!sane_reclaim(sc))
1614 1615 1616
		return 0;

	if (file) {
M
Mel Gorman 已提交
1617 1618
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1619
	} else {
M
Mel Gorman 已提交
1620 1621
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1622 1623
	}

1624 1625 1626 1627 1628
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1629
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1630 1631
		inactive >>= 3;

1632 1633 1634
	return isolated > inactive;
}

1635
static noinline_for_stack void
H
Hugh Dickins 已提交
1636
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1637
{
1638
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1639
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1640
	LIST_HEAD(pages_to_free);
1641 1642 1643 1644 1645

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1646
		struct page *page = lru_to_page(page_list);
1647
		int lru;
1648

1649
		VM_BUG_ON_PAGE(PageLRU(page), page);
1650
		list_del(&page->lru);
1651
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1652
			spin_unlock_irq(&pgdat->lru_lock);
1653
			putback_lru_page(page);
M
Mel Gorman 已提交
1654
			spin_lock_irq(&pgdat->lru_lock);
1655 1656
			continue;
		}
1657

M
Mel Gorman 已提交
1658
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1659

1660
		SetPageLRU(page);
1661
		lru = page_lru(page);
1662 1663
		add_page_to_lru_list(page, lruvec, lru);

1664 1665
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1666 1667
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1668
		}
1669 1670 1671
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1672
			del_page_from_lru_list(page, lruvec, lru);
1673 1674

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1675
				spin_unlock_irq(&pgdat->lru_lock);
1676
				mem_cgroup_uncharge(page);
1677
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1678
				spin_lock_irq(&pgdat->lru_lock);
1679 1680
			} else
				list_add(&page->lru, &pages_to_free);
1681 1682 1683
		}
	}

1684 1685 1686 1687
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1688 1689
}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1703
/*
1704
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1705
 * of reclaimed pages
L
Linus Torvalds 已提交
1706
 */
1707
static noinline_for_stack unsigned long
1708
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1709
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1710 1711
{
	LIST_HEAD(page_list);
1712
	unsigned long nr_scanned;
1713
	unsigned long nr_reclaimed = 0;
1714
	unsigned long nr_taken;
1715
	struct reclaim_stat stat = {};
1716
	isolate_mode_t isolate_mode = 0;
1717
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1718
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1719
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1720

M
Mel Gorman 已提交
1721
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1722
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1723 1724 1725 1726 1727 1728

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1729
	lru_add_drain();
1730 1731

	if (!sc->may_unmap)
1732
		isolate_mode |= ISOLATE_UNMAPPED;
1733

M
Mel Gorman 已提交
1734
	spin_lock_irq(&pgdat->lru_lock);
1735

1736 1737
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1738

M
Mel Gorman 已提交
1739
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1740
	reclaim_stat->recent_scanned[file] += nr_taken;
1741

1742
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
1743
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1744
		if (current_is_kswapd())
M
Mel Gorman 已提交
1745
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1746
		else
M
Mel Gorman 已提交
1747
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1748
	}
M
Mel Gorman 已提交
1749
	spin_unlock_irq(&pgdat->lru_lock);
1750

1751
	if (nr_taken == 0)
1752
		return 0;
A
Andy Whitcroft 已提交
1753

M
Mel Gorman 已提交
1754
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1755
				&stat, false);
1756

M
Mel Gorman 已提交
1757
	spin_lock_irq(&pgdat->lru_lock);
1758

Y
Ying Han 已提交
1759 1760
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1761
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1762
		else
M
Mel Gorman 已提交
1763
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1764
	}
N
Nick Piggin 已提交
1765

1766
	putback_inactive_pages(lruvec, &page_list);
1767

M
Mel Gorman 已提交
1768
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1769

M
Mel Gorman 已提交
1770
	spin_unlock_irq(&pgdat->lru_lock);
1771

1772
	mem_cgroup_uncharge_list(&page_list);
1773
	free_hot_cold_page_list(&page_list, true);
1774

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1785 1786 1787
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1788
	 */
1789
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1790
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1791

1792
	/*
1793 1794
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1795
	 */
1796
	if (sane_reclaim(sc)) {
1797 1798 1799 1800
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1801
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1802
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1803

1804 1805
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1806 1807 1808 1809 1810 1811 1812 1813 1814
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1815
		 */
1816 1817
		if (stat.nr_unqueued_dirty == nr_taken) {
			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1818
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1819
		}
1820 1821

		/*
1822 1823 1824
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1825 1826
		 * they are written so also forcibly stall.
		 */
1827
		if (stat.nr_immediate && current_may_throttle())
1828
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1829
	}
1830

1831 1832 1833 1834 1835
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1836 1837
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1838
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1839

M
Mel Gorman 已提交
1840 1841
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1842 1843 1844 1845
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1846
			sc->priority, file);
1847
	return nr_reclaimed;
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1857
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1858
 * the pages are mapped, the processing is slow (page_referenced()) so we
1859
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1860 1861 1862 1863
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1864
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1865
 * But we had to alter page->flags anyway.
1866 1867
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1868
 */
1869

1870
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1871
				     struct list_head *list,
1872
				     struct list_head *pages_to_free,
1873 1874
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1875
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1876
	struct page *page;
1877
	int nr_pages;
1878
	int nr_moved = 0;
1879 1880 1881

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1882
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1883

1884
		VM_BUG_ON_PAGE(PageLRU(page), page);
1885 1886
		SetPageLRU(page);

1887
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1888
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1889
		list_move(&page->lru, &lruvec->lists[lru]);
1890

1891 1892 1893
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1894
			del_page_from_lru_list(page, lruvec, lru);
1895 1896

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1897
				spin_unlock_irq(&pgdat->lru_lock);
1898
				mem_cgroup_uncharge(page);
1899
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1900
				spin_lock_irq(&pgdat->lru_lock);
1901 1902
			} else
				list_add(&page->lru, pages_to_free);
1903 1904
		} else {
			nr_moved += nr_pages;
1905 1906
		}
	}
1907

1908
	if (!is_active_lru(lru))
1909
		__count_vm_events(PGDEACTIVATE, nr_moved);
1910 1911

	return nr_moved;
1912
}
1913

H
Hugh Dickins 已提交
1914
static void shrink_active_list(unsigned long nr_to_scan,
1915
			       struct lruvec *lruvec,
1916
			       struct scan_control *sc,
1917
			       enum lru_list lru)
L
Linus Torvalds 已提交
1918
{
1919
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1920
	unsigned long nr_scanned;
1921
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1922
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1923
	LIST_HEAD(l_active);
1924
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1925
	struct page *page;
1926
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1927 1928
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1929
	isolate_mode_t isolate_mode = 0;
1930
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1931
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1932 1933

	lru_add_drain();
1934 1935

	if (!sc->may_unmap)
1936
		isolate_mode |= ISOLATE_UNMAPPED;
1937

M
Mel Gorman 已提交
1938
	spin_lock_irq(&pgdat->lru_lock);
1939

1940 1941
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1942

M
Mel Gorman 已提交
1943
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1944
	reclaim_stat->recent_scanned[file] += nr_taken;
1945

1946
	if (global_reclaim(sc))
M
Mel Gorman 已提交
1947 1948
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
	__count_vm_events(PGREFILL, nr_scanned);
1949

M
Mel Gorman 已提交
1950
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1951 1952 1953 1954 1955

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1956

1957
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1958 1959 1960 1961
			putback_lru_page(page);
			continue;
		}

1962 1963 1964 1965 1966 1967 1968 1969
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1970 1971
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1972
			nr_rotated += hpage_nr_pages(page);
1973 1974 1975 1976 1977 1978 1979 1980 1981
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1982
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1983 1984 1985 1986
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1987

1988
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1989 1990 1991
		list_add(&page->lru, &l_inactive);
	}

1992
	/*
1993
	 * Move pages back to the lru list.
1994
	 */
M
Mel Gorman 已提交
1995
	spin_lock_irq(&pgdat->lru_lock);
1996
	/*
1997 1998 1999
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2000
	 * get_scan_count.
2001
	 */
2002
	reclaim_stat->recent_rotated[file] += nr_rotated;
2003

2004 2005
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2006 2007
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2008

2009
	mem_cgroup_uncharge_list(&l_hold);
2010
	free_hot_cold_page_list(&l_hold, true);
2011 2012
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2013 2014
}

2015 2016 2017
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2018
 *
2019 2020 2021
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2022
 *
2023 2024
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2025
 *
2026 2027 2028
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2029
 *
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2040
 */
2041
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2042
						struct scan_control *sc, bool trace)
2043
{
2044
	unsigned long inactive_ratio;
2045 2046 2047
	unsigned long inactive, active;
	enum lru_list inactive_lru = file * LRU_FILE;
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2048
	unsigned long gb;
2049

2050 2051 2052 2053 2054 2055
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2056

2057 2058
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2059

2060 2061 2062
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2063
	else
2064 2065
		inactive_ratio = 1;

2066
	if (trace)
2067
		trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2068
				sc->reclaim_idx,
2069 2070 2071 2072
				lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
				lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
				inactive_ratio, file);

2073
	return inactive * inactive_ratio < active;
2074 2075
}

2076
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2077
				 struct lruvec *lruvec, struct scan_control *sc)
2078
{
2079
	if (is_active_lru(lru)) {
2080
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2081
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2082 2083 2084
		return 0;
	}

2085
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2086 2087
}

2088 2089 2090 2091 2092 2093 2094
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2095 2096 2097 2098 2099 2100
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2101 2102
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2103
 */
2104
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2105 2106
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2107
{
2108
	int swappiness = mem_cgroup_swappiness(memcg);
2109 2110 2111
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2112
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2113
	unsigned long anon_prio, file_prio;
2114
	enum scan_balance scan_balance;
2115
	unsigned long anon, file;
2116
	bool force_scan = false;
2117
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2118
	enum lru_list lru;
2119 2120
	bool some_scanned;
	int pass;
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2132
	if (current_is_kswapd()) {
M
Mel Gorman 已提交
2133
		if (!pgdat_reclaimable(pgdat))
2134
			force_scan = true;
2135
		if (!mem_cgroup_online(memcg))
2136 2137
			force_scan = true;
	}
2138
	if (!global_reclaim(sc))
2139
		force_scan = true;
2140 2141

	/* If we have no swap space, do not bother scanning anon pages. */
2142
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2143
		scan_balance = SCAN_FILE;
2144 2145
		goto out;
	}
2146

2147 2148 2149 2150 2151 2152 2153
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2154
	if (!global_reclaim(sc) && !swappiness) {
2155
		scan_balance = SCAN_FILE;
2156 2157 2158 2159 2160 2161 2162 2163
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2164
	if (!sc->priority && swappiness) {
2165
		scan_balance = SCAN_EQUAL;
2166 2167 2168
		goto out;
	}

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2179 2180 2181 2182
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2183

M
Mel Gorman 已提交
2184 2185 2186 2187 2188 2189
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2190
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2191 2192 2193 2194
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2195

M
Mel Gorman 已提交
2196
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2197 2198 2199 2200 2201
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2202
	/*
2203 2204 2205 2206 2207 2208 2209
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2210
	 */
2211
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2212
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2213
		scan_balance = SCAN_FILE;
2214 2215 2216
		goto out;
	}

2217 2218
	scan_balance = SCAN_FRACT;

2219 2220 2221 2222
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2223
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2224
	file_prio = 200 - anon_prio;
2225

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2237

2238 2239 2240 2241
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2242

M
Mel Gorman 已提交
2243
	spin_lock_irq(&pgdat->lru_lock);
2244 2245 2246
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2247 2248
	}

2249 2250 2251
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2252 2253 2254
	}

	/*
2255 2256 2257
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2258
	 */
2259
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2260
	ap /= reclaim_stat->recent_rotated[0] + 1;
2261

2262
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2263
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2264
	spin_unlock_irq(&pgdat->lru_lock);
2265

2266 2267 2268 2269
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2270 2271 2272
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2273
		*lru_pages = 0;
2274 2275 2276 2277
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2278

2279
			size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2280
			scan = size >> sc->priority;
2281

2282 2283
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2284

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2300 2301
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2302
					scan = 0;
2303
				}
2304 2305 2306 2307 2308
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2309 2310

			*lru_pages += size;
2311
			nr[lru] = scan;
2312

2313
			/*
2314 2315
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2316
			 */
2317
			some_scanned |= !!scan;
2318
		}
2319
	}
2320
}
2321

2322
/*
2323
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2324
 */
2325
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2326
			      struct scan_control *sc, unsigned long *lru_pages)
2327
{
2328
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2329
	unsigned long nr[NR_LRU_LISTS];
2330
	unsigned long targets[NR_LRU_LISTS];
2331 2332 2333 2334 2335
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2336
	bool scan_adjusted;
2337

2338
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2339

2340 2341 2342
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2357 2358 2359
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2360 2361 2362
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2363 2364 2365 2366 2367 2368 2369 2370 2371
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2372

2373 2374
		cond_resched();

2375 2376 2377 2378 2379
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2380
		 * requested. Ensure that the anon and file LRUs are scanned
2381 2382 2383 2384 2385 2386 2387
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2388 2389 2390 2391 2392 2393 2394 2395 2396
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2428 2429 2430 2431 2432 2433 2434 2435
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2436
	if (inactive_list_is_low(lruvec, false, sc, true))
2437 2438 2439 2440
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2441
/* Use reclaim/compaction for costly allocs or under memory pressure */
2442
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2443
{
2444
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2445
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2446
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2447 2448 2449 2450 2451
		return true;

	return false;
}

2452
/*
M
Mel Gorman 已提交
2453 2454 2455 2456 2457
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2458
 */
2459
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2460 2461 2462 2463 2464 2465
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2466
	int z;
2467 2468

	/* If not in reclaim/compaction mode, stop */
2469
	if (!in_reclaim_compaction(sc))
2470 2471
		return false;

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2494 2495 2496 2497 2498

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2499
	pages_for_compaction = compact_gap(sc->order);
2500
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2501
	if (get_nr_swap_pages() > 0)
2502
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2503 2504 2505 2506 2507
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2508 2509
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2510
		if (!managed_zone(zone))
2511 2512 2513
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2514
		case COMPACT_SUCCESS:
2515 2516 2517 2518 2519 2520
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2521
	}
2522
	return true;
2523 2524
}

2525
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2526
{
2527
	struct reclaim_state *reclaim_state = current->reclaim_state;
2528
	unsigned long nr_reclaimed, nr_scanned;
2529
	bool reclaimable = false;
L
Linus Torvalds 已提交
2530

2531 2532 2533
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2534
			.pgdat = pgdat,
2535 2536
			.priority = sc->priority,
		};
2537
		unsigned long node_lru_pages = 0;
2538
		struct mem_cgroup *memcg;
2539

2540 2541
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2542

2543 2544
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2545
			unsigned long lru_pages;
2546
			unsigned long reclaimed;
2547
			unsigned long scanned;
2548

2549 2550 2551 2552 2553 2554
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2555
			reclaimed = sc->nr_reclaimed;
2556
			scanned = sc->nr_scanned;
2557

2558 2559
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2560

2561
			if (memcg)
2562
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2563 2564 2565
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2566 2567 2568 2569 2570
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2571
			/*
2572 2573
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2574
			 * node.
2575 2576 2577 2578 2579
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2580
			 */
2581 2582
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2583 2584 2585
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2586
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2587

2588 2589 2590 2591
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2592
		if (global_reclaim(sc))
2593
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2594
				    sc->nr_scanned - nr_scanned,
2595
				    node_lru_pages);
2596 2597 2598 2599

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2600 2601
		}

2602 2603
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2604 2605 2606
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2607 2608 2609
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2610
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2611
					 sc->nr_scanned - nr_scanned, sc));
2612 2613

	return reclaimable;
2614 2615
}

2616
/*
2617 2618 2619
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2620
 */
2621
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2622
{
M
Mel Gorman 已提交
2623
	unsigned long watermark;
2624
	enum compact_result suitable;
2625

2626 2627 2628 2629 2630 2631 2632
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2633

2634
	/*
2635 2636 2637 2638 2639 2640 2641
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2642
	 */
2643
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2644

2645
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2646 2647
}

L
Linus Torvalds 已提交
2648 2649 2650 2651 2652 2653 2654 2655
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2656
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2657
{
2658
	struct zoneref *z;
2659
	struct zone *zone;
2660 2661
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2662
	gfp_t orig_mask;
2663
	pg_data_t *last_pgdat = NULL;
2664

2665 2666 2667 2668 2669
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2670
	orig_mask = sc->gfp_mask;
2671
	if (buffer_heads_over_limit) {
2672
		sc->gfp_mask |= __GFP_HIGHMEM;
2673
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2674
	}
2675

2676
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2677
					sc->reclaim_idx, sc->nodemask) {
2678 2679 2680 2681
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2682
		if (global_reclaim(sc)) {
2683 2684
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2685
				continue;
2686

2687
			if (sc->priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
2688
			    !pgdat_reclaimable(zone->zone_pgdat))
2689
				continue;	/* Let kswapd poll it */
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2702
			    compaction_ready(zone, sc)) {
2703 2704
				sc->compaction_ready = true;
				continue;
2705
			}
2706

2707 2708 2709 2710 2711 2712 2713 2714 2715
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2716 2717 2718 2719 2720 2721 2722
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2723
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2724 2725 2726 2727
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2728
			/* need some check for avoid more shrink_zone() */
2729
		}
2730

2731 2732 2733 2734
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2735
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2736
	}
2737

2738 2739 2740 2741 2742
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2743
}
2744

L
Linus Torvalds 已提交
2745 2746 2747 2748 2749 2750 2751 2752
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2753 2754 2755 2756
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2757 2758 2759
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2760
 */
2761
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2762
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2763
{
2764 2765
	int initial_priority = sc->priority;
retry:
2766 2767
	delayacct_freepages_start();

2768
	if (global_reclaim(sc))
2769
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2770

2771
	do {
2772 2773
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2774
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2775
		shrink_zones(zonelist, sc);
2776

2777
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2778 2779 2780 2781
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2782

2783 2784 2785 2786 2787 2788
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2789
	} while (--sc->priority >= 0);
2790

2791 2792
	delayacct_freepages_end();

2793 2794 2795
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2796
	/* Aborted reclaim to try compaction? don't OOM, then */
2797
	if (sc->compaction_ready)
2798 2799
		return 1;

2800 2801 2802 2803 2804 2805 2806
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2807
	return 0;
L
Linus Torvalds 已提交
2808 2809
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2820
		if (!managed_zone(zone) ||
M
Mel Gorman 已提交
2821
		    pgdat_reclaimable_pages(pgdat) == 0)
2822 2823
			continue;

2824 2825 2826 2827
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2828 2829 2830 2831
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2832 2833 2834 2835
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2836
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2848 2849 2850 2851
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2852
 */
2853
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2854 2855
					nodemask_t *nodemask)
{
2856
	struct zoneref *z;
2857
	struct zone *zone;
2858
	pg_data_t *pgdat = NULL;
2859 2860 2861 2862 2863 2864 2865 2866 2867

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2868 2869 2870 2871 2872 2873 2874 2875
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2876

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2892
					gfp_zone(gfp_mask), nodemask) {
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2905
		goto out;
2906

2907 2908 2909
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2921 2922

		goto check_pending;
2923 2924 2925 2926 2927
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2928 2929 2930 2931 2932 2933 2934

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2935 2936
}

2937
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2938
				gfp_t gfp_mask, nodemask_t *nodemask)
2939
{
2940
	unsigned long nr_reclaimed;
2941
	struct scan_control sc = {
2942
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2943
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2944
		.reclaim_idx = gfp_zone(gfp_mask),
2945 2946 2947
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2948
		.may_writepage = !laptop_mode,
2949
		.may_unmap = 1,
2950
		.may_swap = 1,
2951 2952
	};

2953
	/*
2954 2955 2956
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2957
	 */
2958
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2959 2960
		return 1;

2961 2962
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2963 2964
				gfp_mask,
				sc.reclaim_idx);
2965

2966
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2967 2968 2969 2970

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2971 2972
}

A
Andrew Morton 已提交
2973
#ifdef CONFIG_MEMCG
2974

2975
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2976
						gfp_t gfp_mask, bool noswap,
2977
						pg_data_t *pgdat,
2978
						unsigned long *nr_scanned)
2979 2980
{
	struct scan_control sc = {
2981
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2982
		.target_mem_cgroup = memcg,
2983 2984
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2985
		.reclaim_idx = MAX_NR_ZONES - 1,
2986 2987
		.may_swap = !noswap,
	};
2988
	unsigned long lru_pages;
2989

2990 2991
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2992

2993
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2994
						      sc.may_writepage,
2995 2996
						      sc.gfp_mask,
						      sc.reclaim_idx);
2997

2998 2999 3000
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3001
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3002 3003 3004
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3005
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3006 3007 3008

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3009
	*nr_scanned = sc.nr_scanned;
3010 3011 3012
	return sc.nr_reclaimed;
}

3013
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3014
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3015
					   gfp_t gfp_mask,
3016
					   bool may_swap)
3017
{
3018
	struct zonelist *zonelist;
3019
	unsigned long nr_reclaimed;
3020
	int nid;
3021
	struct scan_control sc = {
3022
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3023 3024
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3025
		.reclaim_idx = MAX_NR_ZONES - 1,
3026 3027 3028 3029
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3030
		.may_swap = may_swap,
3031
	};
3032

3033 3034 3035 3036 3037
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3038
	nid = mem_cgroup_select_victim_node(memcg);
3039

3040
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3041 3042 3043

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3044 3045
					    sc.gfp_mask,
					    sc.reclaim_idx);
3046

3047
	current->flags |= PF_MEMALLOC;
3048
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3049
	current->flags &= ~PF_MEMALLOC;
3050 3051 3052 3053

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3054 3055 3056
}
#endif

3057
static void age_active_anon(struct pglist_data *pgdat,
3058
				struct scan_control *sc)
3059
{
3060
	struct mem_cgroup *memcg;
3061

3062 3063 3064 3065 3066
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3067
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3068

3069
		if (inactive_list_is_low(lruvec, false, sc, true))
3070
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3071
					   sc, LRU_ACTIVE_ANON);
3072 3073 3074

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3075 3076
}

M
Mel Gorman 已提交
3077
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3078
{
M
Mel Gorman 已提交
3079
	unsigned long mark = high_wmark_pages(zone);
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);

	return true;
3092 3093
}

3094 3095 3096 3097 3098 3099
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3100
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3101
{
3102 3103
	int i;

3104
	/*
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3116
	 */
3117 3118
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3119

3120 3121 3122
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

3123
		if (!managed_zone(zone))
3124 3125
			continue;

3126 3127
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3128 3129
	}

3130
	return true;
3131 3132
}

3133
/*
3134 3135
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3136 3137
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3138 3139
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3140
 */
3141
static bool kswapd_shrink_node(pg_data_t *pgdat,
3142
			       struct scan_control *sc)
3143
{
3144 3145
	struct zone *zone;
	int z;
3146

3147 3148
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3149
	for (z = 0; z <= sc->reclaim_idx; z++) {
3150
		zone = pgdat->node_zones + z;
3151
		if (!managed_zone(zone))
3152
			continue;
3153

3154 3155
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3156 3157

	/*
3158 3159
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3160
	 */
3161
	shrink_node(pgdat, sc);
3162

3163
	/*
3164 3165 3166 3167 3168
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3169
	 */
3170
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3171
		sc->order = 0;
3172

3173
	return sc->nr_scanned >= sc->nr_to_reclaim;
3174 3175
}

L
Linus Torvalds 已提交
3176
/*
3177 3178 3179
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3180
 *
3181
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3182 3183
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3184
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3185 3186 3187
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3188
 */
3189
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3190 3191
{
	int i;
3192 3193
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3194
	struct zone *zone;
3195 3196
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3197
		.order = order,
3198
		.priority = DEF_PRIORITY,
3199
		.may_writepage = !laptop_mode,
3200
		.may_unmap = 1,
3201
		.may_swap = 1,
3202
	};
3203
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3204

3205
	do {
3206 3207 3208
		bool raise_priority = true;

		sc.nr_reclaimed = 0;
3209
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3210

3211
		/*
3212 3213 3214 3215 3216 3217 3218 3219
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3220 3221 3222 3223
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3224
				if (!managed_zone(zone))
3225
					continue;
3226

3227
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3228
				break;
L
Linus Torvalds 已提交
3229 3230
			}
		}
3231

3232 3233 3234 3235 3236 3237
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
3238 3239 3240
		 * overall node may be congested. Note that sc.reclaim_idx
		 * is not used as buffer_heads_over_limit may have adjusted
		 * it.
3241
		 */
3242
		for (i = classzone_idx; i >= 0; i--) {
3243
			zone = pgdat->node_zones + i;
3244
			if (!managed_zone(zone))
3245 3246
				continue;

3247
			if (zone_balanced(zone, sc.order, classzone_idx))
3248 3249
				goto out;
		}
A
Andrew Morton 已提交
3250

3251 3252 3253 3254 3255 3256
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3257
		age_active_anon(pgdat, &sc);
3258

3259 3260 3261 3262
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3263
		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3264 3265
			sc.may_writepage = 1;

3266 3267 3268
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3269
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3270 3271 3272
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3273
		/*
3274 3275 3276
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3277
		 */
3278
		if (kswapd_shrink_node(pgdat, &sc))
3279
			raise_priority = false;
3280 3281 3282 3283 3284 3285 3286 3287

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3288
			wake_up_all(&pgdat->pfmemalloc_wait);
3289

3290 3291 3292
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3293

3294
		/*
3295 3296
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3297
		 */
3298 3299
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3300
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3301

3302
out:
3303
	/*
3304 3305 3306 3307
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3308
	 */
3309
	return sc.order;
L
Linus Torvalds 已提交
3310 3311
}

3312 3313
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3324
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3337
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3338

3339
		remaining = schedule_timeout(HZ/10);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3351 3352 3353 3354 3355 3356 3357 3358
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3359 3360
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3372 3373 3374 3375

		if (!kthread_should_stop())
			schedule();

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3386 3387
/*
 * The background pageout daemon, started as a kernel thread
3388
 * from the init process.
L
Linus Torvalds 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3401
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3402 3403
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3404

L
Linus Torvalds 已提交
3405 3406 3407
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3408
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3409

3410 3411
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3412
	if (!cpumask_empty(cpumask))
3413
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3428
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3429
	set_freezable();
L
Linus Torvalds 已提交
3430

3431 3432
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3433
	for ( ; ; ) {
3434
		bool ret;
3435

3436 3437 3438
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3439

3440 3441 3442 3443 3444
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3445

3446 3447 3448 3449 3450 3451 3452 3453
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3465 3466
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3467 3468 3469
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3470

3471 3472
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3473
	}
3474

3475
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3476
	current->reclaim_state = NULL;
3477 3478
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3479 3480 3481 3482 3483 3484
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3485
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3486 3487
{
	pg_data_t *pgdat;
3488
	int z;
L
Linus Torvalds 已提交
3489

3490
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3491 3492
		return;

3493
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3494
		return;
3495
	pgdat = zone->zone_pgdat;
3496 3497
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3498
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3499
		return;
3500 3501 3502 3503

	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
3504
		if (!managed_zone(zone))
3505 3506 3507 3508 3509
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3510 3511

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3512
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3513 3514
}

3515
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3516
/*
3517
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3518 3519 3520 3521 3522
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3523
 */
3524
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3525
{
3526 3527
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3528
		.nr_to_reclaim = nr_to_reclaim,
3529
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3530
		.reclaim_idx = MAX_NR_ZONES - 1,
3531
		.priority = DEF_PRIORITY,
3532
		.may_writepage = 1,
3533 3534
		.may_unmap = 1,
		.may_swap = 1,
3535
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3536
	};
3537
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3538 3539
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3540

3541 3542 3543 3544
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3545

3546
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3547

3548 3549 3550
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3551

3552
	return nr_reclaimed;
L
Linus Torvalds 已提交
3553
}
3554
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3560
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3561
{
3562
	int nid;
L
Linus Torvalds 已提交
3563

3564 3565 3566
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3567

3568
		mask = cpumask_of_node(pgdat->node_id);
3569

3570 3571 3572
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3573
	}
3574
	return 0;
L
Linus Torvalds 已提交
3575 3576
}

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3593 3594
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3595
		pgdat->kswapd = NULL;
3596 3597 3598 3599
	}
	return ret;
}

3600
/*
3601
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3602
 * hold mem_hotplug_begin/end().
3603 3604 3605 3606 3607
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3608
	if (kswapd) {
3609
		kthread_stop(kswapd);
3610 3611
		NODE_DATA(nid)->kswapd = NULL;
	}
3612 3613
}

L
Linus Torvalds 已提交
3614 3615
static int __init kswapd_init(void)
{
3616
	int nid, ret;
3617

L
Linus Torvalds 已提交
3618
	swap_setup();
3619
	for_each_node_state(nid, N_MEMORY)
3620
 		kswapd_run(nid);
3621 3622 3623 3624
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3625 3626 3627 3628
	return 0;
}

module_init(kswapd_init)
3629 3630 3631

#ifdef CONFIG_NUMA
/*
3632
 * Node reclaim mode
3633
 *
3634
 * If non-zero call node_reclaim when the number of free pages falls below
3635 3636
 * the watermarks.
 */
3637
int node_reclaim_mode __read_mostly;
3638

3639
#define RECLAIM_OFF 0
3640
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3641
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3642
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3643

3644
/*
3645
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3646 3647 3648
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3649
#define NODE_RECLAIM_PRIORITY 4
3650

3651
/*
3652
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3653 3654 3655 3656
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3657 3658 3659 3660 3661 3662
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3663
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3664
{
3665 3666 3667
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3678
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3679
{
3680 3681
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3682 3683

	/*
3684
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3685
	 * potentially reclaimable. Otherwise, we have to worry about
3686
	 * pages like swapcache and node_unmapped_file_pages() provides
3687 3688
	 * a better estimate
	 */
3689 3690
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3691
	else
3692
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3693 3694

	/* If we can't clean pages, remove dirty pages from consideration */
3695 3696
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3697 3698 3699 3700 3701 3702 3703 3704

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3705
/*
3706
 * Try to free up some pages from this node through reclaim.
3707
 */
3708
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3709
{
3710
	/* Minimum pages needed in order to stay on node */
3711
	const unsigned long nr_pages = 1 << order;
3712 3713
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3714
	int classzone_idx = gfp_zone(gfp_mask);
3715
	struct scan_control sc = {
3716
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3717
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3718
		.order = order,
3719 3720 3721
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3722
		.may_swap = 1,
3723
		.reclaim_idx = classzone_idx,
3724
	};
3725 3726

	cond_resched();
3727
	/*
3728
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3729
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3730
	 * and RECLAIM_UNMAP.
3731 3732
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3733
	lockdep_set_current_reclaim_state(gfp_mask);
3734 3735
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3736

3737
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3738 3739 3740 3741 3742
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3743
			shrink_node(pgdat, &sc);
3744
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3745
	}
3746

3747
	p->reclaim_state = NULL;
3748
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3749
	lockdep_clear_current_reclaim_state();
3750
	return sc.nr_reclaimed >= nr_pages;
3751
}
3752

3753
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3754
{
3755
	int ret;
3756 3757

	/*
3758
	 * Node reclaim reclaims unmapped file backed pages and
3759
	 * slab pages if we are over the defined limits.
3760
	 *
3761 3762
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3763 3764
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3765
	 * unmapped file backed pages.
3766
	 */
3767 3768 3769
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3770

3771 3772
	if (!pgdat_reclaimable(pgdat))
		return NODE_RECLAIM_FULL;
3773

3774
	/*
3775
	 * Do not scan if the allocation should not be delayed.
3776
	 */
3777
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3778
		return NODE_RECLAIM_NOSCAN;
3779 3780

	/*
3781
	 * Only run node reclaim on the local node or on nodes that do not
3782 3783 3784 3785
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3786 3787
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3788

3789 3790
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3791

3792 3793
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3794

3795 3796 3797
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3798
	return ret;
3799
}
3800
#endif
L
Lee Schermerhorn 已提交
3801 3802 3803 3804 3805 3806

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3807
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3808 3809
 *
 * Reasons page might not be evictable:
3810
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3811
 * (2) page is part of an mlocked VMA
3812
 *
L
Lee Schermerhorn 已提交
3813
 */
3814
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3815
{
3816
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3817
}
3818

3819
#ifdef CONFIG_SHMEM
3820
/**
3821 3822 3823
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3824
 *
3825
 * Checks pages for evictability and moves them to the appropriate lru list.
3826 3827
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3828
 */
3829
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3830
{
3831
	struct lruvec *lruvec;
3832
	struct pglist_data *pgdat = NULL;
3833 3834 3835
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3836

3837 3838
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3839
		struct pglist_data *pagepgdat = page_pgdat(page);
3840

3841
		pgscanned++;
3842 3843 3844 3845 3846
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3847
		}
3848
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3849

3850 3851
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3852

3853
		if (page_evictable(page)) {
3854 3855
			enum lru_list lru = page_lru_base_type(page);

3856
			VM_BUG_ON_PAGE(PageActive(page), page);
3857
			ClearPageUnevictable(page);
3858 3859
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3860
			pgrescued++;
3861
		}
3862
	}
3863

3864
	if (pgdat) {
3865 3866
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3867
		spin_unlock_irq(&pgdat->lru_lock);
3868 3869
	}
}
3870
#endif /* CONFIG_SHMEM */