vmscan.c 108.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
L
Linus Torvalds 已提交
49 50 51 52 53

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
54
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
55

56 57
#include "internal.h"

58 59 60
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
61
struct scan_control {
62 63 64
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
65
	/* This context's GFP mask */
A
Al Viro 已提交
66
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
67

68
	/* Allocation order */
A
Andy Whitcroft 已提交
69
	int order;
70

71 72 73 74 75
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
76

77 78 79 80 81
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
82

83 84 85 86 87 88 89 90 91 92 93
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

94 95 96
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

97 98 99 100 101 102 103 104 105 106
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
143 144 145 146 147
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
148 149 150 151

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
152
#ifdef CONFIG_MEMCG
153 154
static bool global_reclaim(struct scan_control *sc)
{
155
	return !sc->target_mem_cgroup;
156
}
157
#else
158 159 160 161
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
162 163
#endif

164
static unsigned long zone_reclaimable_pages(struct zone *zone)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
180 181
	return zone_page_state(zone, NR_PAGES_SCANNED) <
		zone_reclaimable_pages(zone) * 6;
182 183
}

184
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
185
{
186
	if (!mem_cgroup_disabled())
187
		return mem_cgroup_get_lru_size(lruvec, lru);
188

189
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
190 191
}

L
Linus Torvalds 已提交
192
/*
G
Glauber Costa 已提交
193
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
194
 */
G
Glauber Costa 已提交
195
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
196
{
G
Glauber Costa 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

214 215 216
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
217
	return 0;
L
Linus Torvalds 已提交
218
}
219
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
220 221 222 223

/*
 * Remove one
 */
224
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
225 226 227 228
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
229
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
230
}
231
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
232 233

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
234

235 236 237 238
static unsigned long shrink_slabs(struct shrink_control *shrinkctl,
				  struct shrinker *shrinker,
				  unsigned long nr_scanned,
				  unsigned long nr_eligible)
G
Glauber Costa 已提交
239 240 241 242
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
243
	long freeable;
G
Glauber Costa 已提交
244 245 246 247 248 249
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

250 251
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
252 253 254 255 256 257 258 259 260 261
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
262
	delta = (4 * nr_scanned) / shrinker->seeks;
263
	delta *= freeable;
264
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
265 266
	total_scan += delta;
	if (total_scan < 0) {
267
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
268
		       shrinker->scan_objects, total_scan);
269
		total_scan = freeable;
G
Glauber Costa 已提交
270 271 272 273 274 275 276 277
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
278
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
279 280 281 282 283
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
284 285
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
286 287 288 289 290 291

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
292 293
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
294 295

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
296 297
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
298

299 300 301 302 303 304 305 306 307 308 309
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
310
	 * than the total number of objects on slab (freeable), we must be
311 312 313 314
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
315
	       total_scan >= freeable) {
D
Dave Chinner 已提交
316
		unsigned long ret;
317
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
318

319
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
320 321 322 323
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
324

325 326
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

342
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
343
	return freed;
344 345
}

346 347 348 349 350 351
/**
 * shrink_node_slabs - shrink slab caches of a given node
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
352
 *
353
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
354
 *
355 356
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
357
 *
358 359 360 361 362 363 364
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
365
 *
366
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
367
 */
368 369 370
unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
				unsigned long nr_scanned,
				unsigned long nr_eligible)
L
Linus Torvalds 已提交
371 372
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
373
	unsigned long freed = 0;
L
Linus Torvalds 已提交
374

375 376
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
377

378
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
379 380 381 382 383 384 385
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
386 387
		goto out;
	}
L
Linus Torvalds 已提交
388 389

	list_for_each_entry(shrinker, &shrinker_list, list) {
390 391 392 393
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
		};
394

395 396
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
397

398
		freed += shrink_slabs(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
399
	}
400

L
Linus Torvalds 已提交
401
	up_read(&shrinker_rwsem);
402 403
out:
	cond_resched();
D
Dave Chinner 已提交
404
	return freed;
L
Linus Torvalds 已提交
405 406 407 408
}

static inline int is_page_cache_freeable(struct page *page)
{
409 410 411 412 413
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
414
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
415 416
}

417 418
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
419
{
420
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
444
	lock_page(page);
445 446
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
447 448 449
	unlock_page(page);
}

450 451 452 453 454 455 456 457 458 459 460 461
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
462
/*
A
Andrew Morton 已提交
463 464
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
465
 */
466
static pageout_t pageout(struct page *page, struct address_space *mapping,
467
			 struct scan_control *sc)
L
Linus Torvalds 已提交
468 469 470 471 472 473 474 475
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
476
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
492
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
493 494
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
495
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
496 497 498 499 500 501 502
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
503
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
504 505 506 507 508 509 510
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
511 512
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
513 514 515 516 517 518 519
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
520
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
521 522 523
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
524

L
Linus Torvalds 已提交
525 526 527 528
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
529
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
530
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
531 532 533 534 535 536
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

537
/*
N
Nick Piggin 已提交
538 539
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
540
 */
541 542
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
543
{
544 545
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
546

N
Nick Piggin 已提交
547
	spin_lock_irq(&mapping->tree_lock);
548
	/*
N
Nick Piggin 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
572
	 */
N
Nick Piggin 已提交
573
	if (!page_freeze_refs(page, 2))
574
		goto cannot_free;
N
Nick Piggin 已提交
575 576 577
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
578
		goto cannot_free;
N
Nick Piggin 已提交
579
	}
580 581 582

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
583
		mem_cgroup_swapout(page, swap);
584
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
585
		spin_unlock_irq(&mapping->tree_lock);
586
		swapcache_free(swap);
N
Nick Piggin 已提交
587
	} else {
588
		void (*freepage)(struct page *);
589
		void *shadow = NULL;
590 591

		freepage = mapping->a_ops->freepage;
592 593 594 595 596 597 598 599 600 601 602 603 604 605
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
		 */
		if (reclaimed && page_is_file_cache(page) &&
		    !mapping_exiting(mapping))
			shadow = workingset_eviction(mapping, page);
		__delete_from_page_cache(page, shadow);
N
Nick Piggin 已提交
606
		spin_unlock_irq(&mapping->tree_lock);
607 608 609

		if (freepage != NULL)
			freepage(page);
610 611 612 613 614
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
615
	spin_unlock_irq(&mapping->tree_lock);
616 617 618
	return 0;
}

N
Nick Piggin 已提交
619 620 621 622 623 624 625 626
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
627
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
628 629 630 631 632 633 634 635 636 637 638
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
639 640 641 642 643 644 645 646 647 648 649
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
650
	bool is_unevictable;
651
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
652

653
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
654 655 656 657

redo:
	ClearPageUnevictable(page);

658
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
659 660 661 662 663 664
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
665
		is_unevictable = false;
666
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
667 668 669 670 671
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
672
		is_unevictable = true;
L
Lee Schermerhorn 已提交
673
		add_page_to_unevictable_list(page);
674
		/*
675 676 677
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
678
		 * isolation/check_move_unevictable_pages,
679
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
680 681
		 * the page back to the evictable list.
		 *
682
		 * The other side is TestClearPageMlocked() or shmem_lock().
683 684
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
685 686 687 688 689 690 691
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
692
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
693 694 695 696 697 698 699 700 701 702
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

703
	if (was_unevictable && !is_unevictable)
704
		count_vm_event(UNEVICTABLE_PGRESCUED);
705
	else if (!was_unevictable && is_unevictable)
706 707
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
708 709 710
	put_page(page);		/* drop ref from isolate */
}

711 712 713
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
714
	PAGEREF_KEEP,
715 716 717 718 719 720
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
721
	int referenced_ptes, referenced_page;
722 723
	unsigned long vm_flags;

724 725
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
726
	referenced_page = TestClearPageReferenced(page);
727 728 729 730 731 732 733 734

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

735
	if (referenced_ptes) {
736
		if (PageSwapBacked(page))
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

754
		if (referenced_page || referenced_ptes > 1)
755 756
			return PAGEREF_ACTIVATE;

757 758 759 760 761 762
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

763 764
		return PAGEREF_KEEP;
	}
765 766

	/* Reclaim if clean, defer dirty pages to writeback */
767
	if (referenced_page && !PageSwapBacked(page))
768 769 770
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
771 772
}

773 774 775 776
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
777 778
	struct address_space *mapping;

779 780 781 782 783 784 785 786 787 788 789 790 791
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
792 793 794 795 796 797 798 799

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
800 801
}

L
Linus Torvalds 已提交
802
/*
A
Andrew Morton 已提交
803
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
804
 */
A
Andrew Morton 已提交
805
static unsigned long shrink_page_list(struct list_head *page_list,
806
				      struct zone *zone,
807
				      struct scan_control *sc,
808
				      enum ttu_flags ttu_flags,
809
				      unsigned long *ret_nr_dirty,
810
				      unsigned long *ret_nr_unqueued_dirty,
811
				      unsigned long *ret_nr_congested,
812
				      unsigned long *ret_nr_writeback,
813
				      unsigned long *ret_nr_immediate,
814
				      bool force_reclaim)
L
Linus Torvalds 已提交
815 816
{
	LIST_HEAD(ret_pages);
817
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
818
	int pgactivate = 0;
819
	unsigned long nr_unqueued_dirty = 0;
820 821
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
822
	unsigned long nr_reclaimed = 0;
823
	unsigned long nr_writeback = 0;
824
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
825 826 827 828 829 830 831

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
832
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
833
		bool dirty, writeback;
L
Linus Torvalds 已提交
834 835 836 837 838 839

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
840
		if (!trylock_page(page))
L
Linus Torvalds 已提交
841 842
			goto keep;

843 844
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
845 846

		sc->nr_scanned++;
847

848
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
849
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
850

851
		if (!sc->may_unmap && page_mapped(page))
852 853
			goto keep_locked;

L
Linus Torvalds 已提交
854 855 856 857
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

858 859 860
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

861 862 863 864 865 866 867 868 869 870 871 872 873
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

874 875 876 877 878 879
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
880
		mapping = page_mapping(page);
881 882
		if (((dirty || writeback) && mapping &&
		     bdi_write_congested(mapping->backing_dev_info)) ||
883
		    (writeback && PageReclaim(page)))
884 885
			nr_congested++;

886 887 888 889 890 891 892 893 894 895 896
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
897 898
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
923
		if (PageWriteback(page)) {
924 925 926
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
J
Johannes Weiner 已提交
927
			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
928 929
				nr_immediate++;
				goto keep_locked;
930 931 932

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
933 934 935 936 937 938 939 940 941 942 943 944 945
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
946
				nr_writeback++;
947

948
				goto keep_locked;
949 950 951 952

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
953
			}
954
		}
L
Linus Torvalds 已提交
955

956 957 958
		if (!force_reclaim)
			references = page_check_references(page, sc);

959 960
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
961
			goto activate_locked;
962 963
		case PAGEREF_KEEP:
			goto keep_locked;
964 965 966 967
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
968 969 970 971 972

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
973
		if (PageAnon(page) && !PageSwapCache(page)) {
974 975
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
976
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
977
				goto activate_locked;
978
			may_enter_fs = 1;
L
Linus Torvalds 已提交
979

980 981 982
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
983 984 985 986 987 988

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
989
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
990 991 992 993
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
994 995
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
996 997 998 999 1000 1001
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1002 1003
			/*
			 * Only kswapd can writeback filesystem pages to
1004 1005
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1006
			 */
1007
			if (page_is_file_cache(page) &&
1008
					(!current_is_kswapd() ||
J
Johannes Weiner 已提交
1009
					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1010 1011 1012 1013 1014 1015 1016 1017 1018
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1019 1020 1021
				goto keep_locked;
			}

1022
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1023
				goto keep_locked;
1024
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1025
				goto keep_locked;
1026
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1027 1028 1029
				goto keep_locked;

			/* Page is dirty, try to write it out here */
1030
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1031 1032 1033 1034 1035
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1036
				if (PageWriteback(page))
1037
					goto keep;
1038
				if (PageDirty(page))
L
Linus Torvalds 已提交
1039
					goto keep;
1040

L
Linus Torvalds 已提交
1041 1042 1043 1044
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1045
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1065
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1076
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1077 1078
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1095 1096
		}

1097
		if (!mapping || !__remove_mapping(mapping, page, true))
1098
			goto keep_locked;
L
Linus Torvalds 已提交
1099

N
Nick Piggin 已提交
1100 1101 1102 1103 1104 1105 1106 1107
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1108
free_it:
1109
		nr_reclaimed++;
1110 1111 1112 1113 1114 1115

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1116 1117
		continue;

N
Nick Piggin 已提交
1118
cull_mlocked:
1119 1120
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1121 1122 1123 1124
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1125
activate_locked:
1126 1127
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1128
			try_to_free_swap(page);
1129
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1130 1131 1132 1133 1134 1135
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1136
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1137
	}
1138

1139
	mem_cgroup_uncharge_list(&free_pages);
1140
	free_hot_cold_page_list(&free_pages, true);
1141

L
Linus Torvalds 已提交
1142
	list_splice(&ret_pages, page_list);
1143
	count_vm_events(PGACTIVATE, pgactivate);
1144

1145 1146
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1147
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1148
	*ret_nr_writeback += nr_writeback;
1149
	*ret_nr_immediate += nr_immediate;
1150
	return nr_reclaimed;
L
Linus Torvalds 已提交
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1161
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1162 1163 1164 1165
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1166 1167
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1168 1169 1170 1171 1172 1173
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1174 1175
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1176
	list_splice(&clean_pages, page_list);
1177
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1178 1179 1180
	return ret;
}

A
Andy Whitcroft 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1191
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1192 1193 1194 1195 1196 1197 1198
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1199 1200
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1201 1202
		return ret;

A
Andy Whitcroft 已提交
1203
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1238

1239 1240 1241
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1266
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1267
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1268
 * @nr_scanned:	The number of pages that were scanned.
1269
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1270
 * @mode:	One of the LRU isolation modes
1271
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1272 1273 1274
 *
 * returns how many pages were moved onto *@dst.
 */
1275
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1276
		struct lruvec *lruvec, struct list_head *dst,
1277
		unsigned long *nr_scanned, struct scan_control *sc,
1278
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1279
{
H
Hugh Dickins 已提交
1280
	struct list_head *src = &lruvec->lists[lru];
1281
	unsigned long nr_taken = 0;
1282
	unsigned long scan;
L
Linus Torvalds 已提交
1283

1284
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1285
		struct page *page;
1286
		int nr_pages;
A
Andy Whitcroft 已提交
1287

L
Linus Torvalds 已提交
1288 1289 1290
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1291
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1292

1293
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1294
		case 0:
1295 1296
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1297
			list_move(&page->lru, dst);
1298
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1299 1300 1301 1302 1303 1304
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1305

A
Andy Whitcroft 已提交
1306 1307 1308
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1309 1310
	}

H
Hugh Dickins 已提交
1311
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1312 1313
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1314 1315 1316
	return nr_taken;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1328 1329 1330
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1346
	VM_BUG_ON_PAGE(!page_count(page), page);
1347

1348 1349
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1350
		struct lruvec *lruvec;
1351 1352

		spin_lock_irq(&zone->lru_lock);
1353
		lruvec = mem_cgroup_page_lruvec(page, zone);
1354
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1355
			int lru = page_lru(page);
1356
			get_page(page);
1357
			ClearPageLRU(page);
1358 1359
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1360 1361 1362 1363 1364 1365
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1366
/*
F
Fengguang Wu 已提交
1367 1368 1369 1370 1371
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1372 1373 1374 1375 1376 1377 1378 1379 1380
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1381
	if (!global_reclaim(sc))
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1392 1393 1394 1395 1396 1397 1398 1399
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1400 1401 1402
	return isolated > inactive;
}

1403
static noinline_for_stack void
H
Hugh Dickins 已提交
1404
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1405
{
1406 1407
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1408
	LIST_HEAD(pages_to_free);
1409 1410 1411 1412 1413

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1414
		struct page *page = lru_to_page(page_list);
1415
		int lru;
1416

1417
		VM_BUG_ON_PAGE(PageLRU(page), page);
1418
		list_del(&page->lru);
1419
		if (unlikely(!page_evictable(page))) {
1420 1421 1422 1423 1424
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1425 1426 1427

		lruvec = mem_cgroup_page_lruvec(page, zone);

1428
		SetPageLRU(page);
1429
		lru = page_lru(page);
1430 1431
		add_page_to_lru_list(page, lruvec, lru);

1432 1433
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1434 1435
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1436
		}
1437 1438 1439
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1440
			del_page_from_lru_list(page, lruvec, lru);
1441 1442 1443

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1444
				mem_cgroup_uncharge(page);
1445 1446 1447 1448
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1449 1450 1451
		}
	}

1452 1453 1454 1455
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1471
/*
A
Andrew Morton 已提交
1472 1473
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1474
 */
1475
static noinline_for_stack unsigned long
1476
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1477
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1478 1479
{
	LIST_HEAD(page_list);
1480
	unsigned long nr_scanned;
1481
	unsigned long nr_reclaimed = 0;
1482
	unsigned long nr_taken;
1483 1484
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1485
	unsigned long nr_unqueued_dirty = 0;
1486
	unsigned long nr_writeback = 0;
1487
	unsigned long nr_immediate = 0;
1488
	isolate_mode_t isolate_mode = 0;
1489
	int file = is_file_lru(lru);
1490 1491
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1492

1493
	while (unlikely(too_many_isolated(zone, file, sc))) {
1494
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1495 1496 1497 1498 1499 1500

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1501
	lru_add_drain();
1502 1503

	if (!sc->may_unmap)
1504
		isolate_mode |= ISOLATE_UNMAPPED;
1505
	if (!sc->may_writepage)
1506
		isolate_mode |= ISOLATE_CLEAN;
1507

L
Linus Torvalds 已提交
1508
	spin_lock_irq(&zone->lru_lock);
1509

1510 1511
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1512 1513 1514 1515

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1516
	if (global_reclaim(sc)) {
1517
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1518
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1519
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1520
		else
H
Hugh Dickins 已提交
1521
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1522
	}
1523
	spin_unlock_irq(&zone->lru_lock);
1524

1525
	if (nr_taken == 0)
1526
		return 0;
A
Andy Whitcroft 已提交
1527

1528
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1529 1530 1531
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1532

1533 1534
	spin_lock_irq(&zone->lru_lock);

1535
	reclaim_stat->recent_scanned[file] += nr_taken;
1536

Y
Ying Han 已提交
1537 1538 1539 1540 1541 1542 1543 1544
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1545

1546
	putback_inactive_pages(lruvec, &page_list);
1547

1548
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1549 1550 1551

	spin_unlock_irq(&zone->lru_lock);

1552
	mem_cgroup_uncharge_list(&page_list);
1553
	free_hot_cold_page_list(&page_list, true);
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1565 1566 1567
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1568
	 */
1569
	if (nr_writeback && nr_writeback == nr_taken)
J
Johannes Weiner 已提交
1570
		set_bit(ZONE_WRITEBACK, &zone->flags);
1571

1572
	/*
1573 1574
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1575
	 */
1576
	if (global_reclaim(sc)) {
1577 1578 1579 1580 1581
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
J
Johannes Weiner 已提交
1582
			set_bit(ZONE_CONGESTED, &zone->flags);
1583

1584 1585 1586
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
J
Johannes Weiner 已提交
1587 1588
		 * the zone ZONE_DIRTY and kswapd will start writing pages from
		 * reclaim context.
1589 1590
		 */
		if (nr_unqueued_dirty == nr_taken)
J
Johannes Weiner 已提交
1591
			set_bit(ZONE_DIRTY, &zone->flags);
1592 1593

		/*
1594 1595 1596
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1597 1598
		 * they are written so also forcibly stall.
		 */
1599
		if (nr_immediate && current_may_throttle())
1600
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1601
	}
1602

1603 1604 1605 1606 1607
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1608 1609
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
1610 1611
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1612 1613 1614
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1615
		sc->priority,
M
Mel Gorman 已提交
1616
		trace_shrink_flags(file));
1617
	return nr_reclaimed;
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1637

1638
static void move_active_pages_to_lru(struct lruvec *lruvec,
1639
				     struct list_head *list,
1640
				     struct list_head *pages_to_free,
1641 1642
				     enum lru_list lru)
{
1643
	struct zone *zone = lruvec_zone(lruvec);
1644 1645
	unsigned long pgmoved = 0;
	struct page *page;
1646
	int nr_pages;
1647 1648 1649

	while (!list_empty(list)) {
		page = lru_to_page(list);
1650
		lruvec = mem_cgroup_page_lruvec(page, zone);
1651

1652
		VM_BUG_ON_PAGE(PageLRU(page), page);
1653 1654
		SetPageLRU(page);

1655 1656
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1657
		list_move(&page->lru, &lruvec->lists[lru]);
1658
		pgmoved += nr_pages;
1659

1660 1661 1662
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1663
			del_page_from_lru_list(page, lruvec, lru);
1664 1665 1666

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1667
				mem_cgroup_uncharge(page);
1668 1669 1670 1671
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1672 1673 1674 1675 1676 1677
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1678

H
Hugh Dickins 已提交
1679
static void shrink_active_list(unsigned long nr_to_scan,
1680
			       struct lruvec *lruvec,
1681
			       struct scan_control *sc,
1682
			       enum lru_list lru)
L
Linus Torvalds 已提交
1683
{
1684
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1685
	unsigned long nr_scanned;
1686
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1687
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1688
	LIST_HEAD(l_active);
1689
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1690
	struct page *page;
1691
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1692
	unsigned long nr_rotated = 0;
1693
	isolate_mode_t isolate_mode = 0;
1694
	int file = is_file_lru(lru);
1695
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1696 1697

	lru_add_drain();
1698 1699

	if (!sc->may_unmap)
1700
		isolate_mode |= ISOLATE_UNMAPPED;
1701
	if (!sc->may_writepage)
1702
		isolate_mode |= ISOLATE_CLEAN;
1703

L
Linus Torvalds 已提交
1704
	spin_lock_irq(&zone->lru_lock);
1705

1706 1707
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1708
	if (global_reclaim(sc))
1709
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1710

1711
	reclaim_stat->recent_scanned[file] += nr_taken;
1712

H
Hugh Dickins 已提交
1713
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1714
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1715
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1716 1717 1718 1719 1720 1721
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1722

1723
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1724 1725 1726 1727
			putback_lru_page(page);
			continue;
		}

1728 1729 1730 1731 1732 1733 1734 1735
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1736 1737
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1738
			nr_rotated += hpage_nr_pages(page);
1739 1740 1741 1742 1743 1744 1745 1746 1747
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1748
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1749 1750 1751 1752
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1753

1754
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1755 1756 1757
		list_add(&page->lru, &l_inactive);
	}

1758
	/*
1759
	 * Move pages back to the lru list.
1760
	 */
1761
	spin_lock_irq(&zone->lru_lock);
1762
	/*
1763 1764 1765
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1766
	 * get_scan_count.
1767
	 */
1768
	reclaim_stat->recent_rotated[file] += nr_rotated;
1769

1770 1771
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1772
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1773
	spin_unlock_irq(&zone->lru_lock);
1774

1775
	mem_cgroup_uncharge_list(&l_hold);
1776
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1777 1778
}

1779
#ifdef CONFIG_SWAP
1780
static int inactive_anon_is_low_global(struct zone *zone)
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1793 1794
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1795
 * @lruvec: LRU vector to check
1796 1797 1798 1799
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1800
static int inactive_anon_is_low(struct lruvec *lruvec)
1801
{
1802 1803 1804 1805 1806 1807 1808
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1809
	if (!mem_cgroup_disabled())
1810
		return mem_cgroup_inactive_anon_is_low(lruvec);
1811

1812
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1813
}
1814
#else
1815
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1816 1817 1818 1819
{
	return 0;
}
#endif
1820

1821 1822
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1823
 * @lruvec: LRU vector to check
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1835
static int inactive_file_is_low(struct lruvec *lruvec)
1836
{
1837 1838 1839 1840 1841
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1842

1843
	return active > inactive;
1844 1845
}

H
Hugh Dickins 已提交
1846
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1847
{
H
Hugh Dickins 已提交
1848
	if (is_file_lru(lru))
1849
		return inactive_file_is_low(lruvec);
1850
	else
1851
		return inactive_anon_is_low(lruvec);
1852 1853
}

1854
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1855
				 struct lruvec *lruvec, struct scan_control *sc)
1856
{
1857
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1858
		if (inactive_list_is_low(lruvec, lru))
1859
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1860 1861 1862
		return 0;
	}

1863
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1864 1865
}

1866 1867 1868 1869 1870 1871 1872
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1873 1874 1875 1876 1877 1878
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1879 1880
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1881
 */
1882
static void get_scan_count(struct lruvec *lruvec, int swappiness,
1883 1884
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
1885
{
1886 1887 1888 1889
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1890
	unsigned long anon_prio, file_prio;
1891
	enum scan_balance scan_balance;
1892
	unsigned long anon, file;
1893
	bool force_scan = false;
1894
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1895
	enum lru_list lru;
1896 1897
	bool some_scanned;
	int pass;
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1909 1910 1911 1912 1913 1914
	if (current_is_kswapd()) {
		if (!zone_reclaimable(zone))
			force_scan = true;
		if (!mem_cgroup_lruvec_online(lruvec))
			force_scan = true;
	}
1915
	if (!global_reclaim(sc))
1916
		force_scan = true;
1917 1918

	/* If we have no swap space, do not bother scanning anon pages. */
1919
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1920
		scan_balance = SCAN_FILE;
1921 1922
		goto out;
	}
1923

1924 1925 1926 1927 1928 1929 1930
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
1931
	if (!global_reclaim(sc) && !swappiness) {
1932
		scan_balance = SCAN_FILE;
1933 1934 1935 1936 1937 1938 1939 1940
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
1941
	if (!sc->priority && swappiness) {
1942
		scan_balance = SCAN_EQUAL;
1943 1944 1945
		goto out;
	}

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
1956 1957 1958 1959 1960 1961
		unsigned long zonefile;
		unsigned long zonefree;

		zonefree = zone_page_state(zone, NR_FREE_PAGES);
		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
			   zone_page_state(zone, NR_INACTIVE_FILE);
1962

1963
		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
1964 1965 1966 1967 1968
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

1969 1970 1971 1972 1973
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1974
		scan_balance = SCAN_FILE;
1975 1976 1977
		goto out;
	}

1978 1979
	scan_balance = SCAN_FRACT;

1980 1981 1982 1983
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1984
	anon_prio = swappiness;
H
Hugh Dickins 已提交
1985
	file_prio = 200 - anon_prio;
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1998 1999 2000 2001 2002 2003

	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);

2004
	spin_lock_irq(&zone->lru_lock);
2005 2006 2007
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2008 2009
	}

2010 2011 2012
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2013 2014 2015
	}

	/*
2016 2017 2018
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2019
	 */
2020
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2021
	ap /= reclaim_stat->recent_rotated[0] + 1;
2022

2023
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2024
	fp /= reclaim_stat->recent_rotated[1] + 1;
2025
	spin_unlock_irq(&zone->lru_lock);
2026

2027 2028 2029 2030
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2031 2032 2033
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2034
		*lru_pages = 0;
2035 2036 2037 2038
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2039

2040 2041
			size = get_lru_size(lruvec, lru);
			scan = size >> sc->priority;
2042

2043 2044
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2061 2062
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2063
					scan = 0;
2064
				}
2065 2066 2067 2068 2069
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2070 2071

			*lru_pages += size;
2072
			nr[lru] = scan;
2073

2074
			/*
2075 2076
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2077
			 */
2078
			some_scanned |= !!scan;
2079
		}
2080
	}
2081
}
2082

2083 2084 2085
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2086
static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2087
			  struct scan_control *sc, unsigned long *lru_pages)
2088 2089
{
	unsigned long nr[NR_LRU_LISTS];
2090
	unsigned long targets[NR_LRU_LISTS];
2091 2092 2093 2094 2095
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2096
	bool scan_adjusted;
2097

2098
	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2099

2100 2101 2102
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2117 2118 2119
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2120 2121 2122
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2123 2124 2125 2126 2127 2128 2129 2130 2131
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2132 2133 2134 2135 2136 2137

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2138
		 * requested. Ensure that the anon and file LRUs are scanned
2139 2140 2141 2142 2143 2144 2145
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2146 2147 2148 2149 2150 2151 2152 2153 2154
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2201
/* Use reclaim/compaction for costly allocs or under memory pressure */
2202
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2203
{
2204
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2205
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2206
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2207 2208 2209 2210 2211
		return true;

	return false;
}

2212
/*
M
Mel Gorman 已提交
2213 2214 2215 2216 2217
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2218
 */
2219
static inline bool should_continue_reclaim(struct zone *zone,
2220 2221 2222 2223 2224 2225 2226 2227
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2228
	if (!in_reclaim_compaction(sc))
2229 2230
		return false;

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2253 2254 2255 2256 2257 2258

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2259
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2260
	if (get_nr_swap_pages() > 0)
2261
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2262 2263 2264 2265 2266
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2267
	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2268 2269 2270 2271 2272 2273 2274 2275
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2276 2277
static bool shrink_zone(struct zone *zone, struct scan_control *sc,
			bool is_classzone)
L
Linus Torvalds 已提交
2278
{
2279
	unsigned long nr_reclaimed, nr_scanned;
2280
	bool reclaimable = false;
L
Linus Torvalds 已提交
2281

2282 2283 2284 2285 2286 2287
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2288
		unsigned long zone_lru_pages = 0;
2289
		struct mem_cgroup *memcg;
2290

2291 2292
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2293

2294 2295
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2296
			unsigned long lru_pages;
2297
			struct lruvec *lruvec;
2298
			int swappiness;
2299

2300 2301 2302 2303 2304 2305
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2306
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2307
			swappiness = mem_cgroup_swappiness(memcg);
2308

2309 2310
			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
			zone_lru_pages += lru_pages;
2311

2312
			/*
2313 2314
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2315
			 * zone.
2316 2317 2318 2319 2320
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2321
			 */
2322 2323
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2324 2325 2326
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2327
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2328

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
		if (global_reclaim(sc) && is_classzone) {
			struct reclaim_state *reclaim_state;

			shrink_node_slabs(sc->gfp_mask, zone_to_nid(zone),
					  sc->nr_scanned - nr_scanned,
					  zone_lru_pages);

			reclaim_state = current->reclaim_state;
			if (reclaim_state) {
				sc->nr_reclaimed +=
					reclaim_state->reclaimed_slab;
				reclaim_state->reclaimed_slab = 0;
			}
		}

2348 2349 2350 2351
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2352 2353 2354
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2355 2356
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2357 2358

	return reclaimable;
2359 2360
}

2361 2362 2363 2364
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2365
static inline bool compaction_ready(struct zone *zone, int order)
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2376 2377
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2378
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2379 2380 2381 2382 2383 2384
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2385
	if (compaction_deferred(zone, order))
2386 2387
		return watermark_ok;

2388 2389 2390 2391
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2392
	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2393 2394 2395 2396 2397
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2398 2399 2400 2401 2402
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2403 2404
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2405 2406
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2407 2408 2409
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2410 2411 2412
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2413 2414
 *
 * Returns true if a zone was reclaimable.
L
Linus Torvalds 已提交
2415
 */
2416
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2417
{
2418
	struct zoneref *z;
2419
	struct zone *zone;
2420 2421
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2422
	gfp_t orig_mask;
2423
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2424
	bool reclaimable = false;
2425

2426 2427 2428 2429 2430
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2431
	orig_mask = sc->gfp_mask;
2432 2433 2434
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2435
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2436 2437 2438
					requested_highidx, sc->nodemask) {
		enum zone_type classzone_idx;

2439
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2440
			continue;
2441 2442 2443 2444 2445 2446

		classzone_idx = requested_highidx;
		while (!populated_zone(zone->zone_pgdat->node_zones +
							classzone_idx))
			classzone_idx--;

2447 2448 2449 2450
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2451
		if (global_reclaim(sc)) {
2452 2453
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2454
				continue;
2455

2456 2457
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2458
				continue;	/* Let kswapd poll it */
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
			    compaction_ready(zone, sc->order)) {
				sc->compaction_ready = true;
				continue;
2475
			}
2476

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2489 2490
			if (nr_soft_reclaimed)
				reclaimable = true;
2491
			/* need some check for avoid more shrink_zone() */
2492
		}
2493

2494
		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2495 2496 2497 2498 2499
			reclaimable = true;

		if (global_reclaim(sc) &&
		    !reclaimable && zone_reclaimable(zone))
			reclaimable = true;
L
Linus Torvalds 已提交
2500
	}
2501

2502 2503 2504 2505 2506
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
2507

2508
	return reclaimable;
L
Linus Torvalds 已提交
2509
}
2510

L
Linus Torvalds 已提交
2511 2512 2513 2514 2515 2516 2517 2518
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2519 2520 2521 2522
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2523 2524 2525
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2526
 */
2527
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2528
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2529
{
2530
	int initial_priority = sc->priority;
2531
	unsigned long total_scanned = 0;
2532
	unsigned long writeback_threshold;
2533
	bool zones_reclaimable;
2534
retry:
2535 2536
	delayacct_freepages_start();

2537
	if (global_reclaim(sc))
2538
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2539

2540
	do {
2541 2542
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2543
		sc->nr_scanned = 0;
2544
		zones_reclaimable = shrink_zones(zonelist, sc);
2545

2546
		total_scanned += sc->nr_scanned;
2547
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2548 2549 2550 2551
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2552

2553 2554 2555 2556 2557 2558 2559
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2560 2561 2562 2563 2564 2565 2566
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2567 2568
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2569 2570
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2571
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2572
		}
2573
	} while (--sc->priority >= 0);
2574

2575 2576
	delayacct_freepages_end();

2577 2578 2579
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2580
	/* Aborted reclaim to try compaction? don't OOM, then */
2581
	if (sc->compaction_ready)
2582 2583
		return 1;

2584 2585 2586 2587 2588 2589 2590
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2591 2592
	/* Any of the zones still reclaimable?  Don't OOM. */
	if (zones_reclaimable)
2593 2594 2595
		return 1;

	return 0;
L
Linus Torvalds 已提交
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2608 2609 2610
		if (!populated_zone(zone))
			continue;

2611 2612 2613 2614
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2615 2616 2617 2618
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2635 2636 2637 2638
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2639
 */
2640
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2641 2642
					nodemask_t *nodemask)
{
2643
	struct zoneref *z;
2644
	struct zone *zone;
2645
	pg_data_t *pgdat = NULL;
2646 2647 2648 2649 2650 2651 2652 2653 2654

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2655 2656 2657 2658 2659 2660 2661 2662
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2679
					gfp_zone(gfp_mask), nodemask) {
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2692
		goto out;
2693

2694 2695 2696
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2708 2709

		goto check_pending;
2710 2711 2712 2713 2714
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2715 2716 2717 2718 2719 2720 2721

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2722 2723
}

2724
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2725
				gfp_t gfp_mask, nodemask_t *nodemask)
2726
{
2727
	unsigned long nr_reclaimed;
2728
	struct scan_control sc = {
2729
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2730
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2731 2732 2733
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2734
		.may_writepage = !laptop_mode,
2735
		.may_unmap = 1,
2736
		.may_swap = 1,
2737 2738
	};

2739
	/*
2740 2741 2742
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2743
	 */
2744
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2745 2746
		return 1;

2747 2748 2749 2750
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2751
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2752 2753 2754 2755

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2756 2757
}

A
Andrew Morton 已提交
2758
#ifdef CONFIG_MEMCG
2759

2760
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2761
						gfp_t gfp_mask, bool noswap,
2762 2763
						struct zone *zone,
						unsigned long *nr_scanned)
2764 2765
{
	struct scan_control sc = {
2766
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2767
		.target_mem_cgroup = memcg,
2768 2769 2770 2771
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2772
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2773
	int swappiness = mem_cgroup_swappiness(memcg);
2774
	unsigned long lru_pages;
2775

2776 2777
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2778

2779
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2780 2781 2782
						      sc.may_writepage,
						      sc.gfp_mask);

2783 2784 2785 2786 2787 2788 2789
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2790
	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2791 2792 2793

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2794
	*nr_scanned = sc.nr_scanned;
2795 2796 2797
	return sc.nr_reclaimed;
}

2798
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2799
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2800
					   gfp_t gfp_mask,
2801
					   bool may_swap)
2802
{
2803
	struct zonelist *zonelist;
2804
	unsigned long nr_reclaimed;
2805
	int nid;
2806
	struct scan_control sc = {
2807
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2808 2809
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2810 2811 2812 2813
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2814
		.may_swap = may_swap,
2815
	};
2816

2817 2818 2819 2820 2821
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2822
	nid = mem_cgroup_select_victim_node(memcg);
2823 2824

	zonelist = NODE_DATA(nid)->node_zonelists;
2825 2826 2827 2828 2829

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2830
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2831 2832 2833 2834

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2835 2836 2837
}
#endif

2838
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2839
{
2840
	struct mem_cgroup *memcg;
2841

2842 2843 2844 2845 2846
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2847
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2848

2849
		if (inactive_anon_is_low(lruvec))
2850
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2851
					   sc, LRU_ACTIVE_ANON);
2852 2853 2854

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2855 2856
}

2857 2858 2859 2860 2861 2862 2863
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2864 2865
	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
				order, 0, classzone_idx) == COMPACT_SKIPPED)
2866 2867 2868 2869 2870
		return false;

	return true;
}

2871
/*
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2882 2883 2884 2885
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2886
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2887 2888 2889 2890
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2891
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2892
{
2893
	unsigned long managed_pages = 0;
2894
	unsigned long balanced_pages = 0;
2895 2896
	int i;

2897 2898 2899
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2900

2901 2902 2903
		if (!populated_zone(zone))
			continue;

2904
		managed_pages += zone->managed_pages;
2905 2906 2907 2908 2909 2910 2911 2912

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2913
		if (!zone_reclaimable(zone)) {
2914
			balanced_pages += zone->managed_pages;
2915 2916 2917 2918
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2919
			balanced_pages += zone->managed_pages;
2920 2921 2922 2923 2924
		else if (!order)
			return false;
	}

	if (order)
2925
		return balanced_pages >= (managed_pages >> 2);
2926 2927
	else
		return true;
2928 2929
}

2930 2931 2932 2933 2934 2935 2936
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2937
					int classzone_idx)
2938 2939 2940
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2941 2942 2943
		return false;

	/*
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
2955
	 */
2956 2957
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
2958

2959
	return pgdat_balanced(pgdat, order, classzone_idx);
2960 2961
}

2962 2963 2964
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2965 2966
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2967 2968
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2969
 */
2970
static bool kswapd_shrink_zone(struct zone *zone,
2971
			       int classzone_idx,
2972
			       struct scan_control *sc,
2973
			       unsigned long *nr_attempted)
2974
{
2975 2976 2977
	int testorder = sc->order;
	unsigned long balance_gap;
	bool lowmem_pressure;
2978 2979 2980

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2981 2982 2983 2984 2985 2986 2987 2988

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2989 2990
			compaction_suitable(zone, sc->order, 0, classzone_idx)
							!= COMPACT_SKIPPED)
2991 2992 2993 2994 2995 2996 2997 2998
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
2999 3000
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

3011
	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3012

3013 3014 3015
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

J
Johannes Weiner 已提交
3016
	clear_bit(ZONE_WRITEBACK, &zone->flags);
3017

3018 3019 3020 3021 3022 3023
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
3024
	if (zone_reclaimable(zone) &&
3025
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
J
Johannes Weiner 已提交
3026 3027
		clear_bit(ZONE_CONGESTED, &zone->flags);
		clear_bit(ZONE_DIRTY, &zone->flags);
3028 3029
	}

3030
	return sc->nr_scanned >= sc->nr_to_reclaim;
3031 3032
}

L
Linus Torvalds 已提交
3033 3034
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
3035
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
3036
 *
3037
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3048 3049 3050 3051 3052
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
3053
 */
3054
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3055
							int *classzone_idx)
L
Linus Torvalds 已提交
3056 3057
{
	int i;
3058
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3059 3060
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3061 3062
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3063
		.order = order,
3064
		.priority = DEF_PRIORITY,
3065
		.may_writepage = !laptop_mode,
3066
		.may_unmap = 1,
3067
		.may_swap = 1,
3068
	};
3069
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3070

3071
	do {
3072
		unsigned long nr_attempted = 0;
3073
		bool raise_priority = true;
3074
		bool pgdat_needs_compaction = (order > 0);
3075 3076

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3077

3078 3079 3080 3081 3082 3083
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3084

3085 3086
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3087

3088 3089
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3090
				continue;
L
Linus Torvalds 已提交
3091

3092 3093 3094 3095
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3096
			age_active_anon(zone, &sc);
3097

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3109
			if (!zone_balanced(zone, order, 0, 0)) {
3110
				end_zone = i;
A
Andrew Morton 已提交
3111
				break;
3112
			} else {
3113 3114 3115 3116
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
J
Johannes Weiner 已提交
3117 3118
				clear_bit(ZONE_CONGESTED, &zone->flags);
				clear_bit(ZONE_DIRTY, &zone->flags);
L
Linus Torvalds 已提交
3119 3120
			}
		}
3121

3122
		if (i < 0)
A
Andrew Morton 已提交
3123 3124
			goto out;

L
Linus Torvalds 已提交
3125 3126 3127
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
			if (!populated_zone(zone))
				continue;

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3141 3142
		}

3143 3144 3145 3146 3147 3148 3149
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3162
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3163 3164
				continue;

3165 3166
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3167 3168 3169
				continue;

			sc.nr_scanned = 0;
3170

3171 3172 3173 3174 3175 3176 3177 3178 3179
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3180
			/*
3181 3182 3183 3184
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3185
			 */
3186 3187
			if (kswapd_shrink_zone(zone, end_zone,
					       &sc, &nr_attempted))
3188
				raise_priority = false;
L
Linus Torvalds 已提交
3189
		}
3190 3191 3192 3193 3194 3195 3196 3197

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3198
			wake_up_all(&pgdat->pfmemalloc_wait);
3199

L
Linus Torvalds 已提交
3200
		/*
3201 3202 3203 3204 3205 3206
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3207
		 */
3208 3209
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3210

3211 3212 3213
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3214

3215 3216 3217 3218 3219 3220 3221
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3222
		/*
3223 3224
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3225
		 */
3226 3227
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3228
	} while (sc.priority >= 1 &&
3229
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3230

3231
out:
3232
	/*
3233
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3234 3235 3236 3237
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3238
	*classzone_idx = end_zone;
3239
	return order;
L
Linus Torvalds 已提交
3240 3241
}

3242
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3253
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3254 3255 3256 3257 3258 3259 3260 3261 3262
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3263
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3275

3276 3277 3278 3279 3280 3281 3282 3283
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3284 3285 3286
		if (!kthread_should_stop())
			schedule();

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3297 3298
/*
 * The background pageout daemon, started as a kernel thread
3299
 * from the init process.
L
Linus Torvalds 已提交
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3312
	unsigned long order, new_order;
3313
	unsigned balanced_order;
3314
	int classzone_idx, new_classzone_idx;
3315
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3316 3317
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3318

L
Linus Torvalds 已提交
3319 3320 3321
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3322
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3323

3324 3325
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3326
	if (!cpumask_empty(cpumask))
3327
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3342
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3343
	set_freezable();
L
Linus Torvalds 已提交
3344

3345
	order = new_order = 0;
3346
	balanced_order = 0;
3347
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3348
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3349
	for ( ; ; ) {
3350
		bool ret;
3351

3352 3353 3354 3355 3356
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3357 3358
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3359 3360 3361 3362 3363 3364
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3365
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3366 3367
			/*
			 * Don't sleep if someone wants a larger 'order'
3368
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3369 3370
			 */
			order = new_order;
3371
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3372
		} else {
3373 3374
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3375
			order = pgdat->kswapd_max_order;
3376
			classzone_idx = pgdat->classzone_idx;
3377 3378
			new_order = order;
			new_classzone_idx = classzone_idx;
3379
			pgdat->kswapd_max_order = 0;
3380
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3381 3382
		}

3383 3384 3385 3386 3387 3388 3389 3390
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3391 3392
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3393 3394 3395
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3396
		}
L
Linus Torvalds 已提交
3397
	}
3398

3399
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3400
	current->reclaim_state = NULL;
3401 3402
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3409
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3410 3411 3412
{
	pg_data_t *pgdat;

3413
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3414 3415
		return;

3416
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3417
		return;
3418
	pgdat = zone->zone_pgdat;
3419
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3420
		pgdat->kswapd_max_order = order;
3421 3422
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3423
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3424
		return;
3425
	if (zone_balanced(zone, order, 0, 0))
3426 3427 3428
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3429
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3430 3431
}

3432
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3433
/*
3434
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3435 3436 3437 3438 3439
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3440
 */
3441
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3442
{
3443 3444
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3445
		.nr_to_reclaim = nr_to_reclaim,
3446
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3447
		.priority = DEF_PRIORITY,
3448
		.may_writepage = 1,
3449 3450
		.may_unmap = 1,
		.may_swap = 1,
3451
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3452
	};
3453
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3454 3455
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3456

3457 3458 3459 3460
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3461

3462
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3463

3464 3465 3466
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3467

3468
	return nr_reclaimed;
L
Linus Torvalds 已提交
3469
}
3470
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3471 3472 3473 3474 3475

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3476 3477
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3478
{
3479
	int nid;
L
Linus Torvalds 已提交
3480

3481
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3482
		for_each_node_state(nid, N_MEMORY) {
3483
			pg_data_t *pgdat = NODE_DATA(nid);
3484 3485 3486
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3487

3488
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3489
				/* One of our CPUs online: restore mask */
3490
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3491 3492 3493 3494 3495
		}
	}
	return NOTIFY_OK;
}

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3512 3513
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3514
		pgdat->kswapd = NULL;
3515 3516 3517 3518
	}
	return ret;
}

3519
/*
3520
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3521
 * hold mem_hotplug_begin/end().
3522 3523 3524 3525 3526
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3527
	if (kswapd) {
3528
		kthread_stop(kswapd);
3529 3530
		NODE_DATA(nid)->kswapd = NULL;
	}
3531 3532
}

L
Linus Torvalds 已提交
3533 3534
static int __init kswapd_init(void)
{
3535
	int nid;
3536

L
Linus Torvalds 已提交
3537
	swap_setup();
3538
	for_each_node_state(nid, N_MEMORY)
3539
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3540 3541 3542 3543 3544
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3555
#define RECLAIM_OFF 0
3556
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3557 3558 3559
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3560 3561 3562 3563 3564 3565 3566
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3567 3568 3569 3570 3571 3572
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3573 3574 3575 3576 3577 3578
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3621 3622 3623
/*
 * Try to free up some pages from this zone through reclaim.
 */
3624
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3625
{
3626
	/* Minimum pages needed in order to stay on node */
3627
	const unsigned long nr_pages = 1 << order;
3628 3629
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3630
	struct scan_control sc = {
3631
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3632
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3633
		.order = order,
3634
		.priority = ZONE_RECLAIM_PRIORITY,
3635 3636 3637
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
		.may_swap = 1,
3638
	};
3639 3640

	cond_resched();
3641 3642 3643 3644 3645 3646
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3647
	lockdep_set_current_reclaim_state(gfp_mask);
3648 3649
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3650

3651
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3652 3653 3654 3655 3656
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3657
			shrink_zone(zone, &sc, true);
3658
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3659
	}
3660

3661
	p->reclaim_state = NULL;
3662
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3663
	lockdep_clear_current_reclaim_state();
3664
	return sc.nr_reclaimed >= nr_pages;
3665
}
3666 3667 3668 3669

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3670
	int ret;
3671 3672

	/*
3673 3674
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3675
	 *
3676 3677 3678 3679 3680
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3681
	 */
3682 3683
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3684
		return ZONE_RECLAIM_FULL;
3685

3686
	if (!zone_reclaimable(zone))
3687
		return ZONE_RECLAIM_FULL;
3688

3689
	/*
3690
	 * Do not scan if the allocation should not be delayed.
3691
	 */
3692
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3693
		return ZONE_RECLAIM_NOSCAN;
3694 3695 3696 3697 3698 3699 3700

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3701
	node_id = zone_to_nid(zone);
3702
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3703
		return ZONE_RECLAIM_NOSCAN;
3704

J
Johannes Weiner 已提交
3705
	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3706 3707
		return ZONE_RECLAIM_NOSCAN;

3708
	ret = __zone_reclaim(zone, gfp_mask, order);
J
Johannes Weiner 已提交
3709
	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3710

3711 3712 3713
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3714
	return ret;
3715
}
3716
#endif
L
Lee Schermerhorn 已提交
3717 3718 3719 3720 3721 3722

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3723
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3724 3725
 *
 * Reasons page might not be evictable:
3726
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3727
 * (2) page is part of an mlocked VMA
3728
 *
L
Lee Schermerhorn 已提交
3729
 */
3730
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3731
{
3732
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3733
}
3734

3735
#ifdef CONFIG_SHMEM
3736
/**
3737 3738 3739
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3740
 *
3741
 * Checks pages for evictability and moves them to the appropriate lru list.
3742 3743
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3744
 */
3745
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3746
{
3747
	struct lruvec *lruvec;
3748 3749 3750 3751
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3752

3753 3754 3755
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3756

3757 3758 3759 3760 3761 3762 3763 3764
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3765
		lruvec = mem_cgroup_page_lruvec(page, zone);
3766

3767 3768
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3769

3770
		if (page_evictable(page)) {
3771 3772
			enum lru_list lru = page_lru_base_type(page);

3773
			VM_BUG_ON_PAGE(PageActive(page), page);
3774
			ClearPageUnevictable(page);
3775 3776
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3777
			pgrescued++;
3778
		}
3779
	}
3780

3781 3782 3783 3784
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3785 3786
	}
}
3787
#endif /* CONFIG_SHMEM */