vmscan.c 108.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
L
Linus Torvalds 已提交
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68

69
	/* Allocation order */
A
Andy Whitcroft 已提交
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86
	/* Scan (total_size >> priority) pages at once */
	int priority;

87 88 89
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

90 91 92 93 94 95 96 97
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

98 99 100
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

101 102 103 104 105 106 107 108 109 110
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
145 146 147 148 149
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
150 151 152 153

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
154
#ifdef CONFIG_MEMCG
155 156
static bool global_reclaim(struct scan_control *sc)
{
157
	return !sc->target_mem_cgroup;
158
}
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
180
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 182 183 184
		return true;
#endif
	return false;
}
185
#else
186 187 188 189
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
190 191 192 193 194

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
195 196
#endif

M
Mel Gorman 已提交
197 198 199 200 201 202 203
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
204 205

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
206 207 208
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
209 210 211 212

	return nr;
}

M
Mel Gorman 已提交
213
bool pgdat_reclaimable(struct pglist_data *pgdat)
214
{
M
Mel Gorman 已提交
215 216
	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
		pgdat_reclaimable_pages(pgdat) * 6;
217 218
}

219
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
220
{
221
	if (!mem_cgroup_disabled())
222
		return mem_cgroup_get_lru_size(lruvec, lru);
223

M
Mel Gorman 已提交
224
	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
225 226
}

L
Linus Torvalds 已提交
227
/*
G
Glauber Costa 已提交
228
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
229
 */
G
Glauber Costa 已提交
230
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
231
{
G
Glauber Costa 已提交
232 233 234 235 236 237 238 239 240
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

241 242 243
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
244
	return 0;
L
Linus Torvalds 已提交
245
}
246
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
247 248 249 250

/*
 * Remove one
 */
251
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
252 253 254 255
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
256
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
257
}
258
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
259 260

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
261

262 263 264 265
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
266 267 268 269
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
270
	long freeable;
G
Glauber Costa 已提交
271 272 273 274 275 276
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

277 278
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
279 280 281 282 283 284 285 286 287 288
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
289
	delta = (4 * nr_scanned) / shrinker->seeks;
290
	delta *= freeable;
291
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
292 293
	total_scan += delta;
	if (total_scan < 0) {
294
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
295
		       shrinker->scan_objects, total_scan);
296
		total_scan = freeable;
G
Glauber Costa 已提交
297 298 299 300 301 302 303 304
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
305
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
306 307 308 309 310
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
311 312
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
313 314 315 316 317 318

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
319 320
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
321 322

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
323 324
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
325

326 327 328 329 330 331 332 333 334 335 336
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
337
	 * than the total number of objects on slab (freeable), we must be
338 339 340 341
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
342
	       total_scan >= freeable) {
D
Dave Chinner 已提交
343
		unsigned long ret;
344
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
345

346
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
347 348 349 350
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
351

352 353
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

369
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
370
	return freed;
371 372
}

373
/**
374
 * shrink_slab - shrink slab caches
375 376
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
377
 * @memcg: memory cgroup whose slab caches to target
378 379
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
380
 *
381
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
382
 *
383 384
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
385
 *
386 387
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
388 389
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
390
 *
391 392 393 394 395 396 397
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
398
 *
399
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
400
 */
401 402 403 404
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
405 406
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
407
	unsigned long freed = 0;
L
Linus Torvalds 已提交
408

409
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
410 411
		return 0;

412 413
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
414

415
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
416 417 418 419 420 421 422
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
423 424
		goto out;
	}
L
Linus Torvalds 已提交
425 426

	list_for_each_entry(shrinker, &shrinker_list, list) {
427 428 429
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
430
			.memcg = memcg,
431
		};
432

433 434 435 436 437 438 439
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
440 441
			continue;

442 443
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
444

445
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
446
	}
447

L
Linus Torvalds 已提交
448
	up_read(&shrinker_rwsem);
449 450
out:
	cond_resched();
D
Dave Chinner 已提交
451
	return freed;
L
Linus Torvalds 已提交
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
477 478
static inline int is_page_cache_freeable(struct page *page)
{
479 480 481 482 483
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
484
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
485 486
}

487
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
488
{
489
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
490
		return 1;
491
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
492
		return 1;
493
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
513
	lock_page(page);
514 515
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
516 517 518
	unlock_page(page);
}

519 520 521 522 523 524 525 526 527 528 529 530
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
531
/*
A
Andrew Morton 已提交
532 533
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
534
 */
535
static pageout_t pageout(struct page *page, struct address_space *mapping,
536
			 struct scan_control *sc)
L
Linus Torvalds 已提交
537 538 539 540 541 542 543 544
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
545
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
561
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
562 563
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
564
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
565 566 567 568 569 570 571
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
572
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
573 574 575 576 577 578 579
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
580 581
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
582 583 584 585 586 587 588
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
589
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
590 591 592
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
593

L
Linus Torvalds 已提交
594 595 596 597
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
598
		trace_mm_vmscan_writepage(page);
599
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
600 601 602 603 604 605
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

606
/*
N
Nick Piggin 已提交
607 608
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
609
 */
610 611
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
612
{
613 614
	unsigned long flags;

615 616
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
617

618
	spin_lock_irqsave(&mapping->tree_lock, flags);
619
	/*
N
Nick Piggin 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
639
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
640 641 642
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
643
	 */
644
	if (!page_ref_freeze(page, 2))
645
		goto cannot_free;
N
Nick Piggin 已提交
646 647
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
648
		page_ref_unfreeze(page, 2);
649
		goto cannot_free;
N
Nick Piggin 已提交
650
	}
651 652 653

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
654
		mem_cgroup_swapout(page, swap);
655
		__delete_from_swap_cache(page);
656
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
657
		swapcache_free(swap);
N
Nick Piggin 已提交
658
	} else {
659
		void (*freepage)(struct page *);
660
		void *shadow = NULL;
661 662

		freepage = mapping->a_ops->freepage;
663 664 665 666 667 668 669 670 671
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
672 673 674 675 676 677
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
678 679
		 */
		if (reclaimed && page_is_file_cache(page) &&
680
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
681
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
682
		__delete_from_page_cache(page, shadow);
683
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
684 685 686

		if (freepage != NULL)
			freepage(page);
687 688 689 690 691
	}

	return 1;

cannot_free:
692
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
693 694 695
	return 0;
}

N
Nick Piggin 已提交
696 697 698 699 700 701 702 703
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
704
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
705 706 707 708 709
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
710
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
711 712 713 714 715
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
716 717 718 719 720 721 722 723 724 725 726
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
727
	bool is_unevictable;
728
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
729

730
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
731 732 733 734

redo:
	ClearPageUnevictable(page);

735
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
736 737 738 739 740 741
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
742
		is_unevictable = false;
743
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
744 745 746 747 748
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
749
		is_unevictable = true;
L
Lee Schermerhorn 已提交
750
		add_page_to_unevictable_list(page);
751
		/*
752 753 754
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
755
		 * isolation/check_move_unevictable_pages,
756
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
757 758
		 * the page back to the evictable list.
		 *
759
		 * The other side is TestClearPageMlocked() or shmem_lock().
760 761
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
762 763 764 765 766 767 768
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
769
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
770 771 772 773 774 775 776 777 778 779
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

780
	if (was_unevictable && !is_unevictable)
781
		count_vm_event(UNEVICTABLE_PGRESCUED);
782
	else if (!was_unevictable && is_unevictable)
783 784
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
785 786 787
	put_page(page);		/* drop ref from isolate */
}

788 789 790
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
791
	PAGEREF_KEEP,
792 793 794 795 796 797
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
798
	int referenced_ptes, referenced_page;
799 800
	unsigned long vm_flags;

801 802
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
803
	referenced_page = TestClearPageReferenced(page);
804 805 806 807 808 809 810 811

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

812
	if (referenced_ptes) {
813
		if (PageSwapBacked(page))
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

831
		if (referenced_page || referenced_ptes > 1)
832 833
			return PAGEREF_ACTIVATE;

834 835 836 837 838 839
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

840 841
		return PAGEREF_KEEP;
	}
842 843

	/* Reclaim if clean, defer dirty pages to writeback */
844
	if (referenced_page && !PageSwapBacked(page))
845 846 847
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
848 849
}

850 851 852 853
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
854 855
	struct address_space *mapping;

856 857 858 859 860 861 862 863 864 865 866 867 868
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
869 870 871 872 873 874 875 876

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
877 878
}

L
Linus Torvalds 已提交
879
/*
A
Andrew Morton 已提交
880
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
881
 */
A
Andrew Morton 已提交
882
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
883
				      struct pglist_data *pgdat,
884
				      struct scan_control *sc,
885
				      enum ttu_flags ttu_flags,
886
				      unsigned long *ret_nr_dirty,
887
				      unsigned long *ret_nr_unqueued_dirty,
888
				      unsigned long *ret_nr_congested,
889
				      unsigned long *ret_nr_writeback,
890
				      unsigned long *ret_nr_immediate,
891
				      bool force_reclaim)
L
Linus Torvalds 已提交
892 893
{
	LIST_HEAD(ret_pages);
894
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
895
	int pgactivate = 0;
896
	unsigned long nr_unqueued_dirty = 0;
897 898
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
899
	unsigned long nr_reclaimed = 0;
900
	unsigned long nr_writeback = 0;
901
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
902 903 904 905 906 907 908

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
909
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
910
		bool dirty, writeback;
M
Minchan Kim 已提交
911 912
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
913 914 915 916 917 918

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
919
		if (!trylock_page(page))
L
Linus Torvalds 已提交
920 921
			goto keep;

922
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
923 924

		sc->nr_scanned++;
925

926
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
927
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
928

929
		if (!sc->may_unmap && page_mapped(page))
930 931
			goto keep_locked;

L
Linus Torvalds 已提交
932 933 934 935
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

936 937 938
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

939 940 941 942 943 944 945 946 947 948 949 950 951
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

952 953 954 955 956 957
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
958
		mapping = page_mapping(page);
959
		if (((dirty || writeback) && mapping &&
960
		     inode_write_congested(mapping->host)) ||
961
		    (writeback && PageReclaim(page)))
962 963
			nr_congested++;

964 965 966 967 968 969 970 971 972 973 974
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
975 976
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
977
		 *
978
		 * 2) Global or new memcg reclaim encounters a page that is
979 980 981
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
982
		 *    reclaim and continue scanning.
983
		 *
984 985
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
986 987 988 989 990
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
991
		 * 3) Legacy memcg encounters a page that is already marked
992 993 994 995 996
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
997
		if (PageWriteback(page)) {
998 999 1000
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1001
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1002 1003
				nr_immediate++;
				goto keep_locked;
1004 1005

			/* Case 2 above */
1006
			} else if (sane_reclaim(sc) ||
1007
			    !PageReclaim(page) || !may_enter_fs) {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1020
				nr_writeback++;
1021
				goto keep_locked;
1022 1023 1024

			/* Case 3 above */
			} else {
1025
				unlock_page(page);
1026
				wait_on_page_writeback(page);
1027 1028 1029
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1030
			}
1031
		}
L
Linus Torvalds 已提交
1032

1033 1034 1035
		if (!force_reclaim)
			references = page_check_references(page, sc);

1036 1037
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1038
			goto activate_locked;
1039 1040
		case PAGEREF_KEEP:
			goto keep_locked;
1041 1042 1043 1044
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1045 1046 1047 1048 1049

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1050
		if (PageAnon(page) && !PageSwapCache(page)) {
1051 1052
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1053
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1054
				goto activate_locked;
M
Minchan Kim 已提交
1055
			lazyfree = true;
1056
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1057

1058 1059
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1060 1061 1062 1063
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1064
		}
L
Linus Torvalds 已提交
1065

1066 1067
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1068 1069 1070 1071 1072
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1073 1074 1075
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1076 1077 1078 1079
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1080 1081
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1082 1083
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1084 1085 1086 1087 1088 1089
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1090 1091
			/*
			 * Only kswapd can writeback filesystem pages to
1092 1093
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1094
			 */
1095
			if (page_is_file_cache(page) &&
1096
					(!current_is_kswapd() ||
M
Mel Gorman 已提交
1097
					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1098 1099 1100 1101 1102 1103
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1104
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1105 1106
				SetPageReclaim(page);

1107 1108 1109
				goto keep_locked;
			}

1110
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1111
				goto keep_locked;
1112
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1113
				goto keep_locked;
1114
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1115 1116
				goto keep_locked;

1117 1118 1119 1120 1121 1122
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1123
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1124 1125 1126 1127 1128
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1129
				if (PageWriteback(page))
1130
					goto keep;
1131
				if (PageDirty(page))
L
Linus Torvalds 已提交
1132
					goto keep;
1133

L
Linus Torvalds 已提交
1134 1135 1136 1137
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1138
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1158
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1169
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1170 1171
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1188 1189
		}

M
Minchan Kim 已提交
1190
lazyfree:
1191
		if (!mapping || !__remove_mapping(mapping, page, true))
1192
			goto keep_locked;
L
Linus Torvalds 已提交
1193

N
Nick Piggin 已提交
1194 1195 1196 1197 1198 1199 1200
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1201
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1202
free_it:
M
Minchan Kim 已提交
1203 1204 1205
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1206
		nr_reclaimed++;
1207 1208 1209 1210 1211 1212

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1213 1214
		continue;

N
Nick Piggin 已提交
1215
cull_mlocked:
1216 1217
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1218
		unlock_page(page);
1219
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1220 1221
		continue;

L
Linus Torvalds 已提交
1222
activate_locked:
1223
		/* Not a candidate for swapping, so reclaim swap space. */
1224
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1225
			try_to_free_swap(page);
1226
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1227 1228 1229 1230 1231 1232
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1233
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1234
	}
1235

1236
	mem_cgroup_uncharge_list(&free_pages);
1237
	try_to_unmap_flush();
1238
	free_hot_cold_page_list(&free_pages, true);
1239

L
Linus Torvalds 已提交
1240
	list_splice(&ret_pages, page_list);
1241
	count_vm_events(PGACTIVATE, pgactivate);
1242

1243 1244
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1245
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1246
	*ret_nr_writeback += nr_writeback;
1247
	*ret_nr_immediate += nr_immediate;
1248
	return nr_reclaimed;
L
Linus Torvalds 已提交
1249 1250
}

1251 1252 1253 1254 1255 1256 1257 1258
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1259
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1260 1261 1262 1263
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1264
		if (page_is_file_cache(page) && !PageDirty(page) &&
1265
		    !__PageMovable(page)) {
1266 1267 1268 1269 1270
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1271
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1272 1273
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1274
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1275
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1276 1277 1278
	return ret;
}

A
Andy Whitcroft 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1289
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1290 1291 1292 1293 1294 1295 1296
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1297 1298
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1299 1300
		return ret;

A
Andy Whitcroft 已提交
1301
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1336

1337 1338 1339
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
			enum lru_list lru, unsigned long *nr_zone_taken,
			unsigned long nr_taken)
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
	}

#ifdef CONFIG_MEMCG
	mem_cgroup_update_lru_size(lruvec, lru, -nr_taken);
#endif
}

L
Linus Torvalds 已提交
1376
/*
1377
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1387
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1388
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1389
 * @nr_scanned:	The number of pages that were scanned.
1390
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1391
 * @mode:	One of the LRU isolation modes
1392
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1393 1394 1395
 *
 * returns how many pages were moved onto *@dst.
 */
1396
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1397
		struct lruvec *lruvec, struct list_head *dst,
1398
		unsigned long *nr_scanned, struct scan_control *sc,
1399
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1400
{
H
Hugh Dickins 已提交
1401
	struct list_head *src = &lruvec->lists[lru];
1402
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1403
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1404
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
M
Mel Gorman 已提交
1405
	unsigned long scan, nr_pages;
1406
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1407

1408 1409
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
					!list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1410 1411
		struct page *page;

L
Linus Torvalds 已提交
1412 1413 1414
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1415
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1416

1417 1418
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1419
			nr_skipped[page_zonenum(page)]++;
1420 1421 1422
			continue;
		}

1423
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1424
		case 0:
M
Mel Gorman 已提交
1425 1426 1427
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1428 1429 1430 1431 1432 1433 1434
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1435

A
Andy Whitcroft 已提交
1436 1437 1438
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1439 1440
	}

1441 1442 1443 1444 1445 1446 1447
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1448 1449 1450
	if (!list_empty(&pages_skipped)) {
		int zid;

1451
		list_splice(&pages_skipped, src);
1452 1453 1454 1455 1456 1457 1458
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
		}
	}
H
Hugh Dickins 已提交
1459
	*nr_scanned = scan;
1460
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
H
Hugh Dickins 已提交
1461
				    nr_taken, mode, is_file_lru(lru));
1462
	update_lru_sizes(lruvec, lru, nr_zone_taken, nr_taken);
L
Linus Torvalds 已提交
1463 1464 1465
	return nr_taken;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1477 1478 1479
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1495
	VM_BUG_ON_PAGE(!page_count(page), page);
1496
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1497

1498 1499
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1500
		struct lruvec *lruvec;
1501

1502
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1503
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1504
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1505
			int lru = page_lru(page);
1506
			get_page(page);
1507
			ClearPageLRU(page);
1508 1509
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1510
		}
1511
		spin_unlock_irq(zone_lru_lock(zone));
1512 1513 1514 1515
	}
	return ret;
}

1516
/*
F
Fengguang Wu 已提交
1517 1518 1519 1520 1521
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1522
 */
M
Mel Gorman 已提交
1523
static int too_many_isolated(struct pglist_data *pgdat, int file,
1524 1525 1526 1527 1528 1529 1530
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1531
	if (!sane_reclaim(sc))
1532 1533 1534
		return 0;

	if (file) {
M
Mel Gorman 已提交
1535 1536
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1537
	} else {
M
Mel Gorman 已提交
1538 1539
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1540 1541
	}

1542 1543 1544 1545 1546
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1547
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1548 1549
		inactive >>= 3;

1550 1551 1552
	return isolated > inactive;
}

1553
static noinline_for_stack void
H
Hugh Dickins 已提交
1554
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1555
{
1556
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1557
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1558
	LIST_HEAD(pages_to_free);
1559 1560 1561 1562 1563

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1564
		struct page *page = lru_to_page(page_list);
1565
		int lru;
1566

1567
		VM_BUG_ON_PAGE(PageLRU(page), page);
1568
		list_del(&page->lru);
1569
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1570
			spin_unlock_irq(&pgdat->lru_lock);
1571
			putback_lru_page(page);
M
Mel Gorman 已提交
1572
			spin_lock_irq(&pgdat->lru_lock);
1573 1574
			continue;
		}
1575

M
Mel Gorman 已提交
1576
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1577

1578
		SetPageLRU(page);
1579
		lru = page_lru(page);
1580 1581
		add_page_to_lru_list(page, lruvec, lru);

1582 1583
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1584 1585
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1586
		}
1587 1588 1589
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1590
			del_page_from_lru_list(page, lruvec, lru);
1591 1592

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1593
				spin_unlock_irq(&pgdat->lru_lock);
1594
				mem_cgroup_uncharge(page);
1595
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1596
				spin_lock_irq(&pgdat->lru_lock);
1597 1598
			} else
				list_add(&page->lru, &pages_to_free);
1599 1600 1601
		}
	}

1602 1603 1604 1605
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1606 1607
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1621
/*
1622
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1623
 * of reclaimed pages
L
Linus Torvalds 已提交
1624
 */
1625
static noinline_for_stack unsigned long
1626
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1627
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1628 1629
{
	LIST_HEAD(page_list);
1630
	unsigned long nr_scanned;
1631
	unsigned long nr_reclaimed = 0;
1632
	unsigned long nr_taken;
1633 1634
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1635
	unsigned long nr_unqueued_dirty = 0;
1636
	unsigned long nr_writeback = 0;
1637
	unsigned long nr_immediate = 0;
1638
	isolate_mode_t isolate_mode = 0;
1639
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1640
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1641
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1642

M
Mel Gorman 已提交
1643
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1644
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1645 1646 1647 1648 1649 1650

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1651
	lru_add_drain();
1652 1653

	if (!sc->may_unmap)
1654
		isolate_mode |= ISOLATE_UNMAPPED;
1655
	if (!sc->may_writepage)
1656
		isolate_mode |= ISOLATE_CLEAN;
1657

M
Mel Gorman 已提交
1658
	spin_lock_irq(&pgdat->lru_lock);
1659

1660 1661
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1662

M
Mel Gorman 已提交
1663
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1664
	reclaim_stat->recent_scanned[file] += nr_taken;
1665

1666
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
1667
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1668
		if (current_is_kswapd())
M
Mel Gorman 已提交
1669
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1670
		else
M
Mel Gorman 已提交
1671
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1672
	}
M
Mel Gorman 已提交
1673
	spin_unlock_irq(&pgdat->lru_lock);
1674

1675
	if (nr_taken == 0)
1676
		return 0;
A
Andy Whitcroft 已提交
1677

M
Mel Gorman 已提交
1678
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1679 1680 1681
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1682

M
Mel Gorman 已提交
1683
	spin_lock_irq(&pgdat->lru_lock);
1684

Y
Ying Han 已提交
1685 1686
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1687
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1688
		else
M
Mel Gorman 已提交
1689
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1690
	}
N
Nick Piggin 已提交
1691

1692
	putback_inactive_pages(lruvec, &page_list);
1693

M
Mel Gorman 已提交
1694
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1695

M
Mel Gorman 已提交
1696
	spin_unlock_irq(&pgdat->lru_lock);
1697

1698
	mem_cgroup_uncharge_list(&page_list);
1699
	free_hot_cold_page_list(&page_list, true);
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1711 1712 1713
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1714
	 */
1715
	if (nr_writeback && nr_writeback == nr_taken)
M
Mel Gorman 已提交
1716
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1717

1718
	/*
1719 1720
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1721
	 */
1722
	if (sane_reclaim(sc)) {
1723 1724 1725 1726 1727
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
M
Mel Gorman 已提交
1728
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1729

1730 1731 1732
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
M
Mel Gorman 已提交
1733
		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
J
Johannes Weiner 已提交
1734
		 * reclaim context.
1735 1736
		 */
		if (nr_unqueued_dirty == nr_taken)
M
Mel Gorman 已提交
1737
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1738 1739

		/*
1740 1741 1742
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1743 1744
		 * they are written so also forcibly stall.
		 */
1745
		if (nr_immediate && current_may_throttle())
1746
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1747
	}
1748

1749 1750 1751 1752 1753
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1754 1755
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1756
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1757

M
Mel Gorman 已提交
1758 1759
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1760
			sc->priority, file);
1761
	return nr_reclaimed;
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1771
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1772
 * the pages are mapped, the processing is slow (page_referenced()) so we
1773
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1774 1775 1776 1777
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1778
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1779 1780
 * But we had to alter page->flags anyway.
 */
1781

1782
static void move_active_pages_to_lru(struct lruvec *lruvec,
1783
				     struct list_head *list,
1784
				     struct list_head *pages_to_free,
1785 1786
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1787
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1788 1789
	unsigned long pgmoved = 0;
	struct page *page;
1790
	int nr_pages;
1791 1792 1793

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1794
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1795

1796
		VM_BUG_ON_PAGE(PageLRU(page), page);
1797 1798
		SetPageLRU(page);

1799
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1800
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1801
		list_move(&page->lru, &lruvec->lists[lru]);
1802
		pgmoved += nr_pages;
1803

1804 1805 1806
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1807
			del_page_from_lru_list(page, lruvec, lru);
1808 1809

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1810
				spin_unlock_irq(&pgdat->lru_lock);
1811
				mem_cgroup_uncharge(page);
1812
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1813
				spin_lock_irq(&pgdat->lru_lock);
1814 1815
			} else
				list_add(&page->lru, pages_to_free);
1816 1817
		}
	}
1818

1819 1820 1821
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1822

H
Hugh Dickins 已提交
1823
static void shrink_active_list(unsigned long nr_to_scan,
1824
			       struct lruvec *lruvec,
1825
			       struct scan_control *sc,
1826
			       enum lru_list lru)
L
Linus Torvalds 已提交
1827
{
1828
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1829
	unsigned long nr_scanned;
1830
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1831
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1832
	LIST_HEAD(l_active);
1833
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1834
	struct page *page;
1835
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1836
	unsigned long nr_rotated = 0;
1837
	isolate_mode_t isolate_mode = 0;
1838
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1839
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1840 1841

	lru_add_drain();
1842 1843

	if (!sc->may_unmap)
1844
		isolate_mode |= ISOLATE_UNMAPPED;
1845
	if (!sc->may_writepage)
1846
		isolate_mode |= ISOLATE_CLEAN;
1847

M
Mel Gorman 已提交
1848
	spin_lock_irq(&pgdat->lru_lock);
1849

1850 1851
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1852

M
Mel Gorman 已提交
1853
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1854
	reclaim_stat->recent_scanned[file] += nr_taken;
1855

1856
	if (global_reclaim(sc))
M
Mel Gorman 已提交
1857 1858
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
	__count_vm_events(PGREFILL, nr_scanned);
1859

M
Mel Gorman 已提交
1860
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1861 1862 1863 1864 1865

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1866

1867
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1868 1869 1870 1871
			putback_lru_page(page);
			continue;
		}

1872 1873 1874 1875 1876 1877 1878 1879
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1880 1881
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1882
			nr_rotated += hpage_nr_pages(page);
1883 1884 1885 1886 1887 1888 1889 1890 1891
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1892
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1893 1894 1895 1896
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1897

1898
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1899 1900 1901
		list_add(&page->lru, &l_inactive);
	}

1902
	/*
1903
	 * Move pages back to the lru list.
1904
	 */
M
Mel Gorman 已提交
1905
	spin_lock_irq(&pgdat->lru_lock);
1906
	/*
1907 1908 1909
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1910
	 * get_scan_count.
1911
	 */
1912
	reclaim_stat->recent_rotated[file] += nr_rotated;
1913

1914 1915
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
1916 1917
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
1918

1919
	mem_cgroup_uncharge_list(&l_hold);
1920
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1921 1922
}

1923 1924 1925
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
1926
 *
1927 1928 1929
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
1930
 *
1931 1932
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
1933
 *
1934 1935 1936
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1937
 *
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
1948
 */
1949
static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
1950
{
1951
	unsigned long inactive_ratio;
1952 1953
	unsigned long inactive;
	unsigned long active;
1954
	unsigned long gb;
1955

1956 1957 1958 1959 1960 1961
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
1962

1963 1964
	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
1965

1966 1967 1968
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
1969
	else
1970 1971 1972
		inactive_ratio = 1;

	return inactive * inactive_ratio < active;
1973 1974
}

1975
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1976
				 struct lruvec *lruvec, struct scan_control *sc)
1977
{
1978
	if (is_active_lru(lru)) {
1979
		if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1980
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1981 1982 1983
		return 0;
	}

1984
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1985 1986
}

1987 1988 1989 1990 1991 1992 1993
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1994 1995 1996 1997 1998 1999
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2000 2001
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2002
 */
2003
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2004 2005
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2006
{
2007
	int swappiness = mem_cgroup_swappiness(memcg);
2008 2009 2010
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2011
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2012
	unsigned long anon_prio, file_prio;
2013
	enum scan_balance scan_balance;
2014
	unsigned long anon, file;
2015
	bool force_scan = false;
2016
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2017
	enum lru_list lru;
2018 2019
	bool some_scanned;
	int pass;
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2031
	if (current_is_kswapd()) {
M
Mel Gorman 已提交
2032
		if (!pgdat_reclaimable(pgdat))
2033
			force_scan = true;
2034
		if (!mem_cgroup_online(memcg))
2035 2036
			force_scan = true;
	}
2037
	if (!global_reclaim(sc))
2038
		force_scan = true;
2039 2040

	/* If we have no swap space, do not bother scanning anon pages. */
2041
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2042
		scan_balance = SCAN_FILE;
2043 2044
		goto out;
	}
2045

2046 2047 2048 2049 2050 2051 2052
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2053
	if (!global_reclaim(sc) && !swappiness) {
2054
		scan_balance = SCAN_FILE;
2055 2056 2057 2058 2059 2060 2061 2062
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2063
	if (!sc->priority && swappiness) {
2064
		scan_balance = SCAN_EQUAL;
2065 2066 2067
		goto out;
	}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2078 2079 2080 2081
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2082

M
Mel Gorman 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
			if (!populated_zone(zone))
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2094

M
Mel Gorman 已提交
2095
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2096 2097 2098 2099 2100
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2101
	/*
2102 2103 2104 2105 2106 2107 2108
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2109
	 */
2110
	if (!inactive_list_is_low(lruvec, true) &&
2111
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2112
		scan_balance = SCAN_FILE;
2113 2114 2115
		goto out;
	}

2116 2117
	scan_balance = SCAN_FRACT;

2118 2119 2120 2121
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2122
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2123
	file_prio = 200 - anon_prio;
2124

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2136

2137 2138 2139 2140
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2141

M
Mel Gorman 已提交
2142
	spin_lock_irq(&pgdat->lru_lock);
2143 2144 2145
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2146 2147
	}

2148 2149 2150
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2151 2152 2153
	}

	/*
2154 2155 2156
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2157
	 */
2158
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2159
	ap /= reclaim_stat->recent_rotated[0] + 1;
2160

2161
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2162
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2163
	spin_unlock_irq(&pgdat->lru_lock);
2164

2165 2166 2167 2168
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2169 2170 2171
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2172
		*lru_pages = 0;
2173 2174 2175 2176
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2177

2178
			size = lruvec_lru_size(lruvec, lru);
2179
			scan = size >> sc->priority;
2180

2181 2182
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2183

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2199 2200
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2201
					scan = 0;
2202
				}
2203 2204 2205 2206 2207
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2208 2209

			*lru_pages += size;
2210
			nr[lru] = scan;
2211

2212
			/*
2213 2214
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2215
			 */
2216
			some_scanned |= !!scan;
2217
		}
2218
	}
2219
}
2220

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
static void init_tlb_ubc(void)
{
	/*
	 * This deliberately does not clear the cpumask as it's expensive
	 * and unnecessary. If there happens to be data in there then the
	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
	 * then will be cleared.
	 */
	current->tlb_ubc.flush_required = false;
}
#else
static inline void init_tlb_ubc(void)
{
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */

2238
/*
2239
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2240
 */
2241
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2242
			      struct scan_control *sc, unsigned long *lru_pages)
2243
{
2244
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2245
	unsigned long nr[NR_LRU_LISTS];
2246
	unsigned long targets[NR_LRU_LISTS];
2247 2248 2249 2250 2251
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2252
	bool scan_adjusted;
2253

2254
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2255

2256 2257 2258
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2273 2274
	init_tlb_ubc();

2275 2276 2277
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2278 2279 2280
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2281 2282 2283 2284 2285 2286 2287 2288 2289
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2290 2291 2292 2293 2294 2295

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2296
		 * requested. Ensure that the anon and file LRUs are scanned
2297 2298 2299 2300 2301 2302 2303
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2304 2305 2306 2307 2308 2309 2310 2311 2312
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2344 2345 2346 2347 2348 2349 2350 2351
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2352
	if (inactive_list_is_low(lruvec, false))
2353 2354 2355 2356 2357 2358
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2359
/* Use reclaim/compaction for costly allocs or under memory pressure */
2360
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2361
{
2362
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2363
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2364
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2365 2366 2367 2368 2369
		return true;

	return false;
}

2370
/*
M
Mel Gorman 已提交
2371 2372 2373 2374 2375
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2376
 */
2377
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2378 2379 2380 2381 2382 2383
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2384
	int z;
2385 2386

	/* If not in reclaim/compaction mode, stop */
2387
	if (!in_reclaim_compaction(sc))
2388 2389
		return false;

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2412 2413 2414 2415 2416 2417

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2418
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2419
	if (get_nr_swap_pages() > 0)
2420
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2421 2422 2423 2424 2425
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
		if (!populated_zone(zone))
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
		case COMPACT_PARTIAL:
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2439
	}
2440
	return true;
2441 2442
}

2443
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2444
{
2445
	struct reclaim_state *reclaim_state = current->reclaim_state;
2446
	unsigned long nr_reclaimed, nr_scanned;
2447
	bool reclaimable = false;
L
Linus Torvalds 已提交
2448

2449 2450 2451
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2452
			.pgdat = pgdat,
2453 2454
			.priority = sc->priority,
		};
2455
		unsigned long node_lru_pages = 0;
2456
		struct mem_cgroup *memcg;
2457

2458 2459
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2460

2461 2462
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2463
			unsigned long lru_pages;
2464
			unsigned long reclaimed;
2465
			unsigned long scanned;
2466

2467 2468 2469 2470 2471 2472
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2473
			reclaimed = sc->nr_reclaimed;
2474
			scanned = sc->nr_scanned;
2475

2476 2477
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2478

2479
			if (!global_reclaim(sc))
2480
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2481 2482 2483
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2484 2485 2486 2487 2488
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2489
			/*
2490 2491
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2492
			 * node.
2493 2494 2495 2496 2497
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2498
			 */
2499 2500
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2501 2502 2503
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2504
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2505

2506 2507 2508 2509
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2510
		if (global_reclaim(sc))
2511
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2512
				    sc->nr_scanned - nr_scanned,
2513
				    node_lru_pages);
2514 2515 2516 2517

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2518 2519
		}

2520 2521
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2522 2523 2524
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2525 2526 2527
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2528
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2529
					 sc->nr_scanned - nr_scanned, sc));
2530 2531

	return reclaimable;
2532 2533
}

2534 2535 2536 2537
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2538
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2539
{
M
Mel Gorman 已提交
2540
	unsigned long watermark;
2541 2542 2543 2544 2545 2546 2547 2548
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2549 2550
	watermark = high_wmark_pages(zone) + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2551 2552 2553 2554 2555

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2556
	if (compaction_deferred(zone, sc->order))
2557 2558
		return watermark_ok;

2559 2560 2561 2562
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2563
	if (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx) == COMPACT_SKIPPED)
2564 2565 2566 2567 2568
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2569 2570 2571 2572 2573 2574 2575 2576
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2577
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2578
{
2579
	struct zoneref *z;
2580
	struct zone *zone;
2581 2582
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2583
	gfp_t orig_mask;
2584
	pg_data_t *last_pgdat = NULL;
2585

2586 2587 2588 2589 2590
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2591
	orig_mask = sc->gfp_mask;
2592
	if (buffer_heads_over_limit) {
2593
		sc->gfp_mask |= __GFP_HIGHMEM;
2594
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2595
	}
2596

2597
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2598
					sc->reclaim_idx, sc->nodemask) {
2599 2600 2601 2602
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2603
		if (global_reclaim(sc)) {
2604 2605
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2606
				continue;
2607

2608
			if (sc->priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
2609
			    !pgdat_reclaimable(zone->zone_pgdat))
2610
				continue;	/* Let kswapd poll it */
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2623
			    compaction_ready(zone, sc)) {
2624 2625
				sc->compaction_ready = true;
				continue;
2626
			}
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2637 2638 2639 2640 2641 2642 2643
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2644
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2645 2646 2647 2648
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2649
			/* need some check for avoid more shrink_zone() */
2650
		}
2651

2652 2653 2654 2655
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2656
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2657
	}
2658

2659 2660 2661 2662 2663
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2664
}
2665

L
Linus Torvalds 已提交
2666 2667 2668 2669 2670 2671 2672 2673
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2674 2675 2676 2677
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2678 2679 2680
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2681
 */
2682
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2683
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2684
{
2685
	int initial_priority = sc->priority;
2686
	unsigned long total_scanned = 0;
2687
	unsigned long writeback_threshold;
2688
retry:
2689 2690
	delayacct_freepages_start();

2691
	if (global_reclaim(sc))
2692
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2693

2694
	do {
2695 2696
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2697
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2698
		shrink_zones(zonelist, sc);
2699

2700
		total_scanned += sc->nr_scanned;
2701
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2702 2703 2704 2705
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2706

2707 2708 2709 2710 2711 2712 2713
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2714 2715 2716 2717 2718 2719 2720
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2721 2722
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2723 2724
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2725
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2726
		}
2727
	} while (--sc->priority >= 0);
2728

2729 2730
	delayacct_freepages_end();

2731 2732 2733
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2734
	/* Aborted reclaim to try compaction? don't OOM, then */
2735
	if (sc->compaction_ready)
2736 2737
		return 1;

2738 2739 2740 2741 2742 2743 2744
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2745
	return 0;
L
Linus Torvalds 已提交
2746 2747
}

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2758
		if (!populated_zone(zone) ||
M
Mel Gorman 已提交
2759
		    pgdat_reclaimable_pages(pgdat) == 0)
2760 2761
			continue;

2762 2763 2764 2765
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2766 2767 2768 2769
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2770 2771 2772 2773
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2774
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2786 2787 2788 2789
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2790
 */
2791
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2792 2793
					nodemask_t *nodemask)
{
2794
	struct zoneref *z;
2795
	struct zone *zone;
2796
	pg_data_t *pgdat = NULL;
2797 2798 2799 2800 2801 2802 2803 2804 2805

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2806 2807 2808 2809 2810 2811 2812 2813
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2830
					gfp_zone(gfp_mask), nodemask) {
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2843
		goto out;
2844

2845 2846 2847
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2859 2860

		goto check_pending;
2861 2862 2863 2864 2865
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2866 2867 2868 2869 2870 2871 2872

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2873 2874
}

2875
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2876
				gfp_t gfp_mask, nodemask_t *nodemask)
2877
{
2878
	unsigned long nr_reclaimed;
2879
	struct scan_control sc = {
2880
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2881
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2882
		.reclaim_idx = gfp_zone(gfp_mask),
2883 2884 2885
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2886
		.may_writepage = !laptop_mode,
2887
		.may_unmap = 1,
2888
		.may_swap = 1,
2889 2890
	};

2891
	/*
2892 2893 2894
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2895
	 */
2896
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2897 2898
		return 1;

2899 2900
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2901 2902
				gfp_mask,
				sc.reclaim_idx);
2903

2904
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2905 2906 2907 2908

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2909 2910
}

A
Andrew Morton 已提交
2911
#ifdef CONFIG_MEMCG
2912

2913
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2914
						gfp_t gfp_mask, bool noswap,
2915
						pg_data_t *pgdat,
2916
						unsigned long *nr_scanned)
2917 2918
{
	struct scan_control sc = {
2919
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2920
		.target_mem_cgroup = memcg,
2921 2922
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2923
		.reclaim_idx = MAX_NR_ZONES - 1,
2924 2925
		.may_swap = !noswap,
	};
2926
	unsigned long lru_pages;
2927

2928 2929
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2930

2931
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2932
						      sc.may_writepage,
2933 2934
						      sc.gfp_mask,
						      sc.reclaim_idx);
2935

2936 2937 2938
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
2939
	 * if we don't reclaim here, the shrink_node from balance_pgdat
2940 2941 2942
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2943
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2944 2945 2946

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2947
	*nr_scanned = sc.nr_scanned;
2948 2949 2950
	return sc.nr_reclaimed;
}

2951
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2952
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2953
					   gfp_t gfp_mask,
2954
					   bool may_swap)
2955
{
2956
	struct zonelist *zonelist;
2957
	unsigned long nr_reclaimed;
2958
	int nid;
2959
	struct scan_control sc = {
2960
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2961 2962
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2963
		.reclaim_idx = MAX_NR_ZONES - 1,
2964 2965 2966 2967
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2968
		.may_swap = may_swap,
2969
	};
2970

2971 2972 2973 2974 2975
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2976
	nid = mem_cgroup_select_victim_node(memcg);
2977 2978

	zonelist = NODE_DATA(nid)->node_zonelists;
2979 2980 2981

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
2982 2983
					    sc.gfp_mask,
					    sc.reclaim_idx);
2984

2985
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2986 2987 2988 2989

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2990 2991 2992
}
#endif

2993
static void age_active_anon(struct pglist_data *pgdat,
2994
				struct scan_control *sc)
2995
{
2996
	struct mem_cgroup *memcg;
2997

2998 2999 3000 3001 3002
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3003
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3004

3005
		if (inactive_list_is_low(lruvec, false))
3006
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3007
					   sc, LRU_ACTIVE_ANON);
3008 3009 3010

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3011 3012
}

M
Mel Gorman 已提交
3013
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3014
{
M
Mel Gorman 已提交
3015
	unsigned long mark = high_wmark_pages(zone);
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);

	return true;
3028 3029
}

3030 3031 3032 3033 3034 3035
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3036
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3037
{
3038 3039
	int i;

3040
	/*
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3052
	 */
3053 3054
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3055

3056 3057 3058 3059 3060 3061
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

3062 3063
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3064 3065
	}

3066
	return true;
3067 3068
}

3069
/*
3070 3071
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3072 3073
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3074 3075
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3076
 */
3077
static bool kswapd_shrink_node(pg_data_t *pgdat,
3078
			       struct scan_control *sc)
3079
{
3080 3081
	struct zone *zone;
	int z;
3082

3083 3084
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3085
	for (z = 0; z <= sc->reclaim_idx; z++) {
3086 3087 3088
		zone = pgdat->node_zones + z;
		if (!populated_zone(zone))
			continue;
3089

3090 3091
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3092 3093

	/*
3094 3095
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3096
	 */
3097
	shrink_node(pgdat, sc);
3098

3099
	/*
3100 3101 3102 3103 3104
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3105
	 */
3106 3107
	if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
		sc->order = 0;
3108

3109
	return sc->nr_scanned >= sc->nr_to_reclaim;
3110 3111
}

L
Linus Torvalds 已提交
3112
/*
3113 3114 3115
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3116
 *
3117
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3118 3119
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3120
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3121 3122 3123
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3124
 */
3125
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3126 3127
{
	int i;
3128 3129
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3130
	struct zone *zone;
3131 3132
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3133
		.order = order,
3134
		.priority = DEF_PRIORITY,
3135
		.may_writepage = !laptop_mode,
3136
		.may_unmap = 1,
3137
		.may_swap = 1,
3138
	};
3139
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3140

3141
	do {
3142 3143 3144
		bool raise_priority = true;

		sc.nr_reclaimed = 0;
3145
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3146

3147
		/*
3148 3149 3150 3151 3152 3153 3154 3155
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3156 3157 3158 3159 3160 3161
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
				if (!populated_zone(zone))
					continue;
3162

3163
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3164
				break;
L
Linus Torvalds 已提交
3165 3166
			}
		}
3167

3168 3169 3170 3171 3172 3173
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
3174 3175 3176
		 * overall node may be congested. Note that sc.reclaim_idx
		 * is not used as buffer_heads_over_limit may have adjusted
		 * it.
3177
		 */
3178
		for (i = classzone_idx; i >= 0; i--) {
3179 3180 3181 3182
			zone = pgdat->node_zones + i;
			if (!populated_zone(zone))
				continue;

3183
			if (zone_balanced(zone, sc.order, classzone_idx))
3184 3185
				goto out;
		}
A
Andrew Morton 已提交
3186

3187 3188 3189 3190 3191 3192
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3193
		age_active_anon(pgdat, &sc);
3194

3195 3196 3197 3198
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3199
		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3200 3201
			sc.may_writepage = 1;

3202 3203 3204
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3205
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3206 3207 3208
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3209
		/*
3210 3211 3212
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3213
		 */
3214
		if (kswapd_shrink_node(pgdat, &sc))
3215
			raise_priority = false;
3216 3217 3218 3219 3220 3221 3222 3223

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3224
			wake_up_all(&pgdat->pfmemalloc_wait);
3225

3226 3227 3228
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3229

3230
		/*
3231 3232
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3233
		 */
3234 3235
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3236
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3237

3238
out:
3239
	/*
3240 3241 3242 3243
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3244
	 */
3245
	return sc.order;
L
Linus Torvalds 已提交
3246 3247
}

3248 3249
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3260
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3273
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3274

3275
		remaining = schedule_timeout(HZ/10);
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3287 3288 3289 3290 3291 3292 3293 3294
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3295 3296
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3308 3309 3310 3311

		if (!kthread_should_stop())
			schedule();

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3322 3323
/*
 * The background pageout daemon, started as a kernel thread
3324
 * from the init process.
L
Linus Torvalds 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3337
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3338 3339
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3340

L
Linus Torvalds 已提交
3341 3342 3343
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3344
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3345

3346 3347
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3348
	if (!cpumask_empty(cpumask))
3349
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3364
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3365
	set_freezable();
L
Linus Torvalds 已提交
3366

3367 3368
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3369
	for ( ; ; ) {
3370
		bool ret;
3371

3372 3373 3374
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3375

3376 3377 3378 3379 3380
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3381

3382 3383 3384 3385 3386 3387 3388 3389
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3401 3402
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3403 3404 3405
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3406

3407 3408
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3409
	}
3410

3411
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3412
	current->reclaim_state = NULL;
3413 3414
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3415 3416 3417 3418 3419 3420
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3421
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3422 3423
{
	pg_data_t *pgdat;
3424
	int z;
L
Linus Torvalds 已提交
3425

3426
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3427 3428
		return;

3429
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3430
		return;
3431
	pgdat = zone->zone_pgdat;
3432 3433
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3434
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3435
		return;
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445

	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
		if (!populated_zone(zone))
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3446 3447

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3448
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3449 3450
}

3451
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3452
/*
3453
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3454 3455 3456 3457 3458
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3459
 */
3460
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3461
{
3462 3463
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3464
		.nr_to_reclaim = nr_to_reclaim,
3465
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3466
		.reclaim_idx = MAX_NR_ZONES - 1,
3467
		.priority = DEF_PRIORITY,
3468
		.may_writepage = 1,
3469 3470
		.may_unmap = 1,
		.may_swap = 1,
3471
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3472
	};
3473
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3474 3475
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3476

3477 3478 3479 3480
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3481

3482
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3483

3484 3485 3486
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3487

3488
	return nr_reclaimed;
L
Linus Torvalds 已提交
3489
}
3490
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3491 3492 3493 3494 3495

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3496 3497
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3498
{
3499
	int nid;
L
Linus Torvalds 已提交
3500

3501
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3502
		for_each_node_state(nid, N_MEMORY) {
3503
			pg_data_t *pgdat = NODE_DATA(nid);
3504 3505 3506
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3507

3508
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3509
				/* One of our CPUs online: restore mask */
3510
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3511 3512 3513 3514 3515
		}
	}
	return NOTIFY_OK;
}

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3532 3533
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3534
		pgdat->kswapd = NULL;
3535 3536 3537 3538
	}
	return ret;
}

3539
/*
3540
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3541
 * hold mem_hotplug_begin/end().
3542 3543 3544 3545 3546
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3547
	if (kswapd) {
3548
		kthread_stop(kswapd);
3549 3550
		NODE_DATA(nid)->kswapd = NULL;
	}
3551 3552
}

L
Linus Torvalds 已提交
3553 3554
static int __init kswapd_init(void)
{
3555
	int nid;
3556

L
Linus Torvalds 已提交
3557
	swap_setup();
3558
	for_each_node_state(nid, N_MEMORY)
3559
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3565 3566 3567

#ifdef CONFIG_NUMA
/*
3568
 * Node reclaim mode
3569
 *
3570
 * If non-zero call node_reclaim when the number of free pages falls below
3571 3572
 * the watermarks.
 */
3573
int node_reclaim_mode __read_mostly;
3574

3575
#define RECLAIM_OFF 0
3576
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3577
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3578
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3579

3580
/*
3581
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3582 3583 3584
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3585
#define NODE_RECLAIM_PRIORITY 4
3586

3587
/*
3588
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3589 3590 3591 3592
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3593 3594 3595 3596 3597 3598
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3599
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3600
{
3601 3602 3603
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3614
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3615
{
3616 3617
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3618 3619

	/*
3620
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3621
	 * potentially reclaimable. Otherwise, we have to worry about
3622
	 * pages like swapcache and node_unmapped_file_pages() provides
3623 3624
	 * a better estimate
	 */
3625 3626
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3627
	else
3628
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3629 3630

	/* If we can't clean pages, remove dirty pages from consideration */
3631 3632
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3633 3634 3635 3636 3637 3638 3639 3640

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3641
/*
3642
 * Try to free up some pages from this node through reclaim.
3643
 */
3644
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3645
{
3646
	/* Minimum pages needed in order to stay on node */
3647
	const unsigned long nr_pages = 1 << order;
3648 3649
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3650
	int classzone_idx = gfp_zone(gfp_mask);
3651
	struct scan_control sc = {
3652
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3653
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3654
		.order = order,
3655 3656 3657
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3658
		.may_swap = 1,
3659
		.reclaim_idx = classzone_idx,
3660
	};
3661 3662

	cond_resched();
3663
	/*
3664
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3665
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3666
	 * and RECLAIM_UNMAP.
3667 3668
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3669
	lockdep_set_current_reclaim_state(gfp_mask);
3670 3671
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3672

3673
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3674 3675 3676 3677 3678
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3679
			shrink_node(pgdat, &sc);
3680
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3681
	}
3682

3683
	p->reclaim_state = NULL;
3684
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3685
	lockdep_clear_current_reclaim_state();
3686
	return sc.nr_reclaimed >= nr_pages;
3687
}
3688

3689
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3690
{
3691
	int ret;
3692 3693

	/*
3694
	 * Node reclaim reclaims unmapped file backed pages and
3695
	 * slab pages if we are over the defined limits.
3696
	 *
3697 3698
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3699 3700
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3701
	 * unmapped file backed pages.
3702
	 */
3703 3704 3705
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3706

3707 3708
	if (!pgdat_reclaimable(pgdat))
		return NODE_RECLAIM_FULL;
3709

3710
	/*
3711
	 * Do not scan if the allocation should not be delayed.
3712
	 */
3713
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3714
		return NODE_RECLAIM_NOSCAN;
3715 3716

	/*
3717
	 * Only run node reclaim on the local node or on nodes that do not
3718 3719 3720 3721
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3722 3723
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3724

3725 3726
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3727

3728 3729
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3730

3731 3732 3733
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3734
	return ret;
3735
}
3736
#endif
L
Lee Schermerhorn 已提交
3737 3738 3739 3740 3741 3742

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3743
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3744 3745
 *
 * Reasons page might not be evictable:
3746
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3747
 * (2) page is part of an mlocked VMA
3748
 *
L
Lee Schermerhorn 已提交
3749
 */
3750
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3751
{
3752
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3753
}
3754

3755
#ifdef CONFIG_SHMEM
3756
/**
3757 3758 3759
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3760
 *
3761
 * Checks pages for evictability and moves them to the appropriate lru list.
3762 3763
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3764
 */
3765
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3766
{
3767
	struct lruvec *lruvec;
3768
	struct pglist_data *pgdat = NULL;
3769 3770 3771
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3772

3773 3774
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3775
		struct pglist_data *pagepgdat = page_pgdat(page);
3776

3777
		pgscanned++;
3778 3779 3780 3781 3782
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3783
		}
3784
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3785

3786 3787
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3788

3789
		if (page_evictable(page)) {
3790 3791
			enum lru_list lru = page_lru_base_type(page);

3792
			VM_BUG_ON_PAGE(PageActive(page), page);
3793
			ClearPageUnevictable(page);
3794 3795
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3796
			pgrescued++;
3797
		}
3798
	}
3799

3800
	if (pgdat) {
3801 3802
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3803
		spin_unlock_irq(&pgdat->lru_lock);
3804 3805
	}
}
3806
#endif /* CONFIG_SHMEM */