vmscan.c 120.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
L
Linus Torvalds 已提交
52 53 54 55 56

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
57
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
58

59 60
#include "internal.h"

61 62 63
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
64
struct scan_control {
65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

68 69 70 71 72
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
73

74 75 76 77 78
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
79

80
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
81 82 83 84 85 86 87 88
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

89 90 91 92 93 94 95
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
96

97 98 99 100 101
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
102 103 104 105 106 107 108 109 110 111 112 113
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

114 115 116 117 118
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
119 120 121 122 123 124 125 126 127 128

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
163 164 165 166 167
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
168 169 170 171

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

172
#ifdef CONFIG_MEMCG_KMEM
173 174 175 176 177 178 179 180 181 182 183 184 185 186

/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

187 188 189 190 191 192 193 194 195
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
196
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197 198 199
	if (id < 0)
		goto unlock;

200 201 202 203 204 205
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

206
		shrinker_nr_max = id + 1;
207
	}
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

A
Andrew Morton 已提交
236
#ifdef CONFIG_MEMCG
237 238
static bool global_reclaim(struct scan_control *sc)
{
239
	return !sc->target_mem_cgroup;
240
}
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
262
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263 264 265 266
		return true;
#endif
	return false;
}
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
290
#else
291 292 293 294
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
295 296 297 298 299

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
300 301 302 303 304 305 306 307 308 309 310 311

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
312 313
#endif

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

332 333 334 335 336 337 338
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
339
{
340 341 342
	unsigned long lru_size;
	int zid;

343
	if (!mem_cgroup_disabled())
344 345 346
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
347

348 349 350
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
351

352 353 354 355 356 357 358 359 360 361 362 363
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
364 365 366

}

L
Linus Torvalds 已提交
367
/*
G
Glauber Costa 已提交
368
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
369
 */
370
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
371
{
G
Glauber Costa 已提交
372 373 374 375 376 377 378 379
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
380 381 382 383 384 385

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

386
	return 0;
387 388 389 390 391

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
392 393 394 395
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
396 397 398 399 400 401
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

402 403 404
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
405

406 407
void register_shrinker_prepared(struct shrinker *shrinker)
{
408 409
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
410
#ifdef CONFIG_MEMCG_KMEM
411 412
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
413
#endif
414
	up_write(&shrinker_rwsem);
415 416 417 418 419 420 421 422 423
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
424
	return 0;
L
Linus Torvalds 已提交
425
}
426
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
427 428 429 430

/*
 * Remove one
 */
431
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
432
{
433 434
	if (!shrinker->nr_deferred)
		return;
435 436
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
437 438 439
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
440
	kfree(shrinker->nr_deferred);
441
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
442
}
443
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
444 445

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
446

447
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
448
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
449 450 451 452
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
453
	long freeable;
G
Glauber Costa 已提交
454 455 456 457 458
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
459
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
460

461 462 463
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

464
	freeable = shrinker->count_objects(shrinker, shrinkctl);
465 466
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
467 468 469 470 471 472 473 474 475

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
476 477 478
	delta = freeable >> priority;
	delta *= 4;
	do_div(delta, shrinker->seeks);
479 480 481 482 483 484 485 486 487 488 489

	/*
	 * Make sure we apply some minimal pressure on default priority
	 * even on small cgroups. Stale objects are not only consuming memory
	 * by themselves, but can also hold a reference to a dying cgroup,
	 * preventing it from being reclaimed. A dying cgroup with all
	 * corresponding structures like per-cpu stats and kmem caches
	 * can be really big, so it may lead to a significant waste of memory.
	 */
	delta = max_t(unsigned long long, delta, min(freeable, batch_size));

G
Glauber Costa 已提交
490 491
	total_scan += delta;
	if (total_scan < 0) {
492
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
493
		       shrinker->scan_objects, total_scan);
494
		total_scan = freeable;
495 496 497
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
498 499 500 501 502 503 504

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
505
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
506 507 508 509 510
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
511 512
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
513 514 515 516 517 518

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
519 520
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
521 522

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
523
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
524

525 526 527 528 529 530 531 532 533 534 535
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
536
	 * than the total number of objects on slab (freeable), we must be
537 538 539 540
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
541
	       total_scan >= freeable) {
D
Dave Chinner 已提交
542
		unsigned long ret;
543
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
544

545
		shrinkctl->nr_to_scan = nr_to_scan;
546
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
547 548 549 550
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
551

552 553 554
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
555 556 557 558

		cond_resched();
	}

559 560 561 562
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
563 564 565 566 567
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
568 569
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
570 571 572 573
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

574
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
575
	return freed;
576 577
}

578 579 580 581 582
#ifdef CONFIG_MEMCG_KMEM
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
583 584
	unsigned long ret, freed = 0;
	int i;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
606 607 608
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
609 610 611 612
			continue;
		}

		ret = do_shrink_slab(&sc, shrinker, priority);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
#else /* CONFIG_MEMCG_KMEM */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG_KMEM */

656
/**
657
 * shrink_slab - shrink slab caches
658 659
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
660
 * @memcg: memory cgroup whose slab caches to target
661
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
662
 *
663
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
664
 *
665 666
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
667
 *
668 669
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
670
 *
671 672
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
673
 *
674
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
675
 */
676 677
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
678
				 int priority)
L
Linus Torvalds 已提交
679
{
680
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
681 682
	struct shrinker *shrinker;

683
	if (!mem_cgroup_is_root(memcg))
684
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
685

686
	if (!down_read_trylock(&shrinker_rwsem))
687
		goto out;
L
Linus Torvalds 已提交
688 689

	list_for_each_entry(shrinker, &shrinker_list, list) {
690 691 692
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
693
			.memcg = memcg,
694
		};
695

696 697 698 699
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
700 701 702 703 704 705 706 707 708
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
709
	}
710

L
Linus Torvalds 已提交
711
	up_read(&shrinker_rwsem);
712 713
out:
	cond_resched();
D
Dave Chinner 已提交
714
	return freed;
L
Linus Torvalds 已提交
715 716
}

717 718 719 720 721 722 723 724
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
725
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
726
		do {
727
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
728 729 730 731 732 733 734 735 736 737 738 739
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
740 741
static inline int is_page_cache_freeable(struct page *page)
{
742 743 744 745 746
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
747 748 749
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
750 751
}

752
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
753
{
754
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
755
		return 1;
756
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
757
		return 1;
758
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
778
	lock_page(page);
779 780
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
781 782 783
	unlock_page(page);
}

784 785 786 787 788 789 790 791 792 793 794 795
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
796
/*
A
Andrew Morton 已提交
797 798
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
799
 */
800
static pageout_t pageout(struct page *page, struct address_space *mapping,
801
			 struct scan_control *sc)
L
Linus Torvalds 已提交
802 803 804 805 806 807 808 809
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
810
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
826
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
827 828
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
829
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
830 831 832 833 834 835 836
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
837
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
838 839 840 841 842 843 844
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
845 846
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
847 848 849 850 851 852 853
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
854
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
855 856 857
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
858

L
Linus Torvalds 已提交
859 860 861 862
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
863
		trace_mm_vmscan_writepage(page);
864
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
865 866 867 868 869 870
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

871
/*
N
Nick Piggin 已提交
872 873
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
874
 */
875 876
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
877
{
878
	unsigned long flags;
879
	int refcount;
880

881 882
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
883

M
Matthew Wilcox 已提交
884
	xa_lock_irqsave(&mapping->i_pages, flags);
885
	/*
N
Nick Piggin 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
905
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
906 907
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
908
	 * and thus under the i_pages lock, then this ordering is not required.
909
	 */
910 911 912 913 914
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
915
		goto cannot_free;
916
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
917
	if (unlikely(PageDirty(page))) {
918
		page_ref_unfreeze(page, refcount);
919
		goto cannot_free;
N
Nick Piggin 已提交
920
	}
921 922 923

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
924
		mem_cgroup_swapout(page, swap);
925
		__delete_from_swap_cache(page);
M
Matthew Wilcox 已提交
926
		xa_unlock_irqrestore(&mapping->i_pages, flags);
927
		put_swap_page(page, swap);
N
Nick Piggin 已提交
928
	} else {
929
		void (*freepage)(struct page *);
930
		void *shadow = NULL;
931 932

		freepage = mapping->a_ops->freepage;
933 934 935 936 937 938 939 940 941
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
942 943 944 945 946
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
947
		 * same address_space.
948 949
		 */
		if (reclaimed && page_is_file_cache(page) &&
950
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
951
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
952
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
953
		xa_unlock_irqrestore(&mapping->i_pages, flags);
954 955 956

		if (freepage != NULL)
			freepage(page);
957 958 959 960 961
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
962
	xa_unlock_irqrestore(&mapping->i_pages, flags);
963 964 965
	return 0;
}

N
Nick Piggin 已提交
966 967 968 969 970 971 972 973
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
974
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
975 976 977 978 979
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
980
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
981 982 983 984 985
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
986 987 988 989 990 991 992 993 994 995 996
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
997
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
998 999 1000
	put_page(page);		/* drop ref from isolate */
}

1001 1002 1003
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1004
	PAGEREF_KEEP,
1005 1006 1007 1008 1009 1010
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1011
	int referenced_ptes, referenced_page;
1012 1013
	unsigned long vm_flags;

1014 1015
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1016
	referenced_page = TestClearPageReferenced(page);
1017 1018 1019 1020 1021 1022 1023 1024

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1025
	if (referenced_ptes) {
1026
		if (PageSwapBacked(page))
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1044
		if (referenced_page || referenced_ptes > 1)
1045 1046
			return PAGEREF_ACTIVATE;

1047 1048 1049 1050 1051 1052
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1053 1054
		return PAGEREF_KEEP;
	}
1055 1056

	/* Reclaim if clean, defer dirty pages to writeback */
1057
	if (referenced_page && !PageSwapBacked(page))
1058 1059 1060
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1061 1062
}

1063 1064 1065 1066
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1067 1068
	struct address_space *mapping;

1069 1070 1071 1072
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1073 1074
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1075 1076 1077 1078 1079 1080 1081 1082
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1083 1084 1085 1086 1087 1088 1089 1090

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1091 1092
}

L
Linus Torvalds 已提交
1093
/*
A
Andrew Morton 已提交
1094
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1095
 */
A
Andrew Morton 已提交
1096
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1097
				      struct pglist_data *pgdat,
1098
				      struct scan_control *sc,
1099
				      enum ttu_flags ttu_flags,
1100
				      struct reclaim_stat *stat,
1101
				      bool force_reclaim)
L
Linus Torvalds 已提交
1102 1103
{
	LIST_HEAD(ret_pages);
1104
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
1105
	int pgactivate = 0;
1106 1107 1108 1109 1110 1111
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
1112 1113
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
1114 1115 1116 1117 1118 1119 1120

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1121
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1122
		bool dirty, writeback;
L
Linus Torvalds 已提交
1123 1124 1125 1126 1127 1128

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1129
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1130 1131
			goto keep;

1132
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1133 1134

		sc->nr_scanned++;
1135

1136
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1137
			goto activate_locked;
L
Lee Schermerhorn 已提交
1138

1139
		if (!sc->may_unmap && page_mapped(page))
1140 1141
			goto keep_locked;

L
Linus Torvalds 已提交
1142
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1143 1144
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1145 1146
			sc->nr_scanned++;

1147 1148 1149
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1150
		/*
1151
		 * The number of dirty pages determines if a node is marked
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1163 1164 1165 1166 1167 1168
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1169
		mapping = page_mapping(page);
1170
		if (((dirty || writeback) && mapping &&
1171
		     inode_write_congested(mapping->host)) ||
1172
		    (writeback && PageReclaim(page)))
1173 1174
			nr_congested++;

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1186 1187
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1188
		 *
1189
		 * 2) Global or new memcg reclaim encounters a page that is
1190 1191 1192
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1193
		 *    reclaim and continue scanning.
1194
		 *
1195 1196
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1197 1198 1199 1200 1201
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1202
		 * 3) Legacy memcg encounters a page that is already marked
1203 1204 1205 1206
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1207 1208 1209 1210 1211 1212 1213 1214 1215
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1216
		 */
1217
		if (PageWriteback(page)) {
1218 1219 1220
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1221
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1222
				nr_immediate++;
1223
				goto activate_locked;
1224 1225

			/* Case 2 above */
1226
			} else if (sane_reclaim(sc) ||
1227
			    !PageReclaim(page) || !may_enter_fs) {
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1240
				nr_writeback++;
1241
				goto activate_locked;
1242 1243 1244

			/* Case 3 above */
			} else {
1245
				unlock_page(page);
1246
				wait_on_page_writeback(page);
1247 1248 1249
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1250
			}
1251
		}
L
Linus Torvalds 已提交
1252

1253 1254 1255
		if (!force_reclaim)
			references = page_check_references(page, sc);

1256 1257
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1258
			goto activate_locked;
1259
		case PAGEREF_KEEP:
1260
			nr_ref_keep++;
1261
			goto keep_locked;
1262 1263 1264 1265
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1266 1267 1268 1269

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1270
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1271
		 */
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1297 1298 1299
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1300 1301 1302
					if (!add_to_swap(page))
						goto activate_locked;
				}
1303

1304
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1305

1306 1307 1308
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1309 1310 1311 1312
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1313
		}
L
Linus Torvalds 已提交
1314 1315 1316 1317 1318

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1319
		if (page_mapped(page)) {
1320 1321 1322 1323 1324
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1325
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1326 1327 1328 1329 1330
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1331
			/*
1332 1333 1334 1335 1336 1337 1338 1339
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1340
			 */
1341
			if (page_is_file_cache(page) &&
1342 1343
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1344 1345 1346 1347 1348 1349
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1350
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1351 1352
				SetPageReclaim(page);

1353
				goto activate_locked;
1354 1355
			}

1356
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1357
				goto keep_locked;
1358
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1359
				goto keep_locked;
1360
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1361 1362
				goto keep_locked;

1363 1364 1365 1366 1367 1368
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1369
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1370 1371 1372 1373 1374
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1375
				if (PageWriteback(page))
1376
					goto keep;
1377
				if (PageDirty(page))
L
Linus Torvalds 已提交
1378
					goto keep;
1379

L
Linus Torvalds 已提交
1380 1381 1382 1383
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1384
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1404
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1415
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1416 1417
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1434 1435
		}

S
Shaohua Li 已提交
1436 1437 1438 1439 1440 1441 1442 1443
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1444

S
Shaohua Li 已提交
1445
			count_vm_event(PGLAZYFREED);
1446
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1447 1448
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1449 1450 1451 1452 1453 1454 1455
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1456
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1457
free_it:
1458
		nr_reclaimed++;
1459 1460 1461 1462 1463

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1464 1465 1466 1467 1468
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1469 1470 1471
		continue;

activate_locked:
1472
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1473 1474
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1475
			try_to_free_swap(page);
1476
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1477 1478 1479
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1480
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1481
		}
L
Linus Torvalds 已提交
1482 1483 1484 1485
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1486
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1487
	}
1488

1489
	mem_cgroup_uncharge_list(&free_pages);
1490
	try_to_unmap_flush();
1491
	free_unref_page_list(&free_pages);
1492

L
Linus Torvalds 已提交
1493
	list_splice(&ret_pages, page_list);
1494
	count_vm_events(PGACTIVATE, pgactivate);
1495

1496 1497 1498 1499 1500 1501
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1502 1503 1504
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1505
	}
1506
	return nr_reclaimed;
L
Linus Torvalds 已提交
1507 1508
}

1509 1510 1511 1512 1513 1514 1515 1516
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1517
	unsigned long ret;
1518 1519 1520 1521
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1522
		if (page_is_file_cache(page) && !PageDirty(page) &&
1523
		    !__PageMovable(page)) {
1524 1525 1526 1527 1528
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1529
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1530
			TTU_IGNORE_ACCESS, NULL, true);
1531
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1532
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1533 1534 1535
	return ret;
}

A
Andy Whitcroft 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1546
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1547 1548 1549 1550 1551 1552 1553
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1554 1555
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1556 1557
		return ret;

A
Andy Whitcroft 已提交
1558
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1559

1560 1561 1562 1563 1564 1565 1566 1567
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1568
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1569 1570 1571 1572 1573 1574
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1575
			bool migrate_dirty;
1576 1577 1578 1579

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1580 1581 1582 1583 1584
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1585
			 */
1586 1587 1588
			if (!trylock_page(page))
				return ret;

1589
			mapping = page_mapping(page);
1590
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1591 1592
			unlock_page(page);
			if (!migrate_dirty)
1593 1594 1595
				return ret;
		}
	}
1596

1597 1598 1599
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1613 1614 1615 1616 1617 1618

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1619
			enum lru_list lru, unsigned long *nr_zone_taken)
1620 1621 1622 1623 1624 1625 1626 1627 1628
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1629
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1630
#endif
1631 1632
	}

1633 1634
}

L
Linus Torvalds 已提交
1635
/*
1636
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1637 1638 1639 1640 1641 1642 1643 1644
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1645
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1646
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1647
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1648
 * @nr_scanned:	The number of pages that were scanned.
1649
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1650
 * @mode:	One of the LRU isolation modes
1651
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1652 1653 1654
 *
 * returns how many pages were moved onto *@dst.
 */
1655
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1656
		struct lruvec *lruvec, struct list_head *dst,
1657
		unsigned long *nr_scanned, struct scan_control *sc,
1658
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1659
{
H
Hugh Dickins 已提交
1660
	struct list_head *src = &lruvec->lists[lru];
1661
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1662
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1663
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1664
	unsigned long skipped = 0;
1665
	unsigned long scan, total_scan, nr_pages;
1666
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1667

1668 1669 1670 1671
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1672 1673
		struct page *page;

L
Linus Torvalds 已提交
1674 1675 1676
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1677
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1678

1679 1680
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1681
			nr_skipped[page_zonenum(page)]++;
1682 1683 1684
			continue;
		}

1685 1686 1687 1688 1689 1690 1691
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1692
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1693
		case 0:
M
Mel Gorman 已提交
1694 1695 1696
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1697 1698 1699 1700 1701 1702 1703
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1704

A
Andy Whitcroft 已提交
1705 1706 1707
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1708 1709
	}

1710 1711 1712 1713 1714 1715 1716
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1717 1718 1719
	if (!list_empty(&pages_skipped)) {
		int zid;

1720
		list_splice(&pages_skipped, src);
1721 1722 1723 1724 1725
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1726
			skipped += nr_skipped[zid];
1727 1728
		}
	}
1729
	*nr_scanned = total_scan;
1730
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1731
				    total_scan, skipped, nr_taken, mode, lru);
1732
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1733 1734 1735
	return nr_taken;
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1747 1748 1749
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1750 1751 1752 1753 1754
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1755
 *
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1766
	VM_BUG_ON_PAGE(!page_count(page), page);
1767
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1768

1769 1770
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1771
		struct lruvec *lruvec;
1772

1773
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1774
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1775
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1776
			int lru = page_lru(page);
1777
			get_page(page);
1778
			ClearPageLRU(page);
1779 1780
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1781
		}
1782
		spin_unlock_irq(zone_lru_lock(zone));
1783 1784 1785 1786
	}
	return ret;
}

1787
/*
F
Fengguang Wu 已提交
1788 1789 1790 1791 1792
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1793
 */
M
Mel Gorman 已提交
1794
static int too_many_isolated(struct pglist_data *pgdat, int file,
1795 1796 1797 1798 1799 1800 1801
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1802
	if (!sane_reclaim(sc))
1803 1804 1805
		return 0;

	if (file) {
M
Mel Gorman 已提交
1806 1807
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1808
	} else {
M
Mel Gorman 已提交
1809 1810
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1811 1812
	}

1813 1814 1815 1816 1817
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1818
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1819 1820
		inactive >>= 3;

1821 1822 1823
	return isolated > inactive;
}

1824
static noinline_for_stack void
H
Hugh Dickins 已提交
1825
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1826
{
1827
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1828
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1829
	LIST_HEAD(pages_to_free);
1830 1831 1832 1833 1834

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1835
		struct page *page = lru_to_page(page_list);
1836
		int lru;
1837

1838
		VM_BUG_ON_PAGE(PageLRU(page), page);
1839
		list_del(&page->lru);
1840
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1841
			spin_unlock_irq(&pgdat->lru_lock);
1842
			putback_lru_page(page);
M
Mel Gorman 已提交
1843
			spin_lock_irq(&pgdat->lru_lock);
1844 1845
			continue;
		}
1846

M
Mel Gorman 已提交
1847
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1848

1849
		SetPageLRU(page);
1850
		lru = page_lru(page);
1851 1852
		add_page_to_lru_list(page, lruvec, lru);

1853 1854
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1855 1856
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1857
		}
1858 1859 1860
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1861
			del_page_from_lru_list(page, lruvec, lru);
1862 1863

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1864
				spin_unlock_irq(&pgdat->lru_lock);
1865
				mem_cgroup_uncharge(page);
1866
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1867
				spin_lock_irq(&pgdat->lru_lock);
1868 1869
			} else
				list_add(&page->lru, &pages_to_free);
1870 1871 1872
		}
	}

1873 1874 1875 1876
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1877 1878
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1892
/*
1893
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1894
 * of reclaimed pages
L
Linus Torvalds 已提交
1895
 */
1896
static noinline_for_stack unsigned long
1897
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1898
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1899 1900
{
	LIST_HEAD(page_list);
1901
	unsigned long nr_scanned;
1902
	unsigned long nr_reclaimed = 0;
1903
	unsigned long nr_taken;
1904
	struct reclaim_stat stat = {};
1905
	isolate_mode_t isolate_mode = 0;
1906
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1907
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1908
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1909
	bool stalled = false;
1910

M
Mel Gorman 已提交
1911
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1912 1913 1914 1915 1916 1917
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1918 1919 1920 1921 1922 1923

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1924
	lru_add_drain();
1925 1926

	if (!sc->may_unmap)
1927
		isolate_mode |= ISOLATE_UNMAPPED;
1928

M
Mel Gorman 已提交
1929
	spin_lock_irq(&pgdat->lru_lock);
1930

1931 1932
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1933

M
Mel Gorman 已提交
1934
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935
	reclaim_stat->recent_scanned[file] += nr_taken;
1936

1937 1938
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1939
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1940 1941 1942 1943
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1944
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1945 1946
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1947
	}
M
Mel Gorman 已提交
1948
	spin_unlock_irq(&pgdat->lru_lock);
1949

1950
	if (nr_taken == 0)
1951
		return 0;
A
Andy Whitcroft 已提交
1952

S
Shaohua Li 已提交
1953
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1954
				&stat, false);
1955

M
Mel Gorman 已提交
1956
	spin_lock_irq(&pgdat->lru_lock);
1957

1958 1959
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1960
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1961 1962 1963 1964
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1965
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1966 1967
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1968
	}
N
Nick Piggin 已提交
1969

1970
	putback_inactive_pages(lruvec, &page_list);
1971

M
Mel Gorman 已提交
1972
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1973

M
Mel Gorman 已提交
1974
	spin_unlock_irq(&pgdat->lru_lock);
1975

1976
	mem_cgroup_uncharge_list(&page_list);
1977
	free_unref_page_list(&page_list);
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1993 1994 1995 1996 1997 1998 1999 2000
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2001

M
Mel Gorman 已提交
2002
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2003
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2004
	return nr_reclaimed;
L
Linus Torvalds 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
2014
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
2015
 * the pages are mapped, the processing is slow (page_referenced()) so we
2016
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
2017 2018 2019 2020
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
2021
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
2022
 * But we had to alter page->flags anyway.
2023 2024
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
2025
 */
2026

2027
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2028
				     struct list_head *list,
2029
				     struct list_head *pages_to_free,
2030 2031
				     enum lru_list lru)
{
M
Mel Gorman 已提交
2032
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2033
	struct page *page;
2034
	int nr_pages;
2035
	int nr_moved = 0;
2036 2037 2038

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
2039
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2040

2041
		VM_BUG_ON_PAGE(PageLRU(page), page);
2042 2043
		SetPageLRU(page);

2044
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
2045
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2046
		list_move(&page->lru, &lruvec->lists[lru]);
2047

2048 2049 2050
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
2051
			del_page_from_lru_list(page, lruvec, lru);
2052 2053

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
2054
				spin_unlock_irq(&pgdat->lru_lock);
2055
				mem_cgroup_uncharge(page);
2056
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
2057
				spin_lock_irq(&pgdat->lru_lock);
2058 2059
			} else
				list_add(&page->lru, pages_to_free);
2060 2061
		} else {
			nr_moved += nr_pages;
2062 2063
		}
	}
2064

2065
	if (!is_active_lru(lru)) {
2066
		__count_vm_events(PGDEACTIVATE, nr_moved);
2067 2068 2069
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
2070 2071

	return nr_moved;
2072
}
2073

H
Hugh Dickins 已提交
2074
static void shrink_active_list(unsigned long nr_to_scan,
2075
			       struct lruvec *lruvec,
2076
			       struct scan_control *sc,
2077
			       enum lru_list lru)
L
Linus Torvalds 已提交
2078
{
2079
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2080
	unsigned long nr_scanned;
2081
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2082
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2083
	LIST_HEAD(l_active);
2084
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2085
	struct page *page;
2086
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2087 2088
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2089
	isolate_mode_t isolate_mode = 0;
2090
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2091
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2092 2093

	lru_add_drain();
2094 2095

	if (!sc->may_unmap)
2096
		isolate_mode |= ISOLATE_UNMAPPED;
2097

M
Mel Gorman 已提交
2098
	spin_lock_irq(&pgdat->lru_lock);
2099

2100 2101
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
2102

M
Mel Gorman 已提交
2103
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2104
	reclaim_stat->recent_scanned[file] += nr_taken;
2105

M
Mel Gorman 已提交
2106
	__count_vm_events(PGREFILL, nr_scanned);
2107
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2108

M
Mel Gorman 已提交
2109
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2115

2116
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2117 2118 2119 2120
			putback_lru_page(page);
			continue;
		}

2121 2122 2123 2124 2125 2126 2127 2128
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2129 2130
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2131
			nr_rotated += hpage_nr_pages(page);
2132 2133 2134 2135 2136 2137 2138 2139 2140
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2141
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2142 2143 2144 2145
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2146

2147
		ClearPageActive(page);	/* we are de-activating */
2148
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2149 2150 2151
		list_add(&page->lru, &l_inactive);
	}

2152
	/*
2153
	 * Move pages back to the lru list.
2154
	 */
M
Mel Gorman 已提交
2155
	spin_lock_irq(&pgdat->lru_lock);
2156
	/*
2157 2158 2159
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2160
	 * get_scan_count.
2161
	 */
2162
	reclaim_stat->recent_rotated[file] += nr_rotated;
2163

2164 2165
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2166 2167
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2168

2169
	mem_cgroup_uncharge_list(&l_hold);
2170
	free_unref_page_list(&l_hold);
2171 2172
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2173 2174
}

2175 2176 2177
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2178
 *
2179 2180 2181
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2182
 *
2183 2184
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2185
 *
2186 2187
 * If that fails and refaulting is observed, the inactive list grows.
 *
2188
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2189
 * on this LRU, maintained by the pageout code. An inactive_ratio
2190
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2191
 *
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2202
 */
2203
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2204 2205
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2206
{
2207
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2208 2209 2210 2211 2212
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2213
	unsigned long gb;
2214

2215 2216 2217 2218 2219 2220
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2221

2222 2223
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2224

2225
	if (memcg)
2226
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2227
	else
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2244

2245 2246 2247 2248 2249
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2250

2251
	return inactive * inactive_ratio < active;
2252 2253
}

2254
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2255 2256
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2257
{
2258
	if (is_active_lru(lru)) {
2259 2260
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2261
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2262 2263 2264
		return 0;
	}

2265
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2266 2267
}

2268 2269 2270 2271 2272 2273 2274
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2275 2276 2277 2278 2279 2280
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2281 2282
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2283
 */
2284
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2285 2286
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2287
{
2288
	int swappiness = mem_cgroup_swappiness(memcg);
2289 2290 2291
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2292
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2293
	unsigned long anon_prio, file_prio;
2294
	enum scan_balance scan_balance;
2295
	unsigned long anon, file;
2296
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2297
	enum lru_list lru;
2298 2299

	/* If we have no swap space, do not bother scanning anon pages. */
2300
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2301
		scan_balance = SCAN_FILE;
2302 2303
		goto out;
	}
2304

2305 2306 2307 2308 2309 2310 2311
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2312
	if (!global_reclaim(sc) && !swappiness) {
2313
		scan_balance = SCAN_FILE;
2314 2315 2316 2317 2318 2319 2320 2321
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2322
	if (!sc->priority && swappiness) {
2323
		scan_balance = SCAN_EQUAL;
2324 2325 2326
		goto out;
	}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2337 2338 2339 2340
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2341

M
Mel Gorman 已提交
2342 2343 2344 2345 2346 2347
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2348
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2349 2350 2351 2352
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2353

M
Mel Gorman 已提交
2354
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2366 2367 2368
		}
	}

2369
	/*
2370 2371 2372 2373 2374 2375 2376
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2377
	 */
2378
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2379
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2380
		scan_balance = SCAN_FILE;
2381 2382 2383
		goto out;
	}

2384 2385
	scan_balance = SCAN_FRACT;

2386 2387 2388 2389
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2390
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2391
	file_prio = 200 - anon_prio;
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2404

2405 2406 2407 2408
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2409

M
Mel Gorman 已提交
2410
	spin_lock_irq(&pgdat->lru_lock);
2411 2412 2413
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2414 2415
	}

2416 2417 2418
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2419 2420 2421
	}

	/*
2422 2423 2424
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2425
	 */
2426
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2427
	ap /= reclaim_stat->recent_rotated[0] + 1;
2428

2429
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2430
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2431
	spin_unlock_irq(&pgdat->lru_lock);
2432

2433 2434 2435 2436
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2437 2438 2439 2440 2441
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2442

2443 2444 2445 2446 2447 2448 2449 2450
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2451

2452 2453 2454 2455 2456
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2457
			/*
2458 2459
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2460 2461
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2462
			 */
2463 2464
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2477
		}
2478 2479 2480

		*lru_pages += size;
		nr[lru] = scan;
2481
	}
2482
}
2483

2484
/*
2485
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2486
 */
2487
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2488
			      struct scan_control *sc, unsigned long *lru_pages)
2489
{
2490
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2491
	unsigned long nr[NR_LRU_LISTS];
2492
	unsigned long targets[NR_LRU_LISTS];
2493 2494 2495 2496 2497
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2498
	bool scan_adjusted;
2499

2500
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2501

2502 2503 2504
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2519 2520 2521
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2522 2523 2524
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2525 2526 2527 2528 2529 2530
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2531
							    lruvec, memcg, sc);
2532 2533
			}
		}
2534

2535 2536
		cond_resched();

2537 2538 2539 2540 2541
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2542
		 * requested. Ensure that the anon and file LRUs are scanned
2543 2544 2545 2546 2547 2548 2549
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2550 2551 2552 2553 2554 2555 2556 2557 2558
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2590 2591 2592 2593 2594 2595 2596 2597
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2598
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2599 2600 2601 2602
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2603
/* Use reclaim/compaction for costly allocs or under memory pressure */
2604
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2605
{
2606
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2607
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2608
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2609 2610 2611 2612 2613
		return true;

	return false;
}

2614
/*
M
Mel Gorman 已提交
2615 2616 2617 2618 2619
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2620
 */
2621
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2622 2623 2624 2625 2626 2627
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2628
	int z;
2629 2630

	/* If not in reclaim/compaction mode, stop */
2631
	if (!in_reclaim_compaction(sc))
2632 2633
		return false;

2634
	/* Consider stopping depending on scan and reclaim activity */
2635
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2636
		/*
2637
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2638 2639
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2640
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2641 2642 2643 2644 2645
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2646
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2647 2648 2649 2650 2651 2652 2653 2654 2655
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2656 2657 2658 2659 2660

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2661
	pages_for_compaction = compact_gap(sc->order);
2662
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2663
	if (get_nr_swap_pages() > 0)
2664
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2665 2666 2667 2668 2669
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2670 2671
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2672
		if (!managed_zone(zone))
2673 2674 2675
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2676
		case COMPACT_SUCCESS:
2677 2678 2679 2680 2681 2682
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2683
	}
2684
	return true;
2685 2686
}

2687 2688 2689 2690 2691 2692
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2693
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2694
{
2695
	struct reclaim_state *reclaim_state = current->reclaim_state;
2696
	unsigned long nr_reclaimed, nr_scanned;
2697
	bool reclaimable = false;
L
Linus Torvalds 已提交
2698

2699 2700 2701
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2702
			.pgdat = pgdat,
2703 2704
			.priority = sc->priority,
		};
2705
		unsigned long node_lru_pages = 0;
2706
		struct mem_cgroup *memcg;
2707

2708 2709
		memset(&sc->nr, 0, sizeof(sc->nr));

2710 2711
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2712

2713 2714
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2715
			unsigned long lru_pages;
2716
			unsigned long reclaimed;
2717
			unsigned long scanned;
2718

R
Roman Gushchin 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2733 2734
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2735
					continue;
2736
				}
2737
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2738 2739 2740
				break;
			case MEMCG_PROT_NONE:
				break;
2741 2742
			}

2743
			reclaimed = sc->nr_reclaimed;
2744
			scanned = sc->nr_scanned;
2745 2746
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2747

2748 2749
			shrink_slab(sc->gfp_mask, pgdat->node_id,
				    memcg, sc->priority);
2750

2751 2752 2753 2754 2755
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2756
			/*
2757 2758
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2759
			 * node.
2760 2761 2762 2763 2764
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2765
			 */
2766 2767
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2768 2769 2770
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2771
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2772

2773 2774 2775
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2776 2777
		}

2778 2779
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2780 2781 2782
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2783 2784 2785
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2829 2830 2831 2832 2833 2834 2835 2836
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2837 2838 2839 2840 2841 2842 2843
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2844 2845
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2846

2847
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2848
					 sc->nr_scanned - nr_scanned, sc));
2849

2850 2851 2852 2853 2854 2855 2856 2857 2858
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2859
	return reclaimable;
2860 2861
}

2862
/*
2863 2864 2865
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2866
 */
2867
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2868
{
M
Mel Gorman 已提交
2869
	unsigned long watermark;
2870
	enum compact_result suitable;
2871

2872 2873 2874 2875 2876 2877 2878
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2879

2880
	/*
2881 2882 2883 2884 2885 2886 2887
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2888
	 */
2889
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2890

2891
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2892 2893
}

L
Linus Torvalds 已提交
2894 2895 2896 2897 2898 2899 2900 2901
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2902
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2903
{
2904
	struct zoneref *z;
2905
	struct zone *zone;
2906 2907
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2908
	gfp_t orig_mask;
2909
	pg_data_t *last_pgdat = NULL;
2910

2911 2912 2913 2914 2915
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2916
	orig_mask = sc->gfp_mask;
2917
	if (buffer_heads_over_limit) {
2918
		sc->gfp_mask |= __GFP_HIGHMEM;
2919
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2920
	}
2921

2922
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2923
					sc->reclaim_idx, sc->nodemask) {
2924 2925 2926 2927
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2928
		if (global_reclaim(sc)) {
2929 2930
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2931
				continue;
2932

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2944
			    compaction_ready(zone, sc)) {
2945 2946
				sc->compaction_ready = true;
				continue;
2947
			}
2948

2949 2950 2951 2952 2953 2954 2955 2956 2957
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2958 2959 2960 2961 2962 2963 2964
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2965
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2966 2967 2968 2969
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2970
			/* need some check for avoid more shrink_zone() */
2971
		}
2972

2973 2974 2975 2976
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2977
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2978
	}
2979

2980 2981 2982 2983 2984
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2985
}
2986

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2997
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2998 2999 3000 3001 3002 3003 3004 3005
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
3006 3007 3008 3009 3010 3011 3012 3013
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3014 3015 3016 3017
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3018 3019 3020
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3021
 */
3022
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3023
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3024
{
3025
	int initial_priority = sc->priority;
3026 3027 3028
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3029
retry:
3030 3031
	delayacct_freepages_start();

3032
	if (global_reclaim(sc))
3033
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3034

3035
	do {
3036 3037
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3038
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3039
		shrink_zones(zonelist, sc);
3040

3041
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3042 3043 3044 3045
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3046

3047 3048 3049 3050 3051 3052
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3053
	} while (--sc->priority >= 0);
3054

3055 3056 3057 3058 3059 3060 3061
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3062
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3063 3064
	}

3065 3066
	delayacct_freepages_end();

3067 3068 3069
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3070
	/* Aborted reclaim to try compaction? don't OOM, then */
3071
	if (sc->compaction_ready)
3072 3073
		return 1;

3074
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3075
	if (sc->memcg_low_skipped) {
3076
		sc->priority = initial_priority;
3077 3078
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3079 3080 3081
		goto retry;
	}

3082
	return 0;
L
Linus Torvalds 已提交
3083 3084
}

3085
static bool allow_direct_reclaim(pg_data_t *pgdat)
3086 3087 3088 3089 3090 3091 3092
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3093 3094 3095
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3096 3097
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3098 3099 3100 3101
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3102 3103
			continue;

3104 3105 3106 3107
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3108 3109 3110 3111
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3112 3113 3114 3115
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3116
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3128 3129 3130 3131
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3132
 */
3133
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3134 3135
					nodemask_t *nodemask)
{
3136
	struct zoneref *z;
3137
	struct zone *zone;
3138
	pg_data_t *pgdat = NULL;
3139 3140 3141 3142 3143 3144 3145 3146 3147

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3148 3149 3150 3151 3152 3153 3154 3155
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3156

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3172
					gfp_zone(gfp_mask), nodemask) {
3173 3174 3175 3176 3177
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3178
		if (allow_direct_reclaim(pgdat))
3179 3180 3181 3182 3183 3184
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3185
		goto out;
3186

3187 3188 3189
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3200
			allow_direct_reclaim(pgdat), HZ);
3201 3202

		goto check_pending;
3203 3204 3205 3206
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3207
		allow_direct_reclaim(pgdat));
3208 3209 3210 3211 3212 3213 3214

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3215 3216
}

3217
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3218
				gfp_t gfp_mask, nodemask_t *nodemask)
3219
{
3220
	unsigned long nr_reclaimed;
3221
	struct scan_control sc = {
3222
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3223
		.gfp_mask = current_gfp_context(gfp_mask),
3224
		.reclaim_idx = gfp_zone(gfp_mask),
3225 3226 3227
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3228
		.may_writepage = !laptop_mode,
3229
		.may_unmap = 1,
3230
		.may_swap = 1,
3231 3232
	};

G
Greg Thelen 已提交
3233 3234 3235 3236 3237 3238 3239 3240
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3241
	/*
3242 3243 3244
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3245
	 */
3246
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3247 3248
		return 1;

3249 3250
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3251
				sc.gfp_mask,
3252
				sc.reclaim_idx);
3253

3254
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3255 3256 3257 3258

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3259 3260
}

A
Andrew Morton 已提交
3261
#ifdef CONFIG_MEMCG
3262

3263
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3264
						gfp_t gfp_mask, bool noswap,
3265
						pg_data_t *pgdat,
3266
						unsigned long *nr_scanned)
3267 3268
{
	struct scan_control sc = {
3269
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3270
		.target_mem_cgroup = memcg,
3271 3272
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3273
		.reclaim_idx = MAX_NR_ZONES - 1,
3274 3275
		.may_swap = !noswap,
	};
3276
	unsigned long lru_pages;
3277

3278 3279
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3280

3281
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3282
						      sc.may_writepage,
3283 3284
						      sc.gfp_mask,
						      sc.reclaim_idx);
3285

3286 3287 3288
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3289
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3290 3291 3292
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3293
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3294 3295 3296

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3297
	*nr_scanned = sc.nr_scanned;
3298 3299 3300
	return sc.nr_reclaimed;
}

3301
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3302
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3303
					   gfp_t gfp_mask,
3304
					   bool may_swap)
3305
{
3306
	struct zonelist *zonelist;
3307
	unsigned long nr_reclaimed;
3308
	int nid;
3309
	unsigned int noreclaim_flag;
3310
	struct scan_control sc = {
3311
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3312
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3313
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3314
		.reclaim_idx = MAX_NR_ZONES - 1,
3315 3316 3317 3318
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3319
		.may_swap = may_swap,
3320
	};
3321

3322 3323 3324 3325 3326
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3327
	nid = mem_cgroup_select_victim_node(memcg);
3328

3329
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3330 3331 3332

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3333 3334
					    sc.gfp_mask,
					    sc.reclaim_idx);
3335

3336
	noreclaim_flag = memalloc_noreclaim_save();
3337
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3338
	memalloc_noreclaim_restore(noreclaim_flag);
3339 3340 3341 3342

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3343 3344 3345
}
#endif

3346
static void age_active_anon(struct pglist_data *pgdat,
3347
				struct scan_control *sc)
3348
{
3349
	struct mem_cgroup *memcg;
3350

3351 3352 3353 3354 3355
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3356
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3357

3358
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3359
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3360
					   sc, LRU_ACTIVE_ANON);
3361 3362 3363

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3364 3365
}

3366 3367 3368 3369 3370
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3371
{
3372 3373 3374
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3375

3376 3377
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3378

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3396 3397
}

3398 3399 3400 3401 3402 3403 3404 3405
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3406 3407 3408 3409 3410 3411
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3412
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3413
{
3414
	/*
3415
	 * The throttled processes are normally woken up in balance_pgdat() as
3416
	 * soon as allow_direct_reclaim() is true. But there is a potential
3417 3418 3419 3420 3421 3422 3423 3424 3425
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3426
	 */
3427 3428
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3429

3430 3431 3432 3433
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3434 3435 3436
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3437 3438
	}

3439
	return false;
3440 3441
}

3442
/*
3443 3444
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3445 3446
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3447 3448
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3449
 */
3450
static bool kswapd_shrink_node(pg_data_t *pgdat,
3451
			       struct scan_control *sc)
3452
{
3453 3454
	struct zone *zone;
	int z;
3455

3456 3457
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3458
	for (z = 0; z <= sc->reclaim_idx; z++) {
3459
		zone = pgdat->node_zones + z;
3460
		if (!managed_zone(zone))
3461
			continue;
3462

3463 3464
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3465 3466

	/*
3467 3468
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3469
	 */
3470
	shrink_node(pgdat, sc);
3471

3472
	/*
3473 3474 3475 3476 3477
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3478
	 */
3479
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3480
		sc->order = 0;
3481

3482
	return sc->nr_scanned >= sc->nr_to_reclaim;
3483 3484
}

L
Linus Torvalds 已提交
3485
/*
3486 3487 3488
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3489
 *
3490
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3491 3492
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3493
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3494 3495 3496
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3497
 */
3498
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3499 3500
{
	int i;
3501 3502
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3503
	struct zone *zone;
3504 3505
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3506
		.order = order,
3507
		.priority = DEF_PRIORITY,
3508
		.may_writepage = !laptop_mode,
3509
		.may_unmap = 1,
3510
		.may_swap = 1,
3511
	};
3512 3513 3514

	__fs_reclaim_acquire();

3515
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3516

3517
	do {
3518
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3519
		bool raise_priority = true;
3520
		bool ret;
3521

3522
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3523

3524
		/*
3525 3526 3527 3528 3529 3530 3531 3532
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3533 3534 3535 3536
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3537
				if (!managed_zone(zone))
3538
					continue;
3539

3540
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3541
				break;
L
Linus Torvalds 已提交
3542 3543
			}
		}
3544

3545
		/*
3546 3547 3548
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3549
		 */
3550 3551
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3552

3553 3554 3555 3556 3557 3558
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3559
		age_active_anon(pgdat, &sc);
3560

3561 3562 3563 3564
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3565
		if (sc.priority < DEF_PRIORITY - 2)
3566 3567
			sc.may_writepage = 1;

3568 3569 3570
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3571
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3572 3573 3574
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3575
		/*
3576 3577 3578
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3579
		 */
3580
		if (kswapd_shrink_node(pgdat, &sc))
3581
			raise_priority = false;
3582 3583 3584 3585 3586 3587 3588

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3589
				allow_direct_reclaim(pgdat))
3590
			wake_up_all(&pgdat->pfmemalloc_wait);
3591

3592
		/* Check if kswapd should be suspending */
3593 3594 3595 3596
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3597
			break;
3598

3599
		/*
3600 3601
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3602
		 */
3603 3604
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3605
			sc.priority--;
3606
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3607

3608 3609 3610
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3611
out:
3612
	snapshot_refaults(NULL, pgdat);
3613
	__fs_reclaim_release();
3614
	/*
3615 3616 3617 3618
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3619
	 */
3620
	return sc.order;
L
Linus Torvalds 已提交
3621 3622
}

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3639 3640
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3641 3642 3643 3644 3645 3646 3647 3648 3649
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3650 3651 3652 3653 3654 3655 3656
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3657
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3670
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3671

3672
		remaining = schedule_timeout(HZ/10);
3673 3674 3675 3676 3677 3678 3679

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3680
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3681 3682 3683
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3684 3685 3686 3687 3688 3689 3690 3691
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3692 3693
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3705 3706 3707 3708

		if (!kthread_should_stop())
			schedule();

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3719 3720
/*
 * The background pageout daemon, started as a kernel thread
3721
 * from the init process.
L
Linus Torvalds 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3734 3735
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3736 3737
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3738

L
Linus Torvalds 已提交
3739 3740 3741
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3742
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3743

R
Rusty Russell 已提交
3744
	if (!cpumask_empty(cpumask))
3745
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3760
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3761
	set_freezable();
L
Linus Torvalds 已提交
3762

3763 3764
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3765
	for ( ; ; ) {
3766
		bool ret;
3767

3768 3769 3770
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3771 3772 3773
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3774

3775 3776
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3777
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3778
		pgdat->kswapd_order = 0;
3779
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3780

3781 3782 3783 3784 3785 3786 3787 3788
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3800 3801
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3802 3803 3804
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3805
	}
3806

3807
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3808
	current->reclaim_state = NULL;
3809

L
Linus Torvalds 已提交
3810 3811 3812 3813
	return 0;
}

/*
3814 3815 3816 3817 3818
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3819
 */
3820 3821
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3822 3823 3824
{
	pg_data_t *pgdat;

3825
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3826 3827
		return;

3828
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3829
		return;
3830
	pgdat = zone->zone_pgdat;
3831 3832
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3833
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3834
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3835
		return;
3836

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
	    pgdat_balanced(pgdat, order, classzone_idx)) {
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3849
		return;
3850
	}
3851

3852 3853
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3854
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3855 3856
}

3857
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3858
/*
3859
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3860 3861 3862 3863 3864
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3865
 */
3866
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3867
{
3868 3869
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3870
		.nr_to_reclaim = nr_to_reclaim,
3871
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3872
		.reclaim_idx = MAX_NR_ZONES - 1,
3873
		.priority = DEF_PRIORITY,
3874
		.may_writepage = 1,
3875 3876
		.may_unmap = 1,
		.may_swap = 1,
3877
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3878
	};
3879
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3880 3881
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3882
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3883

3884
	fs_reclaim_acquire(sc.gfp_mask);
3885
	noreclaim_flag = memalloc_noreclaim_save();
3886 3887
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3888

3889
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3890

3891
	p->reclaim_state = NULL;
3892
	memalloc_noreclaim_restore(noreclaim_flag);
3893
	fs_reclaim_release(sc.gfp_mask);
3894

3895
	return nr_reclaimed;
L
Linus Torvalds 已提交
3896
}
3897
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3898 3899 3900 3901 3902

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3903
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3904
{
3905
	int nid;
L
Linus Torvalds 已提交
3906

3907 3908 3909
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3910

3911
		mask = cpumask_of_node(pgdat->node_id);
3912

3913 3914 3915
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3916
	}
3917
	return 0;
L
Linus Torvalds 已提交
3918 3919
}

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3935
		BUG_ON(system_state < SYSTEM_RUNNING);
3936 3937
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3938
		pgdat->kswapd = NULL;
3939 3940 3941 3942
	}
	return ret;
}

3943
/*
3944
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3945
 * hold mem_hotplug_begin/end().
3946 3947 3948 3949 3950
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3951
	if (kswapd) {
3952
		kthread_stop(kswapd);
3953 3954
		NODE_DATA(nid)->kswapd = NULL;
	}
3955 3956
}

L
Linus Torvalds 已提交
3957 3958
static int __init kswapd_init(void)
{
3959
	int nid, ret;
3960

L
Linus Torvalds 已提交
3961
	swap_setup();
3962
	for_each_node_state(nid, N_MEMORY)
3963
 		kswapd_run(nid);
3964 3965 3966 3967
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3968 3969 3970 3971
	return 0;
}

module_init(kswapd_init)
3972 3973 3974

#ifdef CONFIG_NUMA
/*
3975
 * Node reclaim mode
3976
 *
3977
 * If non-zero call node_reclaim when the number of free pages falls below
3978 3979
 * the watermarks.
 */
3980
int node_reclaim_mode __read_mostly;
3981

3982
#define RECLAIM_OFF 0
3983
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3984
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3985
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3986

3987
/*
3988
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3989 3990 3991
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3992
#define NODE_RECLAIM_PRIORITY 4
3993

3994
/*
3995
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3996 3997 3998 3999
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4000 4001 4002 4003 4004 4005
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4006
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4007
{
4008 4009 4010
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4021
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4022
{
4023 4024
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4025 4026

	/*
4027
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4028
	 * potentially reclaimable. Otherwise, we have to worry about
4029
	 * pages like swapcache and node_unmapped_file_pages() provides
4030 4031
	 * a better estimate
	 */
4032 4033
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4034
	else
4035
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4036 4037

	/* If we can't clean pages, remove dirty pages from consideration */
4038 4039
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4040 4041 4042 4043 4044 4045 4046 4047

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4048
/*
4049
 * Try to free up some pages from this node through reclaim.
4050
 */
4051
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4052
{
4053
	/* Minimum pages needed in order to stay on node */
4054
	const unsigned long nr_pages = 1 << order;
4055 4056
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4057
	unsigned int noreclaim_flag;
4058
	struct scan_control sc = {
4059
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4060
		.gfp_mask = current_gfp_context(gfp_mask),
4061
		.order = order,
4062 4063 4064
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4065
		.may_swap = 1,
4066
		.reclaim_idx = gfp_zone(gfp_mask),
4067
	};
4068 4069

	cond_resched();
4070
	fs_reclaim_acquire(sc.gfp_mask);
4071
	/*
4072
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4073
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4074
	 * and RECLAIM_UNMAP.
4075
	 */
4076 4077
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4078 4079
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4080

4081
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4082
		/*
4083
		 * Free memory by calling shrink node with increasing
4084 4085 4086
		 * priorities until we have enough memory freed.
		 */
		do {
4087
			shrink_node(pgdat, &sc);
4088
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4089
	}
4090

4091
	p->reclaim_state = NULL;
4092 4093
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4094
	fs_reclaim_release(sc.gfp_mask);
4095
	return sc.nr_reclaimed >= nr_pages;
4096
}
4097

4098
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4099
{
4100
	int ret;
4101 4102

	/*
4103
	 * Node reclaim reclaims unmapped file backed pages and
4104
	 * slab pages if we are over the defined limits.
4105
	 *
4106 4107
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4108 4109
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4110
	 * unmapped file backed pages.
4111
	 */
4112
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4113
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4114
		return NODE_RECLAIM_FULL;
4115 4116

	/*
4117
	 * Do not scan if the allocation should not be delayed.
4118
	 */
4119
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4120
		return NODE_RECLAIM_NOSCAN;
4121 4122

	/*
4123
	 * Only run node reclaim on the local node or on nodes that do not
4124 4125 4126 4127
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4128 4129
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4130

4131 4132
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4133

4134 4135
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4136

4137 4138 4139
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4140
	return ret;
4141
}
4142
#endif
L
Lee Schermerhorn 已提交
4143 4144 4145 4146 4147 4148

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4149
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4150 4151
 *
 * Reasons page might not be evictable:
4152
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4153
 * (2) page is part of an mlocked VMA
4154
 *
L
Lee Schermerhorn 已提交
4155
 */
4156
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4157
{
4158 4159 4160 4161 4162 4163 4164
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4165
}
4166

4167
#ifdef CONFIG_SHMEM
4168
/**
4169 4170 4171
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
4172
 *
4173
 * Checks pages for evictability and moves them to the appropriate lru list.
4174 4175
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
4176
 */
4177
void check_move_unevictable_pages(struct page **pages, int nr_pages)
4178
{
4179
	struct lruvec *lruvec;
4180
	struct pglist_data *pgdat = NULL;
4181 4182 4183
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4184

4185 4186
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
4187
		struct pglist_data *pagepgdat = page_pgdat(page);
4188

4189
		pgscanned++;
4190 4191 4192 4193 4194
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4195
		}
4196
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4197

4198 4199
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4200

4201
		if (page_evictable(page)) {
4202 4203
			enum lru_list lru = page_lru_base_type(page);

4204
			VM_BUG_ON_PAGE(PageActive(page), page);
4205
			ClearPageUnevictable(page);
4206 4207
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4208
			pgrescued++;
4209
		}
4210
	}
4211

4212
	if (pgdat) {
4213 4214
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4215
		spin_unlock_irq(&pgdat->lru_lock);
4216 4217
	}
}
4218
#endif /* CONFIG_SHMEM */