vmscan.c 114.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16
#include <linux/mm.h>
17
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
18
#include <linux/module.h>
19
#include <linux/gfp.h>
L
Linus Torvalds 已提交
20 21 22 23 24
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
25
#include <linux/vmpressure.h>
26
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
38
#include <linux/compaction.h>
L
Linus Torvalds 已提交
39 40
#include <linux/notifier.h>
#include <linux/rwsem.h>
41
#include <linux/delay.h>
42
#include <linux/kthread.h>
43
#include <linux/freezer.h>
44
#include <linux/memcontrol.h>
45
#include <linux/delayacct.h>
46
#include <linux/sysctl.h>
47
#include <linux/oom.h>
48
#include <linux/prefetch.h>
49
#include <linux/printk.h>
50
#include <linux/dax.h>
L
Linus Torvalds 已提交
51 52 53 54 55

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
56
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
57

58 59
#include "internal.h"

60 61 62
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
63
struct scan_control {
64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
67
	/* This context's GFP mask */
A
Al Viro 已提交
68
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
69

70
	/* Allocation order */
A
Andy Whitcroft 已提交
71
	int order;
72

73 74 75 76 77
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
78

79 80 81 82 83
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
84

85 86 87
	/* Scan (total_size >> priority) pages at once */
	int priority;

88 89 90
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

91
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 93 94 95 96 97 98 99
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

100 101 102 103 104 105 106
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
107

108 109 110 111 112 113 114 115 116 117
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
152 153 154 155 156
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
157 158 159 160

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
161
#ifdef CONFIG_MEMCG
162 163
static bool global_reclaim(struct scan_control *sc)
{
164
	return !sc->target_mem_cgroup;
165
}
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
187
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 189 190 191
		return true;
#endif
	return false;
}
192
#else
193 194 195 196
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
197 198 199 200 201

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
202 203
#endif

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
222 223 224 225 226 227 228
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229 230

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
231 232 233
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234 235 236 237

	return nr;
}

238 239 240 241 242 243 244
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245
{
246 247 248
	unsigned long lru_size;
	int zid;

249
	if (!mem_cgroup_disabled())
250 251 252
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253

254 255 256
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
257

258 259 260 261 262 263 264 265 266 267 268 269
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
270 271 272

}

L
Linus Torvalds 已提交
273
/*
G
Glauber Costa 已提交
274
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
275
 */
G
Glauber Costa 已提交
276
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
277
{
G
Glauber Costa 已提交
278 279 280 281 282 283 284 285 286
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

287 288 289
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
290
	return 0;
L
Linus Torvalds 已提交
291
}
292
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
293 294 295 296

/*
 * Remove one
 */
297
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
298 299 300 301
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
302
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
303
}
304
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
305 306

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
307

308 309 310 311
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
312 313 314 315
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
316
	long freeable;
G
Glauber Costa 已提交
317 318 319 320 321
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
322
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
323

324 325
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
326 327 328 329 330 331 332 333 334 335
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
336
	delta = (4 * nr_scanned) / shrinker->seeks;
337
	delta *= freeable;
338
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
339 340
	total_scan += delta;
	if (total_scan < 0) {
341
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
342
		       shrinker->scan_objects, total_scan);
343
		total_scan = freeable;
344 345 346
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
347 348 349 350 351 352 353

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
354
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
355 356 357 358 359
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
360 361
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
362 363 364 365 366 367

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
368 369
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
370 371

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 373
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
374

375 376 377 378 379 380 381 382 383 384 385
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
386
	 * than the total number of objects on slab (freeable), we must be
387 388 389 390
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
391
	       total_scan >= freeable) {
D
Dave Chinner 已提交
392
		unsigned long ret;
393
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
394

395
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
396 397 398 399
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
400

401 402
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
403
		scanned += nr_to_scan;
G
Glauber Costa 已提交
404 405 406 407

		cond_resched();
	}

408 409 410 411
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
412 413 414 415 416
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
417 418
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
419 420 421 422
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

423
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
424
	return freed;
425 426
}

427
/**
428
 * shrink_slab - shrink slab caches
429 430
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
431
 * @memcg: memory cgroup whose slab caches to target
432 433
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
434
 *
435
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
436
 *
437 438
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
439
 *
440 441
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 443
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
444
 *
445 446 447 448 449 450 451
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
452
 *
453
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
454
 */
455 456 457 458
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
459 460
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
461
	unsigned long freed = 0;
L
Linus Torvalds 已提交
462

463
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 465
		return 0;

466 467
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
468

469
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
470 471 472 473 474 475 476
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
477 478
		goto out;
	}
L
Linus Torvalds 已提交
479 480

	list_for_each_entry(shrinker, &shrinker_list, list) {
481 482 483
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
484
			.memcg = memcg,
485
		};
486

487 488 489 490 491 492 493
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 495
			continue;

496 497
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
498

499
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
500
	}
501

L
Linus Torvalds 已提交
502
	up_read(&shrinker_rwsem);
503 504
out:
	cond_resched();
D
Dave Chinner 已提交
505
	return freed;
L
Linus Torvalds 已提交
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
531 532
static inline int is_page_cache_freeable(struct page *page)
{
533 534 535 536 537
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
538
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
539 540
}

541
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
542
{
543
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
544
		return 1;
545
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
546
		return 1;
547
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
567
	lock_page(page);
568 569
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
570 571 572
	unlock_page(page);
}

573 574 575 576 577 578 579 580 581 582 583 584
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
585
/*
A
Andrew Morton 已提交
586 587
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
588
 */
589
static pageout_t pageout(struct page *page, struct address_space *mapping,
590
			 struct scan_control *sc)
L
Linus Torvalds 已提交
591 592 593 594 595 596 597 598
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
599
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
615
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
616 617
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
618
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
619 620 621 622 623 624 625
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
626
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
627 628 629 630 631 632 633
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
634 635
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
636 637 638 639 640 641 642
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
643
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
644 645 646
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
647

L
Linus Torvalds 已提交
648 649 650 651
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
652
		trace_mm_vmscan_writepage(page);
653
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
654 655 656 657 658 659
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

660
/*
N
Nick Piggin 已提交
661 662
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
663
 */
664 665
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
666
{
667 668
	unsigned long flags;

669 670
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
671

672
	spin_lock_irqsave(&mapping->tree_lock, flags);
673
	/*
N
Nick Piggin 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
694 695 696
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
697
	 */
698
	if (!page_ref_freeze(page, 2))
699
		goto cannot_free;
N
Nick Piggin 已提交
700 701
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
702
		page_ref_unfreeze(page, 2);
703
		goto cannot_free;
N
Nick Piggin 已提交
704
	}
705 706 707

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
708
		mem_cgroup_swapout(page, swap);
709
		__delete_from_swap_cache(page);
710
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
711
		put_swap_page(page, swap);
N
Nick Piggin 已提交
712
	} else {
713
		void (*freepage)(struct page *);
714
		void *shadow = NULL;
715 716

		freepage = mapping->a_ops->freepage;
717 718 719 720 721 722 723 724 725
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
726 727 728 729 730 731
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
732 733
		 */
		if (reclaimed && page_is_file_cache(page) &&
734
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
735
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
736
		__delete_from_page_cache(page, shadow);
737
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 739 740

		if (freepage != NULL)
			freepage(page);
741 742 743 744 745
	}

	return 1;

cannot_free:
746
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 748 749
	return 0;
}

N
Nick Piggin 已提交
750 751 752 753 754 755 756 757
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
758
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
759 760 761 762 763
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
764
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
765 766 767 768 769
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
770 771 772 773 774 775 776 777 778 779 780
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
781
	bool is_unevictable;
782
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
783

784
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
785 786 787 788

redo:
	ClearPageUnevictable(page);

789
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
790 791 792 793 794 795
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
796
		is_unevictable = false;
797
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
798 799 800 801 802
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
803
		is_unevictable = true;
L
Lee Schermerhorn 已提交
804
		add_page_to_unevictable_list(page);
805
		/*
806 807 808
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
809
		 * isolation/check_move_unevictable_pages,
810
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 812
		 * the page back to the evictable list.
		 *
813
		 * The other side is TestClearPageMlocked() or shmem_lock().
814 815
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
816 817 818 819 820 821 822
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
823
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
824 825 826 827 828 829 830 831 832 833
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

834
	if (was_unevictable && !is_unevictable)
835
		count_vm_event(UNEVICTABLE_PGRESCUED);
836
	else if (!was_unevictable && is_unevictable)
837 838
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
839 840 841
	put_page(page);		/* drop ref from isolate */
}

842 843 844
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
845
	PAGEREF_KEEP,
846 847 848 849 850 851
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
852
	int referenced_ptes, referenced_page;
853 854
	unsigned long vm_flags;

855 856
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
857
	referenced_page = TestClearPageReferenced(page);
858 859 860 861 862 863 864 865

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

866
	if (referenced_ptes) {
867
		if (PageSwapBacked(page))
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

885
		if (referenced_page || referenced_ptes > 1)
886 887
			return PAGEREF_ACTIVATE;

888 889 890 891 892 893
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

894 895
		return PAGEREF_KEEP;
	}
896 897

	/* Reclaim if clean, defer dirty pages to writeback */
898
	if (referenced_page && !PageSwapBacked(page))
899 900 901
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
902 903
}

904 905 906 907
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
908 909
	struct address_space *mapping;

910 911 912 913
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
914 915
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
916 917 918 919 920 921 922 923
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
924 925 926 927 928 929 930 931

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 933
}

934 935 936 937 938 939
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
940 941 942
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
943 944
};

L
Linus Torvalds 已提交
945
/*
A
Andrew Morton 已提交
946
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
947
 */
A
Andrew Morton 已提交
948
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
949
				      struct pglist_data *pgdat,
950
				      struct scan_control *sc,
951
				      enum ttu_flags ttu_flags,
952
				      struct reclaim_stat *stat,
953
				      bool force_reclaim)
L
Linus Torvalds 已提交
954 955
{
	LIST_HEAD(ret_pages);
956
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
957
	int pgactivate = 0;
958 959 960 961 962 963
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
964 965
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
966 967 968 969 970 971 972

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
973
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
974
		bool dirty, writeback;
L
Linus Torvalds 已提交
975 976 977 978 979 980

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
981
		if (!trylock_page(page))
L
Linus Torvalds 已提交
982 983
			goto keep;

984
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
985 986

		sc->nr_scanned++;
987

988
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
989
			goto activate_locked;
L
Lee Schermerhorn 已提交
990

991
		if (!sc->may_unmap && page_mapped(page))
992 993
			goto keep_locked;

L
Linus Torvalds 已提交
994
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
995 996
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
997 998
			sc->nr_scanned++;

999 1000 1001
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1015 1016 1017 1018 1019 1020
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1021
		mapping = page_mapping(page);
1022
		if (((dirty || writeback) && mapping &&
1023
		     inode_write_congested(mapping->host)) ||
1024
		    (writeback && PageReclaim(page)))
1025 1026
			nr_congested++;

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1038 1039
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1040
		 *
1041
		 * 2) Global or new memcg reclaim encounters a page that is
1042 1043 1044
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1045
		 *    reclaim and continue scanning.
1046
		 *
1047 1048
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1049 1050 1051 1052 1053
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1054
		 * 3) Legacy memcg encounters a page that is already marked
1055 1056 1057 1058
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1059 1060 1061 1062 1063 1064 1065 1066 1067
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1068
		 */
1069
		if (PageWriteback(page)) {
1070 1071 1072
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1073
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1074
				nr_immediate++;
1075
				goto activate_locked;
1076 1077

			/* Case 2 above */
1078
			} else if (sane_reclaim(sc) ||
1079
			    !PageReclaim(page) || !may_enter_fs) {
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1092
				nr_writeback++;
1093
				goto activate_locked;
1094 1095 1096

			/* Case 3 above */
			} else {
1097
				unlock_page(page);
1098
				wait_on_page_writeback(page);
1099 1100 1101
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1102
			}
1103
		}
L
Linus Torvalds 已提交
1104

1105 1106 1107
		if (!force_reclaim)
			references = page_check_references(page, sc);

1108 1109
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1110
			goto activate_locked;
1111
		case PAGEREF_KEEP:
1112
			nr_ref_keep++;
1113
			goto keep_locked;
1114 1115 1116 1117
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1118 1119 1120 1121

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1122
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1123
		 */
S
Shaohua Li 已提交
1124 1125
		if (PageAnon(page) && PageSwapBacked(page) &&
		    !PageSwapCache(page)) {
1126 1127
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			if (PageTransHuge(page)) {
				/* cannot split THP, skip it */
				if (!can_split_huge_page(page, NULL))
					goto activate_locked;
				/*
				 * Split pages without a PMD map right
				 * away. Chances are some or all of the
				 * tail pages can be freed without IO.
				 */
				if (!compound_mapcount(page) &&
				    split_huge_page_to_list(page, page_list))
					goto activate_locked;
			}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
			if (!add_to_swap(page)) {
				if (!PageTransHuge(page))
					goto activate_locked;
				/* Split THP and swap individual base pages */
				if (split_huge_page_to_list(page, page_list))
					goto activate_locked;
				if (!add_to_swap(page))
					goto activate_locked;
			}

			/* XXX: We don't support THP writes */
			if (PageTransHuge(page) &&
				  split_huge_page_to_list(page, page_list)) {
				delete_from_swap_cache(page);
L
Linus Torvalds 已提交
1155
				goto activate_locked;
1156 1157
			}

1158
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1159

1160 1161
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1162 1163 1164 1165
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1166
		}
L
Linus Torvalds 已提交
1167

1168 1169
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1170 1171 1172 1173
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1174
		if (page_mapped(page)) {
M
Minchan Kim 已提交
1175
			if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) {
1176
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1177 1178 1179 1180 1181
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1182
			/*
1183 1184 1185 1186 1187 1188 1189 1190
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1191
			 */
1192
			if (page_is_file_cache(page) &&
1193 1194
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1195 1196 1197 1198 1199 1200
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1201
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1202 1203
				SetPageReclaim(page);

1204
				goto activate_locked;
1205 1206
			}

1207
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1208
				goto keep_locked;
1209
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1210
				goto keep_locked;
1211
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1212 1213
				goto keep_locked;

1214 1215 1216 1217 1218 1219
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1220
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1221 1222 1223 1224 1225
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1226
				if (PageWriteback(page))
1227
					goto keep;
1228
				if (PageDirty(page))
L
Linus Torvalds 已提交
1229
					goto keep;
1230

L
Linus Torvalds 已提交
1231 1232 1233 1234
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1235
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1255
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1266
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1267 1268
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1285 1286
		}

S
Shaohua Li 已提交
1287 1288 1289 1290 1291 1292 1293 1294
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1295

S
Shaohua Li 已提交
1296
			count_vm_event(PGLAZYFREED);
1297
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1298 1299
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1300 1301 1302 1303 1304 1305 1306
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1307
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1308
free_it:
1309
		nr_reclaimed++;
1310 1311 1312 1313 1314 1315

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1316 1317 1318
		continue;

activate_locked:
1319
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1320 1321
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1322
			try_to_free_swap(page);
1323
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1324 1325 1326
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1327
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1328
		}
L
Linus Torvalds 已提交
1329 1330 1331 1332
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1333
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1334
	}
1335

1336
	mem_cgroup_uncharge_list(&free_pages);
1337
	try_to_unmap_flush();
1338
	free_hot_cold_page_list(&free_pages, true);
1339

L
Linus Torvalds 已提交
1340
	list_splice(&ret_pages, page_list);
1341
	count_vm_events(PGACTIVATE, pgactivate);
1342

1343 1344 1345 1346 1347 1348
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1349 1350 1351
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1352
	}
1353
	return nr_reclaimed;
L
Linus Torvalds 已提交
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1364
	unsigned long ret;
1365 1366 1367 1368
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1369
		if (page_is_file_cache(page) && !PageDirty(page) &&
1370
		    !__PageMovable(page)) {
1371 1372 1373 1374 1375
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1376
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1377
			TTU_IGNORE_ACCESS, NULL, true);
1378
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1379
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1380 1381 1382
	return ret;
}

A
Andy Whitcroft 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1393
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1394 1395 1396 1397 1398 1399 1400
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1401 1402
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1403 1404
		return ret;

A
Andy Whitcroft 已提交
1405
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1406

1407 1408 1409 1410 1411 1412 1413 1414
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1415
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1433

1434 1435 1436
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1450 1451 1452 1453 1454 1455

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1456
			enum lru_list lru, unsigned long *nr_zone_taken)
1457 1458 1459 1460 1461 1462 1463 1464 1465
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1466
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1467
#endif
1468 1469
	}

1470 1471
}

L
Linus Torvalds 已提交
1472
/*
1473
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478 1479 1480 1481
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1482
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1483
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1484
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1485
 * @nr_scanned:	The number of pages that were scanned.
1486
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1487
 * @mode:	One of the LRU isolation modes
1488
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1489 1490 1491
 *
 * returns how many pages were moved onto *@dst.
 */
1492
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1493
		struct lruvec *lruvec, struct list_head *dst,
1494
		unsigned long *nr_scanned, struct scan_control *sc,
1495
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1496
{
H
Hugh Dickins 已提交
1497
	struct list_head *src = &lruvec->lists[lru];
1498
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1499
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1500
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1501
	unsigned long skipped = 0;
1502
	unsigned long scan, total_scan, nr_pages;
1503
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1504

1505 1506 1507 1508
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1509 1510
		struct page *page;

L
Linus Torvalds 已提交
1511 1512 1513
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1514
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1515

1516 1517
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1518
			nr_skipped[page_zonenum(page)]++;
1519 1520 1521
			continue;
		}

1522 1523 1524 1525 1526 1527 1528
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1529
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1530
		case 0:
M
Mel Gorman 已提交
1531 1532 1533
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1534 1535 1536 1537 1538 1539 1540
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1541

A
Andy Whitcroft 已提交
1542 1543 1544
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1545 1546
	}

1547 1548 1549 1550 1551 1552 1553
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1554 1555 1556
	if (!list_empty(&pages_skipped)) {
		int zid;

1557
		list_splice(&pages_skipped, src);
1558 1559 1560 1561 1562
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1563
			skipped += nr_skipped[zid];
1564 1565
		}
	}
1566
	*nr_scanned = total_scan;
1567
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1568
				    total_scan, skipped, nr_taken, mode, lru);
1569
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1570 1571 1572
	return nr_taken;
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1584 1585 1586
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1602
	VM_BUG_ON_PAGE(!page_count(page), page);
1603
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1604

1605 1606
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1607
		struct lruvec *lruvec;
1608

1609
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1610
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1611
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1612
			int lru = page_lru(page);
1613
			get_page(page);
1614
			ClearPageLRU(page);
1615 1616
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1617
		}
1618
		spin_unlock_irq(zone_lru_lock(zone));
1619 1620 1621 1622
	}
	return ret;
}

1623
/*
F
Fengguang Wu 已提交
1624 1625 1626 1627 1628
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1629
 */
M
Mel Gorman 已提交
1630
static int too_many_isolated(struct pglist_data *pgdat, int file,
1631 1632 1633 1634 1635 1636 1637
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1638
	if (!sane_reclaim(sc))
1639 1640 1641
		return 0;

	if (file) {
M
Mel Gorman 已提交
1642 1643
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1644
	} else {
M
Mel Gorman 已提交
1645 1646
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1647 1648
	}

1649 1650 1651 1652 1653
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1654
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1655 1656
		inactive >>= 3;

1657 1658 1659
	return isolated > inactive;
}

1660
static noinline_for_stack void
H
Hugh Dickins 已提交
1661
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1662
{
1663
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1664
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1665
	LIST_HEAD(pages_to_free);
1666 1667 1668 1669 1670

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1671
		struct page *page = lru_to_page(page_list);
1672
		int lru;
1673

1674
		VM_BUG_ON_PAGE(PageLRU(page), page);
1675
		list_del(&page->lru);
1676
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1677
			spin_unlock_irq(&pgdat->lru_lock);
1678
			putback_lru_page(page);
M
Mel Gorman 已提交
1679
			spin_lock_irq(&pgdat->lru_lock);
1680 1681
			continue;
		}
1682

M
Mel Gorman 已提交
1683
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1684

1685
		SetPageLRU(page);
1686
		lru = page_lru(page);
1687 1688
		add_page_to_lru_list(page, lruvec, lru);

1689 1690
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1691 1692
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1693
		}
1694 1695 1696
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1697
			del_page_from_lru_list(page, lruvec, lru);
1698 1699

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1700
				spin_unlock_irq(&pgdat->lru_lock);
1701
				mem_cgroup_uncharge(page);
1702
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1703
				spin_lock_irq(&pgdat->lru_lock);
1704 1705
			} else
				list_add(&page->lru, &pages_to_free);
1706 1707 1708
		}
	}

1709 1710 1711 1712
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1713 1714
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1728
/*
1729
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1730
 * of reclaimed pages
L
Linus Torvalds 已提交
1731
 */
1732
static noinline_for_stack unsigned long
1733
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1734
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1735 1736
{
	LIST_HEAD(page_list);
1737
	unsigned long nr_scanned;
1738
	unsigned long nr_reclaimed = 0;
1739
	unsigned long nr_taken;
1740
	struct reclaim_stat stat = {};
1741
	isolate_mode_t isolate_mode = 0;
1742
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1743
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1744
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1745

M
Mel Gorman 已提交
1746
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1747
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1748 1749 1750 1751 1752 1753

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1754
	lru_add_drain();
1755 1756

	if (!sc->may_unmap)
1757
		isolate_mode |= ISOLATE_UNMAPPED;
1758

M
Mel Gorman 已提交
1759
	spin_lock_irq(&pgdat->lru_lock);
1760

1761 1762
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1763

M
Mel Gorman 已提交
1764
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1765
	reclaim_stat->recent_scanned[file] += nr_taken;
1766

1767 1768
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1769
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1770 1771 1772 1773
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1774
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1775 1776
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1777
	}
M
Mel Gorman 已提交
1778
	spin_unlock_irq(&pgdat->lru_lock);
1779

1780
	if (nr_taken == 0)
1781
		return 0;
A
Andy Whitcroft 已提交
1782

S
Shaohua Li 已提交
1783
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1784
				&stat, false);
1785

M
Mel Gorman 已提交
1786
	spin_lock_irq(&pgdat->lru_lock);
1787

1788 1789
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1790
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1791 1792 1793 1794
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1795
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1796 1797
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1798
	}
N
Nick Piggin 已提交
1799

1800
	putback_inactive_pages(lruvec, &page_list);
1801

M
Mel Gorman 已提交
1802
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1803

M
Mel Gorman 已提交
1804
	spin_unlock_irq(&pgdat->lru_lock);
1805

1806
	mem_cgroup_uncharge_list(&page_list);
1807
	free_hot_cold_page_list(&page_list, true);
1808

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1819 1820 1821
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1822
	 */
1823
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1824
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1825

1826
	/*
1827 1828
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1829
	 */
1830
	if (sane_reclaim(sc)) {
1831 1832 1833 1834
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1835
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1836
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1837

1838 1839
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1840 1841 1842 1843 1844 1845 1846 1847 1848
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1849
		 */
1850 1851
		if (stat.nr_unqueued_dirty == nr_taken) {
			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1852
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1853
		}
1854 1855

		/*
1856 1857 1858
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1859 1860
		 * they are written so also forcibly stall.
		 */
1861
		if (stat.nr_immediate && current_may_throttle())
1862
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1863
	}
1864

1865 1866 1867 1868 1869
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1870 1871
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1872
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1873

M
Mel Gorman 已提交
1874 1875
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1876 1877 1878 1879
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1880
			sc->priority, file);
1881
	return nr_reclaimed;
L
Linus Torvalds 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1891
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1892
 * the pages are mapped, the processing is slow (page_referenced()) so we
1893
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1894 1895 1896 1897
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1898
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1899
 * But we had to alter page->flags anyway.
1900 1901
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1902
 */
1903

1904
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1905
				     struct list_head *list,
1906
				     struct list_head *pages_to_free,
1907 1908
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1909
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1910
	struct page *page;
1911
	int nr_pages;
1912
	int nr_moved = 0;
1913 1914 1915

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1916
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1917

1918
		VM_BUG_ON_PAGE(PageLRU(page), page);
1919 1920
		SetPageLRU(page);

1921
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1922
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1923
		list_move(&page->lru, &lruvec->lists[lru]);
1924

1925 1926 1927
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1928
			del_page_from_lru_list(page, lruvec, lru);
1929 1930

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1931
				spin_unlock_irq(&pgdat->lru_lock);
1932
				mem_cgroup_uncharge(page);
1933
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1934
				spin_lock_irq(&pgdat->lru_lock);
1935 1936
			} else
				list_add(&page->lru, pages_to_free);
1937 1938
		} else {
			nr_moved += nr_pages;
1939 1940
		}
	}
1941

1942
	if (!is_active_lru(lru)) {
1943
		__count_vm_events(PGDEACTIVATE, nr_moved);
1944 1945 1946
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
1947 1948

	return nr_moved;
1949
}
1950

H
Hugh Dickins 已提交
1951
static void shrink_active_list(unsigned long nr_to_scan,
1952
			       struct lruvec *lruvec,
1953
			       struct scan_control *sc,
1954
			       enum lru_list lru)
L
Linus Torvalds 已提交
1955
{
1956
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1957
	unsigned long nr_scanned;
1958
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1959
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1960
	LIST_HEAD(l_active);
1961
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1962
	struct page *page;
1963
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1964 1965
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1966
	isolate_mode_t isolate_mode = 0;
1967
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1968
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1969 1970

	lru_add_drain();
1971 1972

	if (!sc->may_unmap)
1973
		isolate_mode |= ISOLATE_UNMAPPED;
1974

M
Mel Gorman 已提交
1975
	spin_lock_irq(&pgdat->lru_lock);
1976

1977 1978
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1979

M
Mel Gorman 已提交
1980
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1981
	reclaim_stat->recent_scanned[file] += nr_taken;
1982

M
Mel Gorman 已提交
1983
	__count_vm_events(PGREFILL, nr_scanned);
1984
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1985

M
Mel Gorman 已提交
1986
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1992

1993
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1994 1995 1996 1997
			putback_lru_page(page);
			continue;
		}

1998 1999 2000 2001 2002 2003 2004 2005
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2006 2007
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2008
			nr_rotated += hpage_nr_pages(page);
2009 2010 2011 2012 2013 2014 2015 2016 2017
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2018
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2019 2020 2021 2022
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2023

2024
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
2025 2026 2027
		list_add(&page->lru, &l_inactive);
	}

2028
	/*
2029
	 * Move pages back to the lru list.
2030
	 */
M
Mel Gorman 已提交
2031
	spin_lock_irq(&pgdat->lru_lock);
2032
	/*
2033 2034 2035
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2036
	 * get_scan_count.
2037
	 */
2038
	reclaim_stat->recent_rotated[file] += nr_rotated;
2039

2040 2041
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2042 2043
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2044

2045
	mem_cgroup_uncharge_list(&l_hold);
2046
	free_hot_cold_page_list(&l_hold, true);
2047 2048
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2049 2050
}

2051 2052 2053
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2054
 *
2055 2056 2057
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2058
 *
2059 2060
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2061
 *
2062 2063
 * If that fails and refaulting is observed, the inactive list grows.
 *
2064 2065 2066
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2067
 *
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2078
 */
2079
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2080 2081
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2082
{
2083
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2084 2085 2086 2087 2088
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2089
	unsigned long gb;
2090

2091 2092 2093 2094 2095 2096
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2097

2098 2099
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2100

2101
	if (memcg)
2102
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2103
	else
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2120

2121 2122 2123 2124 2125
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2126

2127
	return inactive * inactive_ratio < active;
2128 2129
}

2130
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2131 2132
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2133
{
2134
	if (is_active_lru(lru)) {
2135 2136
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2137
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2138 2139 2140
		return 0;
	}

2141
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2142 2143
}

2144 2145 2146 2147 2148 2149 2150
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2151 2152 2153 2154 2155 2156
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2157 2158
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2159
 */
2160
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2161 2162
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2163
{
2164
	int swappiness = mem_cgroup_swappiness(memcg);
2165 2166 2167
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2168
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2169
	unsigned long anon_prio, file_prio;
2170
	enum scan_balance scan_balance;
2171
	unsigned long anon, file;
2172
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2173
	enum lru_list lru;
2174 2175

	/* If we have no swap space, do not bother scanning anon pages. */
2176
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2177
		scan_balance = SCAN_FILE;
2178 2179
		goto out;
	}
2180

2181 2182 2183 2184 2185 2186 2187
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2188
	if (!global_reclaim(sc) && !swappiness) {
2189
		scan_balance = SCAN_FILE;
2190 2191 2192 2193 2194 2195 2196 2197
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2198
	if (!sc->priority && swappiness) {
2199
		scan_balance = SCAN_EQUAL;
2200 2201 2202
		goto out;
	}

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2213 2214 2215 2216
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2217

M
Mel Gorman 已提交
2218 2219 2220 2221 2222 2223
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2224
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2225 2226 2227 2228
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2229

M
Mel Gorman 已提交
2230
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2231 2232 2233 2234 2235
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2236
	/*
2237 2238 2239 2240 2241 2242 2243
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2244
	 */
2245
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2246
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2247
		scan_balance = SCAN_FILE;
2248 2249 2250
		goto out;
	}

2251 2252
	scan_balance = SCAN_FRACT;

2253 2254 2255 2256
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2257
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2258
	file_prio = 200 - anon_prio;
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2271

2272 2273 2274 2275
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2276

M
Mel Gorman 已提交
2277
	spin_lock_irq(&pgdat->lru_lock);
2278 2279 2280
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2281 2282
	}

2283 2284 2285
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2286 2287 2288
	}

	/*
2289 2290 2291
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2292
	 */
2293
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2294
	ap /= reclaim_stat->recent_rotated[0] + 1;
2295

2296
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2297
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2298
	spin_unlock_irq(&pgdat->lru_lock);
2299

2300 2301 2302 2303
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2304 2305 2306 2307 2308
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2309

2310 2311 2312 2313 2314 2315 2316 2317
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2318

2319 2320 2321 2322 2323
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2324
			/*
2325 2326
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2327
			 */
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2342
		}
2343 2344 2345

		*lru_pages += size;
		nr[lru] = scan;
2346
	}
2347
}
2348

2349
/*
2350
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2351
 */
2352
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2353
			      struct scan_control *sc, unsigned long *lru_pages)
2354
{
2355
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2356
	unsigned long nr[NR_LRU_LISTS];
2357
	unsigned long targets[NR_LRU_LISTS];
2358 2359 2360 2361 2362
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2363
	bool scan_adjusted;
2364

2365
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2366

2367 2368 2369
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2384 2385 2386
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2387 2388 2389
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2390 2391 2392 2393 2394 2395
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2396
							    lruvec, memcg, sc);
2397 2398
			}
		}
2399

2400 2401
		cond_resched();

2402 2403 2404 2405 2406
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2407
		 * requested. Ensure that the anon and file LRUs are scanned
2408 2409 2410 2411 2412 2413 2414
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2415 2416 2417 2418 2419 2420 2421 2422 2423
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2455 2456 2457 2458 2459 2460 2461 2462
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2463
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2464 2465 2466 2467
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2468
/* Use reclaim/compaction for costly allocs or under memory pressure */
2469
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2470
{
2471
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2472
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2473
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2474 2475 2476 2477 2478
		return true;

	return false;
}

2479
/*
M
Mel Gorman 已提交
2480 2481 2482 2483 2484
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2485
 */
2486
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2487 2488 2489 2490 2491 2492
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2493
	int z;
2494 2495

	/* If not in reclaim/compaction mode, stop */
2496
	if (!in_reclaim_compaction(sc))
2497 2498
		return false;

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2521 2522 2523 2524 2525

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2526
	pages_for_compaction = compact_gap(sc->order);
2527
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2528
	if (get_nr_swap_pages() > 0)
2529
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2530 2531 2532 2533 2534
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2535 2536
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2537
		if (!managed_zone(zone))
2538 2539 2540
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2541
		case COMPACT_SUCCESS:
2542 2543 2544 2545 2546 2547
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2548
	}
2549
	return true;
2550 2551
}

2552
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2553
{
2554
	struct reclaim_state *reclaim_state = current->reclaim_state;
2555
	unsigned long nr_reclaimed, nr_scanned;
2556
	bool reclaimable = false;
L
Linus Torvalds 已提交
2557

2558 2559 2560
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2561
			.pgdat = pgdat,
2562 2563
			.priority = sc->priority,
		};
2564
		unsigned long node_lru_pages = 0;
2565
		struct mem_cgroup *memcg;
2566

2567 2568
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2569

2570 2571
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2572
			unsigned long lru_pages;
2573
			unsigned long reclaimed;
2574
			unsigned long scanned;
2575

2576
			if (mem_cgroup_low(root, memcg)) {
2577 2578
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2579
					continue;
2580
				}
2581
				mem_cgroup_event(memcg, MEMCG_LOW);
2582 2583
			}

2584
			reclaimed = sc->nr_reclaimed;
2585
			scanned = sc->nr_scanned;
2586

2587 2588
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2589

2590
			if (memcg)
2591
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2592 2593 2594
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2595 2596 2597 2598 2599
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2600
			/*
2601 2602
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2603
			 * node.
2604 2605 2606 2607 2608
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2609
			 */
2610 2611
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2612 2613 2614
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2615
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2616

2617 2618 2619 2620
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2621
		if (global_reclaim(sc))
2622
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2623
				    sc->nr_scanned - nr_scanned,
2624
				    node_lru_pages);
2625 2626 2627 2628

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2629 2630
		}

2631 2632
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2633 2634 2635
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2636 2637 2638
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2639
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2640
					 sc->nr_scanned - nr_scanned, sc));
2641

2642 2643 2644 2645 2646 2647 2648 2649 2650
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2651
	return reclaimable;
2652 2653
}

2654
/*
2655 2656 2657
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2658
 */
2659
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2660
{
M
Mel Gorman 已提交
2661
	unsigned long watermark;
2662
	enum compact_result suitable;
2663

2664 2665 2666 2667 2668 2669 2670
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2671

2672
	/*
2673 2674 2675 2676 2677 2678 2679
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2680
	 */
2681
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2682

2683
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2684 2685
}

L
Linus Torvalds 已提交
2686 2687 2688 2689 2690 2691 2692 2693
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2694
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2695
{
2696
	struct zoneref *z;
2697
	struct zone *zone;
2698 2699
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2700
	gfp_t orig_mask;
2701
	pg_data_t *last_pgdat = NULL;
2702

2703 2704 2705 2706 2707
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2708
	orig_mask = sc->gfp_mask;
2709
	if (buffer_heads_over_limit) {
2710
		sc->gfp_mask |= __GFP_HIGHMEM;
2711
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2712
	}
2713

2714
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2715
					sc->reclaim_idx, sc->nodemask) {
2716 2717 2718 2719
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2720
		if (global_reclaim(sc)) {
2721 2722
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2723
				continue;
2724

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2736
			    compaction_ready(zone, sc)) {
2737 2738
				sc->compaction_ready = true;
				continue;
2739
			}
2740

2741 2742 2743 2744 2745 2746 2747 2748 2749
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2750 2751 2752 2753 2754 2755 2756
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2757
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2758 2759 2760 2761
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2762
			/* need some check for avoid more shrink_zone() */
2763
		}
2764

2765 2766 2767 2768
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2769
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2770
	}
2771

2772 2773 2774 2775 2776
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2777
}
2778

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2789
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2790 2791 2792 2793 2794 2795 2796 2797
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2798 2799 2800 2801 2802 2803 2804 2805
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2806 2807 2808 2809
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2810 2811 2812
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2813
 */
2814
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2815
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2816
{
2817
	int initial_priority = sc->priority;
2818 2819 2820
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2821
retry:
2822 2823
	delayacct_freepages_start();

2824
	if (global_reclaim(sc))
2825
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2826

2827
	do {
2828 2829
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2830
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2831
		shrink_zones(zonelist, sc);
2832

2833
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2834 2835 2836 2837
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2838

2839 2840 2841 2842 2843 2844
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2845
	} while (--sc->priority >= 0);
2846

2847 2848 2849 2850 2851 2852 2853 2854 2855
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
	}

2856 2857
	delayacct_freepages_end();

2858 2859 2860
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2861
	/* Aborted reclaim to try compaction? don't OOM, then */
2862
	if (sc->compaction_ready)
2863 2864
		return 1;

2865
	/* Untapped cgroup reserves?  Don't OOM, retry. */
2866
	if (sc->memcg_low_skipped) {
2867
		sc->priority = initial_priority;
2868 2869
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
2870 2871 2872
		goto retry;
	}

2873
	return 0;
L
Linus Torvalds 已提交
2874 2875
}

2876
static bool allow_direct_reclaim(pg_data_t *pgdat)
2877 2878 2879 2880 2881 2882 2883
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2884 2885 2886
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2887 2888
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2889 2890 2891 2892
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2893 2894
			continue;

2895 2896 2897 2898
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2899 2900 2901 2902
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2903 2904 2905 2906
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2907
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2919 2920 2921 2922
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2923
 */
2924
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2925 2926
					nodemask_t *nodemask)
{
2927
	struct zoneref *z;
2928
	struct zone *zone;
2929
	pg_data_t *pgdat = NULL;
2930 2931 2932 2933 2934 2935 2936 2937 2938

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2939 2940 2941 2942 2943 2944 2945 2946
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2947

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2963
					gfp_zone(gfp_mask), nodemask) {
2964 2965 2966 2967 2968
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
2969
		if (allow_direct_reclaim(pgdat))
2970 2971 2972 2973 2974 2975
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2976
		goto out;
2977

2978 2979 2980
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2991
			allow_direct_reclaim(pgdat), HZ);
2992 2993

		goto check_pending;
2994 2995 2996 2997
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2998
		allow_direct_reclaim(pgdat));
2999 3000 3001 3002 3003 3004 3005

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3006 3007
}

3008
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3009
				gfp_t gfp_mask, nodemask_t *nodemask)
3010
{
3011
	unsigned long nr_reclaimed;
3012
	struct scan_control sc = {
3013
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3014
		.gfp_mask = current_gfp_context(gfp_mask),
3015
		.reclaim_idx = gfp_zone(gfp_mask),
3016 3017 3018
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3019
		.may_writepage = !laptop_mode,
3020
		.may_unmap = 1,
3021
		.may_swap = 1,
3022 3023
	};

3024
	/*
3025 3026 3027
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3028
	 */
3029
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3030 3031
		return 1;

3032 3033
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3034
				sc.gfp_mask,
3035
				sc.reclaim_idx);
3036

3037
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3038 3039 3040 3041

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3042 3043
}

A
Andrew Morton 已提交
3044
#ifdef CONFIG_MEMCG
3045

3046
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3047
						gfp_t gfp_mask, bool noswap,
3048
						pg_data_t *pgdat,
3049
						unsigned long *nr_scanned)
3050 3051
{
	struct scan_control sc = {
3052
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3053
		.target_mem_cgroup = memcg,
3054 3055
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3056
		.reclaim_idx = MAX_NR_ZONES - 1,
3057 3058
		.may_swap = !noswap,
	};
3059
	unsigned long lru_pages;
3060

3061 3062
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3063

3064
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3065
						      sc.may_writepage,
3066 3067
						      sc.gfp_mask,
						      sc.reclaim_idx);
3068

3069 3070 3071
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3072
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3073 3074 3075
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3076
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3077 3078 3079

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3080
	*nr_scanned = sc.nr_scanned;
3081 3082 3083
	return sc.nr_reclaimed;
}

3084
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3085
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3086
					   gfp_t gfp_mask,
3087
					   bool may_swap)
3088
{
3089
	struct zonelist *zonelist;
3090
	unsigned long nr_reclaimed;
3091
	int nid;
3092
	unsigned int noreclaim_flag;
3093
	struct scan_control sc = {
3094
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3095
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3096
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3097
		.reclaim_idx = MAX_NR_ZONES - 1,
3098 3099 3100 3101
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3102
		.may_swap = may_swap,
3103
	};
3104

3105 3106 3107 3108 3109
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3110
	nid = mem_cgroup_select_victim_node(memcg);
3111

3112
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3113 3114 3115

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3116 3117
					    sc.gfp_mask,
					    sc.reclaim_idx);
3118

3119
	noreclaim_flag = memalloc_noreclaim_save();
3120
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3121
	memalloc_noreclaim_restore(noreclaim_flag);
3122 3123 3124 3125

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3126 3127 3128
}
#endif

3129
static void age_active_anon(struct pglist_data *pgdat,
3130
				struct scan_control *sc)
3131
{
3132
	struct mem_cgroup *memcg;
3133

3134 3135 3136 3137 3138
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3139
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3140

3141
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3142
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3143
					   sc, LRU_ACTIVE_ANON);
3144 3145 3146

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3147 3148
}

3149 3150 3151 3152 3153
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3154
{
3155 3156 3157
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3158

3159 3160
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3161

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3179 3180
}

3181 3182 3183 3184 3185 3186 3187 3188
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3189 3190 3191 3192 3193 3194
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3195
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3196
{
3197
	/*
3198
	 * The throttled processes are normally woken up in balance_pgdat() as
3199
	 * soon as allow_direct_reclaim() is true. But there is a potential
3200 3201 3202 3203 3204 3205 3206 3207 3208
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3209
	 */
3210 3211
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3212

3213 3214 3215 3216
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3217 3218 3219
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3220 3221
	}

3222
	return false;
3223 3224
}

3225
/*
3226 3227
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3228 3229
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3230 3231
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3232
 */
3233
static bool kswapd_shrink_node(pg_data_t *pgdat,
3234
			       struct scan_control *sc)
3235
{
3236 3237
	struct zone *zone;
	int z;
3238

3239 3240
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3241
	for (z = 0; z <= sc->reclaim_idx; z++) {
3242
		zone = pgdat->node_zones + z;
3243
		if (!managed_zone(zone))
3244
			continue;
3245

3246 3247
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3248 3249

	/*
3250 3251
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3252
	 */
3253
	shrink_node(pgdat, sc);
3254

3255
	/*
3256 3257 3258 3259 3260
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3261
	 */
3262
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3263
		sc->order = 0;
3264

3265
	return sc->nr_scanned >= sc->nr_to_reclaim;
3266 3267
}

L
Linus Torvalds 已提交
3268
/*
3269 3270 3271
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3272
 *
3273
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3274 3275
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3276
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3277 3278 3279
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3280
 */
3281
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3282 3283
{
	int i;
3284 3285
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3286
	struct zone *zone;
3287 3288
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3289
		.order = order,
3290
		.priority = DEF_PRIORITY,
3291
		.may_writepage = !laptop_mode,
3292
		.may_unmap = 1,
3293
		.may_swap = 1,
3294
	};
3295
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3296

3297
	do {
3298
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3299 3300
		bool raise_priority = true;

3301
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3302

3303
		/*
3304 3305 3306 3307 3308 3309 3310 3311
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3312 3313 3314 3315
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3316
				if (!managed_zone(zone))
3317
					continue;
3318

3319
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3320
				break;
L
Linus Torvalds 已提交
3321 3322
			}
		}
3323

3324
		/*
3325 3326 3327
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3328
		 */
3329 3330
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3331

3332 3333 3334 3335 3336 3337
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3338
		age_active_anon(pgdat, &sc);
3339

3340 3341 3342 3343
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3344
		if (sc.priority < DEF_PRIORITY - 2)
3345 3346
			sc.may_writepage = 1;

3347 3348 3349
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3350
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3351 3352 3353
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3354
		/*
3355 3356 3357
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3358
		 */
3359
		if (kswapd_shrink_node(pgdat, &sc))
3360
			raise_priority = false;
3361 3362 3363 3364 3365 3366 3367

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3368
				allow_direct_reclaim(pgdat))
3369
			wake_up_all(&pgdat->pfmemalloc_wait);
3370

3371 3372 3373
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3374

3375
		/*
3376 3377
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3378
		 */
3379 3380
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3381
			sc.priority--;
3382
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3383

3384 3385 3386
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3387
out:
3388
	snapshot_refaults(NULL, pgdat);
3389
	/*
3390 3391 3392 3393
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3394
	 */
3395
	return sc.order;
L
Linus Torvalds 已提交
3396 3397
}

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3414 3415
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3416 3417 3418 3419 3420 3421 3422 3423 3424
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3425 3426 3427 3428 3429 3430 3431
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3432
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3445
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3446

3447
		remaining = schedule_timeout(HZ/10);
3448 3449 3450 3451 3452 3453 3454

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3455
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3456 3457 3458
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3459 3460 3461 3462 3463 3464 3465 3466
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3467 3468
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3480 3481 3482 3483

		if (!kthread_should_stop())
			schedule();

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3494 3495
/*
 * The background pageout daemon, started as a kernel thread
3496
 * from the init process.
L
Linus Torvalds 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3509 3510
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3511 3512
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3513

L
Linus Torvalds 已提交
3514 3515 3516
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3517
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3518

3519 3520
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3521
	if (!cpumask_empty(cpumask))
3522
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3537
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3538
	set_freezable();
L
Linus Torvalds 已提交
3539

3540 3541
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3542
	for ( ; ; ) {
3543
		bool ret;
3544

3545 3546 3547
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3548 3549 3550
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3551

3552 3553
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3554
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3555
		pgdat->kswapd_order = 0;
3556
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3557

3558 3559 3560 3561 3562 3563 3564 3565
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3577 3578
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3579 3580 3581
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3582
	}
3583

3584
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3585
	current->reclaim_state = NULL;
3586 3587
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3594
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3595 3596 3597
{
	pg_data_t *pgdat;

3598
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3599 3600
		return;

3601
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3602
		return;
3603
	pgdat = zone->zone_pgdat;
3604 3605
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3606
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3607
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3608
		return;
3609

3610 3611 3612 3613
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return;

3614 3615
	if (pgdat_balanced(pgdat, order, classzone_idx))
		return;
3616

3617
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3618
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3619 3620
}

3621
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3622
/*
3623
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3624 3625 3626 3627 3628
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3629
 */
3630
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3631
{
3632 3633
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3634
		.nr_to_reclaim = nr_to_reclaim,
3635
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3636
		.reclaim_idx = MAX_NR_ZONES - 1,
3637
		.priority = DEF_PRIORITY,
3638
		.may_writepage = 1,
3639 3640
		.may_unmap = 1,
		.may_swap = 1,
3641
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3642
	};
3643
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3644 3645
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3646
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3647

3648
	noreclaim_flag = memalloc_noreclaim_save();
3649 3650 3651
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3652

3653
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3654

3655 3656
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
3657
	memalloc_noreclaim_restore(noreclaim_flag);
3658

3659
	return nr_reclaimed;
L
Linus Torvalds 已提交
3660
}
3661
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3662 3663 3664 3665 3666

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3667
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3668
{
3669
	int nid;
L
Linus Torvalds 已提交
3670

3671 3672 3673
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3674

3675
		mask = cpumask_of_node(pgdat->node_id);
3676

3677 3678 3679
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3680
	}
3681
	return 0;
L
Linus Torvalds 已提交
3682 3683
}

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3699
		BUG_ON(system_state < SYSTEM_RUNNING);
3700 3701
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3702
		pgdat->kswapd = NULL;
3703 3704 3705 3706
	}
	return ret;
}

3707
/*
3708
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3709
 * hold mem_hotplug_begin/end().
3710 3711 3712 3713 3714
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3715
	if (kswapd) {
3716
		kthread_stop(kswapd);
3717 3718
		NODE_DATA(nid)->kswapd = NULL;
	}
3719 3720
}

L
Linus Torvalds 已提交
3721 3722
static int __init kswapd_init(void)
{
3723
	int nid, ret;
3724

L
Linus Torvalds 已提交
3725
	swap_setup();
3726
	for_each_node_state(nid, N_MEMORY)
3727
 		kswapd_run(nid);
3728 3729 3730 3731
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3732 3733 3734 3735
	return 0;
}

module_init(kswapd_init)
3736 3737 3738

#ifdef CONFIG_NUMA
/*
3739
 * Node reclaim mode
3740
 *
3741
 * If non-zero call node_reclaim when the number of free pages falls below
3742 3743
 * the watermarks.
 */
3744
int node_reclaim_mode __read_mostly;
3745

3746
#define RECLAIM_OFF 0
3747
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3748
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3749
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3750

3751
/*
3752
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3753 3754 3755
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3756
#define NODE_RECLAIM_PRIORITY 4
3757

3758
/*
3759
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3760 3761 3762 3763
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3764 3765 3766 3767 3768 3769
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3770
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3771
{
3772 3773 3774
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3785
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3786
{
3787 3788
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3789 3790

	/*
3791
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3792
	 * potentially reclaimable. Otherwise, we have to worry about
3793
	 * pages like swapcache and node_unmapped_file_pages() provides
3794 3795
	 * a better estimate
	 */
3796 3797
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3798
	else
3799
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3800 3801

	/* If we can't clean pages, remove dirty pages from consideration */
3802 3803
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3804 3805 3806 3807 3808 3809 3810 3811

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3812
/*
3813
 * Try to free up some pages from this node through reclaim.
3814
 */
3815
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3816
{
3817
	/* Minimum pages needed in order to stay on node */
3818
	const unsigned long nr_pages = 1 << order;
3819 3820
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3821
	unsigned int noreclaim_flag;
3822
	struct scan_control sc = {
3823
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3824
		.gfp_mask = current_gfp_context(gfp_mask),
3825
		.order = order,
3826 3827 3828
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3829
		.may_swap = 1,
3830
		.reclaim_idx = gfp_zone(gfp_mask),
3831
	};
3832 3833

	cond_resched();
3834
	/*
3835
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3836
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3837
	 * and RECLAIM_UNMAP.
3838
	 */
3839 3840
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
3841
	lockdep_set_current_reclaim_state(sc.gfp_mask);
3842 3843
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3844

3845
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3846 3847 3848 3849 3850
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3851
			shrink_node(pgdat, &sc);
3852
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3853
	}
3854

3855
	p->reclaim_state = NULL;
3856 3857
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
3858
	lockdep_clear_current_reclaim_state();
3859
	return sc.nr_reclaimed >= nr_pages;
3860
}
3861

3862
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3863
{
3864
	int ret;
3865 3866

	/*
3867
	 * Node reclaim reclaims unmapped file backed pages and
3868
	 * slab pages if we are over the defined limits.
3869
	 *
3870 3871
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3872 3873
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3874
	 * unmapped file backed pages.
3875
	 */
3876 3877 3878
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3879 3880

	/*
3881
	 * Do not scan if the allocation should not be delayed.
3882
	 */
3883
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3884
		return NODE_RECLAIM_NOSCAN;
3885 3886

	/*
3887
	 * Only run node reclaim on the local node or on nodes that do not
3888 3889 3890 3891
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3892 3893
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3894

3895 3896
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3897

3898 3899
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3900

3901 3902 3903
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3904
	return ret;
3905
}
3906
#endif
L
Lee Schermerhorn 已提交
3907 3908 3909 3910 3911 3912

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3913
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3914 3915
 *
 * Reasons page might not be evictable:
3916
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3917
 * (2) page is part of an mlocked VMA
3918
 *
L
Lee Schermerhorn 已提交
3919
 */
3920
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3921
{
3922
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3923
}
3924

3925
#ifdef CONFIG_SHMEM
3926
/**
3927 3928 3929
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3930
 *
3931
 * Checks pages for evictability and moves them to the appropriate lru list.
3932 3933
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3934
 */
3935
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3936
{
3937
	struct lruvec *lruvec;
3938
	struct pglist_data *pgdat = NULL;
3939 3940 3941
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3942

3943 3944
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3945
		struct pglist_data *pagepgdat = page_pgdat(page);
3946

3947
		pgscanned++;
3948 3949 3950 3951 3952
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3953
		}
3954
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3955

3956 3957
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3958

3959
		if (page_evictable(page)) {
3960 3961
			enum lru_list lru = page_lru_base_type(page);

3962
			VM_BUG_ON_PAGE(PageActive(page), page);
3963
			ClearPageUnevictable(page);
3964 3965
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3966
			pgrescued++;
3967
		}
3968
	}
3969

3970
	if (pgdat) {
3971 3972
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3973
		spin_unlock_irq(&pgdat->lru_lock);
3974 3975
	}
}
3976
#endif /* CONFIG_SHMEM */