vmscan.c 114.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
L
Linus Torvalds 已提交
52 53 54 55 56

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
57
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
58

59 60
#include "internal.h"

61 62 63
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
64
struct scan_control {
65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70

71
	/* Allocation order */
A
Andy Whitcroft 已提交
72
	int order;
73

74 75 76 77 78
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
79

80 81 82 83 84
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
85

86 87 88
	/* Scan (total_size >> priority) pages at once */
	int priority;

89 90 91
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

92
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
93 94 95 96 97 98 99 100
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

101 102 103 104 105 106 107
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
108

109 110 111 112 113 114 115 116 117 118
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
153 154 155 156 157
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
158 159 160 161

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
162
#ifdef CONFIG_MEMCG
163 164
static bool global_reclaim(struct scan_control *sc)
{
165
	return !sc->target_mem_cgroup;
166
}
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
188
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 190 191 192
		return true;
#endif
	return false;
}
193
#else
194 195 196 197
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
198 199 200 201 202

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
203 204
#endif

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
223 224 225 226 227 228 229
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
230 231

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
232 233 234
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
235 236 237 238

	return nr;
}

239 240 241 242 243 244 245
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246
{
247 248 249
	unsigned long lru_size;
	int zid;

250
	if (!mem_cgroup_disabled())
251 252 253
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254

255 256 257
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
258

259 260 261 262 263 264 265 266 267 268 269 270
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
271 272 273

}

L
Linus Torvalds 已提交
274
/*
G
Glauber Costa 已提交
275
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
276
 */
G
Glauber Costa 已提交
277
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
278
{
G
Glauber Costa 已提交
279 280 281 282 283 284 285 286 287
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

288 289 290
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
291
	return 0;
L
Linus Torvalds 已提交
292
}
293
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
294 295 296 297

/*
 * Remove one
 */
298
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
299
{
300 301
	if (!shrinker->nr_deferred)
		return;
L
Linus Torvalds 已提交
302 303 304
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
305
	kfree(shrinker->nr_deferred);
306
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
307
}
308
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
309 310

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
311

312
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
313
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
314 315 316 317
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
318
	long freeable;
G
Glauber Costa 已提交
319 320 321 322 323
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
324
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
325

326 327
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
328 329 330 331 332 333 334 335 336 337
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
338 339 340
	delta = freeable >> priority;
	delta *= 4;
	do_div(delta, shrinker->seeks);
G
Glauber Costa 已提交
341 342
	total_scan += delta;
	if (total_scan < 0) {
343
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
344
		       shrinker->scan_objects, total_scan);
345
		total_scan = freeable;
346 347 348
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
349 350 351 352 353 354 355

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
356
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
357 358 359 360 361
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
362 363
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
364 365 366 367 368 369

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
370 371
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
372 373

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
374
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
375

376 377 378 379 380 381 382 383 384 385 386
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
387
	 * than the total number of objects on slab (freeable), we must be
388 389 390 391
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
392
	       total_scan >= freeable) {
D
Dave Chinner 已提交
393
		unsigned long ret;
394
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
395

396
		shrinkctl->nr_to_scan = nr_to_scan;
397
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
398 399 400 401
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
402

403 404 405
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
406 407 408 409

		cond_resched();
	}

410 411 412 413
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
414 415 416 417 418
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
419 420
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
421 422 423 424
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

425
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
426
	return freed;
427 428
}

429
/**
430
 * shrink_slab - shrink slab caches
431 432
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
433
 * @memcg: memory cgroup whose slab caches to target
434
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
435
 *
436
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
437
 *
438 439
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
440
 *
441 442
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
443 444
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
445
 *
446 447
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
448
 *
449
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
450
 */
451 452
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
453
				 int priority)
L
Linus Torvalds 已提交
454 455
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
456
	unsigned long freed = 0;
L
Linus Torvalds 已提交
457

458
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
459 460
		return 0;

461
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
462 463 464 465 466 467 468
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
469 470
		goto out;
	}
L
Linus Torvalds 已提交
471 472

	list_for_each_entry(shrinker, &shrinker_list, list) {
473 474 475
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
476
			.memcg = memcg,
477
		};
478

479 480 481 482 483 484 485
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
486 487
			continue;

488 489
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
490

491
		freed += do_shrink_slab(&sc, shrinker, priority);
L
Linus Torvalds 已提交
492
	}
493

L
Linus Torvalds 已提交
494
	up_read(&shrinker_rwsem);
495 496
out:
	cond_resched();
D
Dave Chinner 已提交
497
	return freed;
L
Linus Torvalds 已提交
498 499
}

500 501 502 503 504 505 506 507 508
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
509
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
510 511 512 513 514 515 516 517 518 519 520 521
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
522 523
static inline int is_page_cache_freeable(struct page *page)
{
524 525 526 527 528
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
529 530 531
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
532 533
}

534
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
535
{
536
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
537
		return 1;
538
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
539
		return 1;
540
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
560
	lock_page(page);
561 562
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
563 564 565
	unlock_page(page);
}

566 567 568 569 570 571 572 573 574 575 576 577
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
578
/*
A
Andrew Morton 已提交
579 580
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
581
 */
582
static pageout_t pageout(struct page *page, struct address_space *mapping,
583
			 struct scan_control *sc)
L
Linus Torvalds 已提交
584 585 586 587 588 589 590 591
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
592
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
608
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
609 610
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
611
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
612 613 614 615 616 617 618
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
619
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
620 621 622 623 624 625 626
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
627 628
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
629 630 631 632 633 634 635
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
636
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
637 638 639
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
640

L
Linus Torvalds 已提交
641 642 643 644
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
645
		trace_mm_vmscan_writepage(page);
646
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
647 648 649 650 651 652
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

653
/*
N
Nick Piggin 已提交
654 655
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
656
 */
657 658
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
659
{
660
	unsigned long flags;
661
	int refcount;
662

663 664
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
665

666
	spin_lock_irqsave(&mapping->tree_lock, flags);
667
	/*
N
Nick Piggin 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
687
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
688 689 690
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
691
	 */
692 693 694 695 696
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
697
		goto cannot_free;
N
Nick Piggin 已提交
698 699
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
700
		page_ref_unfreeze(page, refcount);
701
		goto cannot_free;
N
Nick Piggin 已提交
702
	}
703 704 705

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
706
		mem_cgroup_swapout(page, swap);
707
		__delete_from_swap_cache(page);
708
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
709
		put_swap_page(page, swap);
N
Nick Piggin 已提交
710
	} else {
711
		void (*freepage)(struct page *);
712
		void *shadow = NULL;
713 714

		freepage = mapping->a_ops->freepage;
715 716 717 718 719 720 721 722 723
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
724 725 726 727 728 729
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
730 731
		 */
		if (reclaimed && page_is_file_cache(page) &&
732
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
733
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
734
		__delete_from_page_cache(page, shadow);
735
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
736 737 738

		if (freepage != NULL)
			freepage(page);
739 740 741 742 743
	}

	return 1;

cannot_free:
744
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
745 746 747
	return 0;
}

N
Nick Piggin 已提交
748 749 750 751 752 753 754 755
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
756
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
757 758 759 760 761
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
762
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
763 764 765 766 767
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
768 769 770 771 772 773 774 775 776 777 778
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
779
	bool is_unevictable;
780
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
781

782
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
783 784 785 786

redo:
	ClearPageUnevictable(page);

787
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
788 789 790 791 792 793
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
794
		is_unevictable = false;
795
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
796 797 798 799 800
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
801
		is_unevictable = true;
L
Lee Schermerhorn 已提交
802
		add_page_to_unevictable_list(page);
803
		/*
804 805 806
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
807
		 * isolation/check_move_unevictable_pages,
808
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
809 810
		 * the page back to the evictable list.
		 *
811
		 * The other side is TestClearPageMlocked() or shmem_lock().
812 813
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
814 815 816 817 818 819 820
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
821
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
822 823 824 825 826 827 828 829 830 831
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

832
	if (was_unevictable && !is_unevictable)
833
		count_vm_event(UNEVICTABLE_PGRESCUED);
834
	else if (!was_unevictable && is_unevictable)
835 836
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
837 838 839
	put_page(page);		/* drop ref from isolate */
}

840 841 842
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
843
	PAGEREF_KEEP,
844 845 846 847 848 849
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
850
	int referenced_ptes, referenced_page;
851 852
	unsigned long vm_flags;

853 854
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
855
	referenced_page = TestClearPageReferenced(page);
856 857 858 859 860 861 862 863

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

864
	if (referenced_ptes) {
865
		if (PageSwapBacked(page))
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

883
		if (referenced_page || referenced_ptes > 1)
884 885
			return PAGEREF_ACTIVATE;

886 887 888 889 890 891
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

892 893
		return PAGEREF_KEEP;
	}
894 895

	/* Reclaim if clean, defer dirty pages to writeback */
896
	if (referenced_page && !PageSwapBacked(page))
897 898 899
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
900 901
}

902 903 904 905
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
906 907
	struct address_space *mapping;

908 909 910 911
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
912 913
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
914 915 916 917 918 919 920 921
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
922 923 924 925 926 927 928 929

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
930 931
}

932 933 934 935 936 937
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
938 939 940
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
941 942
};

L
Linus Torvalds 已提交
943
/*
A
Andrew Morton 已提交
944
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
945
 */
A
Andrew Morton 已提交
946
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
947
				      struct pglist_data *pgdat,
948
				      struct scan_control *sc,
949
				      enum ttu_flags ttu_flags,
950
				      struct reclaim_stat *stat,
951
				      bool force_reclaim)
L
Linus Torvalds 已提交
952 953
{
	LIST_HEAD(ret_pages);
954
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
955
	int pgactivate = 0;
956 957 958 959 960 961
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
962 963
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
964 965 966 967 968 969 970

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
971
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
972
		bool dirty, writeback;
L
Linus Torvalds 已提交
973 974 975 976 977 978

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
979
		if (!trylock_page(page))
L
Linus Torvalds 已提交
980 981
			goto keep;

982
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
983 984

		sc->nr_scanned++;
985

986
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
987
			goto activate_locked;
L
Lee Schermerhorn 已提交
988

989
		if (!sc->may_unmap && page_mapped(page))
990 991
			goto keep_locked;

L
Linus Torvalds 已提交
992
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
993 994
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
995 996
			sc->nr_scanned++;

997 998 999
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1013 1014 1015 1016 1017 1018
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1019
		mapping = page_mapping(page);
1020
		if (((dirty || writeback) && mapping &&
1021
		     inode_write_congested(mapping->host)) ||
1022
		    (writeback && PageReclaim(page)))
1023 1024
			nr_congested++;

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1036 1037
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1038
		 *
1039
		 * 2) Global or new memcg reclaim encounters a page that is
1040 1041 1042
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1043
		 *    reclaim and continue scanning.
1044
		 *
1045 1046
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1047 1048 1049 1050 1051
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1052
		 * 3) Legacy memcg encounters a page that is already marked
1053 1054 1055 1056
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1057 1058 1059 1060 1061 1062 1063 1064 1065
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1066
		 */
1067
		if (PageWriteback(page)) {
1068 1069 1070
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1071
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1072
				nr_immediate++;
1073
				goto activate_locked;
1074 1075

			/* Case 2 above */
1076
			} else if (sane_reclaim(sc) ||
1077
			    !PageReclaim(page) || !may_enter_fs) {
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1090
				nr_writeback++;
1091
				goto activate_locked;
1092 1093 1094

			/* Case 3 above */
			} else {
1095
				unlock_page(page);
1096
				wait_on_page_writeback(page);
1097 1098 1099
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1100
			}
1101
		}
L
Linus Torvalds 已提交
1102

1103 1104 1105
		if (!force_reclaim)
			references = page_check_references(page, sc);

1106 1107
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1108
			goto activate_locked;
1109
		case PAGEREF_KEEP:
1110
			nr_ref_keep++;
1111
			goto keep_locked;
1112 1113 1114 1115
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1116 1117 1118 1119

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1120
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1121
		 */
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1147 1148 1149
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1150 1151 1152
					if (!add_to_swap(page))
						goto activate_locked;
				}
1153

1154
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1155

1156 1157 1158
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1159 1160 1161 1162
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1163
		}
L
Linus Torvalds 已提交
1164 1165 1166 1167 1168

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1169
		if (page_mapped(page)) {
1170 1171 1172 1173 1174
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1175
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1176 1177 1178 1179 1180
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1181
			/*
1182 1183 1184 1185 1186 1187 1188 1189
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1190
			 */
1191
			if (page_is_file_cache(page) &&
1192 1193
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1194 1195 1196 1197 1198 1199
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1200
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1201 1202
				SetPageReclaim(page);

1203
				goto activate_locked;
1204 1205
			}

1206
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1207
				goto keep_locked;
1208
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1209
				goto keep_locked;
1210
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1211 1212
				goto keep_locked;

1213 1214 1215 1216 1217 1218
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1219
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1220 1221 1222 1223 1224
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1225
				if (PageWriteback(page))
1226
					goto keep;
1227
				if (PageDirty(page))
L
Linus Torvalds 已提交
1228
					goto keep;
1229

L
Linus Torvalds 已提交
1230 1231 1232 1233
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1234
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1254
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1265
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1266 1267
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1284 1285
		}

S
Shaohua Li 已提交
1286 1287 1288 1289 1290 1291 1292 1293
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1294

S
Shaohua Li 已提交
1295
			count_vm_event(PGLAZYFREED);
1296
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1297 1298
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1299 1300 1301 1302 1303 1304 1305
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1306
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1307
free_it:
1308
		nr_reclaimed++;
1309 1310 1311 1312 1313

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1314 1315 1316 1317 1318
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1319 1320 1321
		continue;

activate_locked:
1322
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1323 1324
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1325
			try_to_free_swap(page);
1326
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1327 1328 1329
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1330
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1331
		}
L
Linus Torvalds 已提交
1332 1333 1334 1335
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1336
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1337
	}
1338

1339
	mem_cgroup_uncharge_list(&free_pages);
1340
	try_to_unmap_flush();
1341
	free_unref_page_list(&free_pages);
1342

L
Linus Torvalds 已提交
1343
	list_splice(&ret_pages, page_list);
1344
	count_vm_events(PGACTIVATE, pgactivate);
1345

1346 1347 1348 1349 1350 1351
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1352 1353 1354
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1355
	}
1356
	return nr_reclaimed;
L
Linus Torvalds 已提交
1357 1358
}

1359 1360 1361 1362 1363 1364 1365 1366
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1367
	unsigned long ret;
1368 1369 1370 1371
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1372
		if (page_is_file_cache(page) && !PageDirty(page) &&
1373
		    !__PageMovable(page)) {
1374 1375 1376 1377 1378
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1379
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1380
			TTU_IGNORE_ACCESS, NULL, true);
1381
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1382
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1383 1384 1385
	return ret;
}

A
Andy Whitcroft 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1396
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1397 1398 1399 1400 1401 1402 1403
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1404 1405
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1406 1407
		return ret;

A
Andy Whitcroft 已提交
1408
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1409

1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1418
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1436

1437 1438 1439
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1453 1454 1455 1456 1457 1458

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1459
			enum lru_list lru, unsigned long *nr_zone_taken)
1460 1461 1462 1463 1464 1465 1466 1467 1468
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1469
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1470
#endif
1471 1472
	}

1473 1474
}

L
Linus Torvalds 已提交
1475
/*
1476
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1477 1478 1479 1480 1481 1482 1483 1484
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1485
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1486
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1487
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1488
 * @nr_scanned:	The number of pages that were scanned.
1489
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1490
 * @mode:	One of the LRU isolation modes
1491
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1492 1493 1494
 *
 * returns how many pages were moved onto *@dst.
 */
1495
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1496
		struct lruvec *lruvec, struct list_head *dst,
1497
		unsigned long *nr_scanned, struct scan_control *sc,
1498
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1499
{
H
Hugh Dickins 已提交
1500
	struct list_head *src = &lruvec->lists[lru];
1501
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1502
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1503
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1504
	unsigned long skipped = 0;
1505
	unsigned long scan, total_scan, nr_pages;
1506
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1507

1508 1509 1510 1511
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1512 1513
		struct page *page;

L
Linus Torvalds 已提交
1514 1515 1516
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1517
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1518

1519 1520
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1521
			nr_skipped[page_zonenum(page)]++;
1522 1523 1524
			continue;
		}

1525 1526 1527 1528 1529 1530 1531
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1532
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1533
		case 0:
M
Mel Gorman 已提交
1534 1535 1536
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1537 1538 1539 1540 1541 1542 1543
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1544

A
Andy Whitcroft 已提交
1545 1546 1547
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1548 1549
	}

1550 1551 1552 1553 1554 1555 1556
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1557 1558 1559
	if (!list_empty(&pages_skipped)) {
		int zid;

1560
		list_splice(&pages_skipped, src);
1561 1562 1563 1564 1565
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1566
			skipped += nr_skipped[zid];
1567 1568
		}
	}
1569
	*nr_scanned = total_scan;
1570
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1571
				    total_scan, skipped, nr_taken, mode, lru);
1572
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1573 1574 1575
	return nr_taken;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1587 1588 1589
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1605
	VM_BUG_ON_PAGE(!page_count(page), page);
1606
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1607

1608 1609
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1610
		struct lruvec *lruvec;
1611

1612
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1613
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1614
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1615
			int lru = page_lru(page);
1616
			get_page(page);
1617
			ClearPageLRU(page);
1618 1619
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1620
		}
1621
		spin_unlock_irq(zone_lru_lock(zone));
1622 1623 1624 1625
	}
	return ret;
}

1626
/*
F
Fengguang Wu 已提交
1627 1628 1629 1630 1631
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1632
 */
M
Mel Gorman 已提交
1633
static int too_many_isolated(struct pglist_data *pgdat, int file,
1634 1635 1636 1637 1638 1639 1640
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1641
	if (!sane_reclaim(sc))
1642 1643 1644
		return 0;

	if (file) {
M
Mel Gorman 已提交
1645 1646
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1647
	} else {
M
Mel Gorman 已提交
1648 1649
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1650 1651
	}

1652 1653 1654 1655 1656
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1657
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1658 1659
		inactive >>= 3;

1660 1661 1662
	return isolated > inactive;
}

1663
static noinline_for_stack void
H
Hugh Dickins 已提交
1664
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1665
{
1666
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1667
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1668
	LIST_HEAD(pages_to_free);
1669 1670 1671 1672 1673

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1674
		struct page *page = lru_to_page(page_list);
1675
		int lru;
1676

1677
		VM_BUG_ON_PAGE(PageLRU(page), page);
1678
		list_del(&page->lru);
1679
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1680
			spin_unlock_irq(&pgdat->lru_lock);
1681
			putback_lru_page(page);
M
Mel Gorman 已提交
1682
			spin_lock_irq(&pgdat->lru_lock);
1683 1684
			continue;
		}
1685

M
Mel Gorman 已提交
1686
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1687

1688
		SetPageLRU(page);
1689
		lru = page_lru(page);
1690 1691
		add_page_to_lru_list(page, lruvec, lru);

1692 1693
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1694 1695
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1696
		}
1697 1698 1699
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1700
			del_page_from_lru_list(page, lruvec, lru);
1701 1702

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1703
				spin_unlock_irq(&pgdat->lru_lock);
1704
				mem_cgroup_uncharge(page);
1705
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1706
				spin_lock_irq(&pgdat->lru_lock);
1707 1708
			} else
				list_add(&page->lru, &pages_to_free);
1709 1710 1711
		}
	}

1712 1713 1714 1715
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1716 1717
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1731
/*
1732
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1733
 * of reclaimed pages
L
Linus Torvalds 已提交
1734
 */
1735
static noinline_for_stack unsigned long
1736
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1737
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1738 1739
{
	LIST_HEAD(page_list);
1740
	unsigned long nr_scanned;
1741
	unsigned long nr_reclaimed = 0;
1742
	unsigned long nr_taken;
1743
	struct reclaim_stat stat = {};
1744
	isolate_mode_t isolate_mode = 0;
1745
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1746
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1747
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1748
	bool stalled = false;
1749

M
Mel Gorman 已提交
1750
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1751 1752 1753 1754 1755 1756
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1757 1758 1759 1760 1761 1762

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1763
	lru_add_drain();
1764 1765

	if (!sc->may_unmap)
1766
		isolate_mode |= ISOLATE_UNMAPPED;
1767

M
Mel Gorman 已提交
1768
	spin_lock_irq(&pgdat->lru_lock);
1769

1770 1771
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1772

M
Mel Gorman 已提交
1773
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1774
	reclaim_stat->recent_scanned[file] += nr_taken;
1775

1776 1777
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1778
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1779 1780 1781 1782
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1783
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1784 1785
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1786
	}
M
Mel Gorman 已提交
1787
	spin_unlock_irq(&pgdat->lru_lock);
1788

1789
	if (nr_taken == 0)
1790
		return 0;
A
Andy Whitcroft 已提交
1791

S
Shaohua Li 已提交
1792
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1793
				&stat, false);
1794

M
Mel Gorman 已提交
1795
	spin_lock_irq(&pgdat->lru_lock);
1796

1797 1798
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1799
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1800 1801 1802 1803
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1804
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1805 1806
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1807
	}
N
Nick Piggin 已提交
1808

1809
	putback_inactive_pages(lruvec, &page_list);
1810

M
Mel Gorman 已提交
1811
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1812

M
Mel Gorman 已提交
1813
	spin_unlock_irq(&pgdat->lru_lock);
1814

1815
	mem_cgroup_uncharge_list(&page_list);
1816
	free_unref_page_list(&page_list);
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1828 1829 1830
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1831
	 */
1832
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1833
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1834

1835
	/*
1836 1837
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1838
	 */
1839
	if (sane_reclaim(sc)) {
1840 1841 1842 1843
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1844
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1845
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1846

1847 1848
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1849 1850 1851 1852 1853 1854 1855 1856 1857
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1858
		 */
1859
		if (stat.nr_unqueued_dirty == nr_taken) {
1860
			wakeup_flusher_threads(WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1861
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1862
		}
1863 1864

		/*
1865 1866 1867
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1868 1869
		 * they are written so also forcibly stall.
		 */
1870
		if (stat.nr_immediate && current_may_throttle())
1871
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1872
	}
1873

1874 1875 1876 1877 1878
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1879 1880
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1881
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1882

M
Mel Gorman 已提交
1883 1884
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1885 1886 1887 1888
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1889
			sc->priority, file);
1890
	return nr_reclaimed;
L
Linus Torvalds 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1900
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1901
 * the pages are mapped, the processing is slow (page_referenced()) so we
1902
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1903 1904 1905 1906
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1907
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1908
 * But we had to alter page->flags anyway.
1909 1910
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1911
 */
1912

1913
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1914
				     struct list_head *list,
1915
				     struct list_head *pages_to_free,
1916 1917
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1918
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1919
	struct page *page;
1920
	int nr_pages;
1921
	int nr_moved = 0;
1922 1923 1924

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1925
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1926

1927
		VM_BUG_ON_PAGE(PageLRU(page), page);
1928 1929
		SetPageLRU(page);

1930
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1931
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1932
		list_move(&page->lru, &lruvec->lists[lru]);
1933

1934 1935 1936
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1937
			del_page_from_lru_list(page, lruvec, lru);
1938 1939

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1940
				spin_unlock_irq(&pgdat->lru_lock);
1941
				mem_cgroup_uncharge(page);
1942
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1943
				spin_lock_irq(&pgdat->lru_lock);
1944 1945
			} else
				list_add(&page->lru, pages_to_free);
1946 1947
		} else {
			nr_moved += nr_pages;
1948 1949
		}
	}
1950

1951
	if (!is_active_lru(lru)) {
1952
		__count_vm_events(PGDEACTIVATE, nr_moved);
1953 1954 1955
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
1956 1957

	return nr_moved;
1958
}
1959

H
Hugh Dickins 已提交
1960
static void shrink_active_list(unsigned long nr_to_scan,
1961
			       struct lruvec *lruvec,
1962
			       struct scan_control *sc,
1963
			       enum lru_list lru)
L
Linus Torvalds 已提交
1964
{
1965
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1966
	unsigned long nr_scanned;
1967
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1968
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1969
	LIST_HEAD(l_active);
1970
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1971
	struct page *page;
1972
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1973 1974
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1975
	isolate_mode_t isolate_mode = 0;
1976
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1977
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1978 1979

	lru_add_drain();
1980 1981

	if (!sc->may_unmap)
1982
		isolate_mode |= ISOLATE_UNMAPPED;
1983

M
Mel Gorman 已提交
1984
	spin_lock_irq(&pgdat->lru_lock);
1985

1986 1987
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1988

M
Mel Gorman 已提交
1989
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1990
	reclaim_stat->recent_scanned[file] += nr_taken;
1991

M
Mel Gorman 已提交
1992
	__count_vm_events(PGREFILL, nr_scanned);
1993
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1994

M
Mel Gorman 已提交
1995
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2001

2002
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2003 2004 2005 2006
			putback_lru_page(page);
			continue;
		}

2007 2008 2009 2010 2011 2012 2013 2014
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2015 2016
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2017
			nr_rotated += hpage_nr_pages(page);
2018 2019 2020 2021 2022 2023 2024 2025 2026
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2027
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2028 2029 2030 2031
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2032

2033
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
2034 2035 2036
		list_add(&page->lru, &l_inactive);
	}

2037
	/*
2038
	 * Move pages back to the lru list.
2039
	 */
M
Mel Gorman 已提交
2040
	spin_lock_irq(&pgdat->lru_lock);
2041
	/*
2042 2043 2044
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2045
	 * get_scan_count.
2046
	 */
2047
	reclaim_stat->recent_rotated[file] += nr_rotated;
2048

2049 2050
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2051 2052
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2053

2054
	mem_cgroup_uncharge_list(&l_hold);
2055
	free_unref_page_list(&l_hold);
2056 2057
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2058 2059
}

2060 2061 2062
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2063
 *
2064 2065 2066
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2067
 *
2068 2069
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2070
 *
2071 2072
 * If that fails and refaulting is observed, the inactive list grows.
 *
2073
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2074
 * on this LRU, maintained by the pageout code. An inactive_ratio
2075
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2076
 *
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2087
 */
2088
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2089 2090
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2091
{
2092
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2093 2094 2095 2096 2097
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2098
	unsigned long gb;
2099

2100 2101 2102 2103 2104 2105
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2106

2107 2108
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2109

2110
	if (memcg)
2111
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2112
	else
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2129

2130 2131 2132 2133 2134
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2135

2136
	return inactive * inactive_ratio < active;
2137 2138
}

2139
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2140 2141
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2142
{
2143
	if (is_active_lru(lru)) {
2144 2145
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2146
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2147 2148 2149
		return 0;
	}

2150
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2151 2152
}

2153 2154 2155 2156 2157 2158 2159
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2160 2161 2162 2163 2164 2165
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2166 2167
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2168
 */
2169
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2170 2171
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2172
{
2173
	int swappiness = mem_cgroup_swappiness(memcg);
2174 2175 2176
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2177
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2178
	unsigned long anon_prio, file_prio;
2179
	enum scan_balance scan_balance;
2180
	unsigned long anon, file;
2181
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2182
	enum lru_list lru;
2183 2184

	/* If we have no swap space, do not bother scanning anon pages. */
2185
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2186
		scan_balance = SCAN_FILE;
2187 2188
		goto out;
	}
2189

2190 2191 2192 2193 2194 2195 2196
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2197
	if (!global_reclaim(sc) && !swappiness) {
2198
		scan_balance = SCAN_FILE;
2199 2200 2201 2202 2203 2204 2205 2206
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2207
	if (!sc->priority && swappiness) {
2208
		scan_balance = SCAN_EQUAL;
2209 2210 2211
		goto out;
	}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2222 2223 2224 2225
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2226

M
Mel Gorman 已提交
2227 2228 2229 2230 2231 2232
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2233
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2234 2235 2236 2237
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2238

M
Mel Gorman 已提交
2239
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2251 2252 2253
		}
	}

2254
	/*
2255 2256 2257 2258 2259 2260 2261
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2262
	 */
2263
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2264
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2265
		scan_balance = SCAN_FILE;
2266 2267 2268
		goto out;
	}

2269 2270
	scan_balance = SCAN_FRACT;

2271 2272 2273 2274
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2275
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2276
	file_prio = 200 - anon_prio;
2277

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2289

2290 2291 2292 2293
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2294

M
Mel Gorman 已提交
2295
	spin_lock_irq(&pgdat->lru_lock);
2296 2297 2298
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2299 2300
	}

2301 2302 2303
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2304 2305 2306
	}

	/*
2307 2308 2309
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2310
	 */
2311
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2312
	ap /= reclaim_stat->recent_rotated[0] + 1;
2313

2314
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2315
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2316
	spin_unlock_irq(&pgdat->lru_lock);
2317

2318 2319 2320 2321
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2322 2323 2324 2325 2326
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2327

2328 2329 2330 2331 2332 2333 2334 2335
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2336

2337 2338 2339 2340 2341
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2342
			/*
2343 2344
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2345
			 */
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2360
		}
2361 2362 2363

		*lru_pages += size;
		nr[lru] = scan;
2364
	}
2365
}
2366

2367
/*
2368
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2369
 */
2370
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2371
			      struct scan_control *sc, unsigned long *lru_pages)
2372
{
2373
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2374
	unsigned long nr[NR_LRU_LISTS];
2375
	unsigned long targets[NR_LRU_LISTS];
2376 2377 2378 2379 2380
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2381
	bool scan_adjusted;
2382

2383
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2384

2385 2386 2387
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2402 2403 2404
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2405 2406 2407
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2408 2409 2410 2411 2412 2413
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2414
							    lruvec, memcg, sc);
2415 2416
			}
		}
2417

2418 2419
		cond_resched();

2420 2421 2422 2423 2424
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2425
		 * requested. Ensure that the anon and file LRUs are scanned
2426 2427 2428 2429 2430 2431 2432
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2433 2434 2435 2436 2437 2438 2439 2440 2441
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2473 2474 2475 2476 2477 2478 2479 2480
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2481
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2482 2483 2484 2485
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2486
/* Use reclaim/compaction for costly allocs or under memory pressure */
2487
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2488
{
2489
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2490
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2491
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2492 2493 2494 2495 2496
		return true;

	return false;
}

2497
/*
M
Mel Gorman 已提交
2498 2499 2500 2501 2502
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2503
 */
2504
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2505 2506 2507 2508 2509 2510
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2511
	int z;
2512 2513

	/* If not in reclaim/compaction mode, stop */
2514
	if (!in_reclaim_compaction(sc))
2515 2516
		return false;

2517
	/* Consider stopping depending on scan and reclaim activity */
2518
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2519
		/*
2520
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2521 2522
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2523
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2524 2525 2526 2527 2528
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2529
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2530 2531 2532 2533 2534 2535 2536 2537 2538
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2539 2540 2541 2542 2543

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2544
	pages_for_compaction = compact_gap(sc->order);
2545
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2546
	if (get_nr_swap_pages() > 0)
2547
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2548 2549 2550 2551 2552
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2553 2554
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2555
		if (!managed_zone(zone))
2556 2557 2558
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2559
		case COMPACT_SUCCESS:
2560 2561 2562 2563 2564 2565
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2566
	}
2567
	return true;
2568 2569
}

2570
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2571
{
2572
	struct reclaim_state *reclaim_state = current->reclaim_state;
2573
	unsigned long nr_reclaimed, nr_scanned;
2574
	bool reclaimable = false;
L
Linus Torvalds 已提交
2575

2576 2577 2578
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2579
			.pgdat = pgdat,
2580 2581
			.priority = sc->priority,
		};
2582
		unsigned long node_lru_pages = 0;
2583
		struct mem_cgroup *memcg;
2584

2585 2586
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2587

2588 2589
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2590
			unsigned long lru_pages;
2591
			unsigned long reclaimed;
2592
			unsigned long scanned;
2593

2594
			if (mem_cgroup_low(root, memcg)) {
2595 2596
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2597
					continue;
2598
				}
2599
				mem_cgroup_event(memcg, MEMCG_LOW);
2600 2601
			}

2602
			reclaimed = sc->nr_reclaimed;
2603
			scanned = sc->nr_scanned;
2604 2605
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2606

2607
			if (memcg)
2608
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2609
					    memcg, sc->priority);
2610

2611 2612 2613 2614 2615
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2616
			/*
2617 2618
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2619
			 * node.
2620 2621 2622 2623 2624
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2625
			 */
2626 2627
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2628 2629 2630
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2631
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2632

2633
		if (global_reclaim(sc))
2634
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2635
				    sc->priority);
2636 2637 2638 2639

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2640 2641
		}

2642 2643
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2644 2645 2646
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2647 2648 2649
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2650
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2651
					 sc->nr_scanned - nr_scanned, sc));
2652

2653 2654 2655 2656 2657 2658 2659 2660 2661
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2662
	return reclaimable;
2663 2664
}

2665
/*
2666 2667 2668
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2669
 */
2670
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2671
{
M
Mel Gorman 已提交
2672
	unsigned long watermark;
2673
	enum compact_result suitable;
2674

2675 2676 2677 2678 2679 2680 2681
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2682

2683
	/*
2684 2685 2686 2687 2688 2689 2690
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2691
	 */
2692
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2693

2694
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2695 2696
}

L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702 2703 2704
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2705
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2706
{
2707
	struct zoneref *z;
2708
	struct zone *zone;
2709 2710
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2711
	gfp_t orig_mask;
2712
	pg_data_t *last_pgdat = NULL;
2713

2714 2715 2716 2717 2718
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2719
	orig_mask = sc->gfp_mask;
2720
	if (buffer_heads_over_limit) {
2721
		sc->gfp_mask |= __GFP_HIGHMEM;
2722
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2723
	}
2724

2725
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2726
					sc->reclaim_idx, sc->nodemask) {
2727 2728 2729 2730
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2731
		if (global_reclaim(sc)) {
2732 2733
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2734
				continue;
2735

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2747
			    compaction_ready(zone, sc)) {
2748 2749
				sc->compaction_ready = true;
				continue;
2750
			}
2751

2752 2753 2754 2755 2756 2757 2758 2759 2760
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2761 2762 2763 2764 2765 2766 2767
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2768
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2769 2770 2771 2772
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2773
			/* need some check for avoid more shrink_zone() */
2774
		}
2775

2776 2777 2778 2779
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2780
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2781
	}
2782

2783 2784 2785 2786 2787
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2788
}
2789

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2800
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2801 2802 2803 2804 2805 2806 2807 2808
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2809 2810 2811 2812 2813 2814 2815 2816
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2817 2818 2819 2820
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2821 2822 2823
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2824
 */
2825
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2826
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2827
{
2828
	int initial_priority = sc->priority;
2829 2830 2831
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2832
retry:
2833 2834
	delayacct_freepages_start();

2835
	if (global_reclaim(sc))
2836
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2837

2838
	do {
2839 2840
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2841
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2842
		shrink_zones(zonelist, sc);
2843

2844
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2845 2846 2847 2848
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2849

2850 2851 2852 2853 2854 2855
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2856
	} while (--sc->priority >= 0);
2857

2858 2859 2860 2861 2862 2863 2864 2865 2866
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
	}

2867 2868
	delayacct_freepages_end();

2869 2870 2871
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2872
	/* Aborted reclaim to try compaction? don't OOM, then */
2873
	if (sc->compaction_ready)
2874 2875
		return 1;

2876
	/* Untapped cgroup reserves?  Don't OOM, retry. */
2877
	if (sc->memcg_low_skipped) {
2878
		sc->priority = initial_priority;
2879 2880
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
2881 2882 2883
		goto retry;
	}

2884
	return 0;
L
Linus Torvalds 已提交
2885 2886
}

2887
static bool allow_direct_reclaim(pg_data_t *pgdat)
2888 2889 2890 2891 2892 2893 2894
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2895 2896 2897
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2898 2899
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2900 2901 2902 2903
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2904 2905
			continue;

2906 2907 2908 2909
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2910 2911 2912 2913
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2914 2915 2916 2917
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2918
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2930 2931 2932 2933
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2934
 */
2935
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2936 2937
					nodemask_t *nodemask)
{
2938
	struct zoneref *z;
2939
	struct zone *zone;
2940
	pg_data_t *pgdat = NULL;
2941 2942 2943 2944 2945 2946 2947 2948 2949

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2950 2951 2952 2953 2954 2955 2956 2957
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2974
					gfp_zone(gfp_mask), nodemask) {
2975 2976 2977 2978 2979
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
2980
		if (allow_direct_reclaim(pgdat))
2981 2982 2983 2984 2985 2986
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2987
		goto out;
2988

2989 2990 2991
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3002
			allow_direct_reclaim(pgdat), HZ);
3003 3004

		goto check_pending;
3005 3006 3007 3008
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3009
		allow_direct_reclaim(pgdat));
3010 3011 3012 3013 3014 3015 3016

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3017 3018
}

3019
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3020
				gfp_t gfp_mask, nodemask_t *nodemask)
3021
{
3022
	unsigned long nr_reclaimed;
3023
	struct scan_control sc = {
3024
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3025
		.gfp_mask = current_gfp_context(gfp_mask),
3026
		.reclaim_idx = gfp_zone(gfp_mask),
3027 3028 3029
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3030
		.may_writepage = !laptop_mode,
3031
		.may_unmap = 1,
3032
		.may_swap = 1,
3033 3034
	};

3035
	/*
3036 3037 3038
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3039
	 */
3040
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3041 3042
		return 1;

3043 3044
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3045
				sc.gfp_mask,
3046
				sc.reclaim_idx);
3047

3048
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3049 3050 3051 3052

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3053 3054
}

A
Andrew Morton 已提交
3055
#ifdef CONFIG_MEMCG
3056

3057
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3058
						gfp_t gfp_mask, bool noswap,
3059
						pg_data_t *pgdat,
3060
						unsigned long *nr_scanned)
3061 3062
{
	struct scan_control sc = {
3063
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3064
		.target_mem_cgroup = memcg,
3065 3066
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3067
		.reclaim_idx = MAX_NR_ZONES - 1,
3068 3069
		.may_swap = !noswap,
	};
3070
	unsigned long lru_pages;
3071

3072 3073
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3074

3075
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3076
						      sc.may_writepage,
3077 3078
						      sc.gfp_mask,
						      sc.reclaim_idx);
3079

3080 3081 3082
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3083
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3084 3085 3086
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3087
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3088 3089 3090

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3091
	*nr_scanned = sc.nr_scanned;
3092 3093 3094
	return sc.nr_reclaimed;
}

3095
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3096
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3097
					   gfp_t gfp_mask,
3098
					   bool may_swap)
3099
{
3100
	struct zonelist *zonelist;
3101
	unsigned long nr_reclaimed;
3102
	int nid;
3103
	unsigned int noreclaim_flag;
3104
	struct scan_control sc = {
3105
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3106
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3107
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3108
		.reclaim_idx = MAX_NR_ZONES - 1,
3109 3110 3111 3112
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3113
		.may_swap = may_swap,
3114
	};
3115

3116 3117 3118 3119 3120
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3121
	nid = mem_cgroup_select_victim_node(memcg);
3122

3123
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3124 3125 3126

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3127 3128
					    sc.gfp_mask,
					    sc.reclaim_idx);
3129

3130
	noreclaim_flag = memalloc_noreclaim_save();
3131
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3132
	memalloc_noreclaim_restore(noreclaim_flag);
3133 3134 3135 3136

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3137 3138 3139
}
#endif

3140
static void age_active_anon(struct pglist_data *pgdat,
3141
				struct scan_control *sc)
3142
{
3143
	struct mem_cgroup *memcg;
3144

3145 3146 3147 3148 3149
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3150
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3151

3152
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3153
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3154
					   sc, LRU_ACTIVE_ANON);
3155 3156 3157

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3158 3159
}

3160 3161 3162 3163 3164
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3165
{
3166 3167 3168
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3169

3170 3171
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3190 3191
}

3192 3193 3194 3195 3196 3197 3198 3199
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3200 3201 3202 3203 3204 3205
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3206
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3207
{
3208
	/*
3209
	 * The throttled processes are normally woken up in balance_pgdat() as
3210
	 * soon as allow_direct_reclaim() is true. But there is a potential
3211 3212 3213 3214 3215 3216 3217 3218 3219
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3220
	 */
3221 3222
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3223

3224 3225 3226 3227
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3228 3229 3230
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3231 3232
	}

3233
	return false;
3234 3235
}

3236
/*
3237 3238
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3239 3240
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3241 3242
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3243
 */
3244
static bool kswapd_shrink_node(pg_data_t *pgdat,
3245
			       struct scan_control *sc)
3246
{
3247 3248
	struct zone *zone;
	int z;
3249

3250 3251
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3252
	for (z = 0; z <= sc->reclaim_idx; z++) {
3253
		zone = pgdat->node_zones + z;
3254
		if (!managed_zone(zone))
3255
			continue;
3256

3257 3258
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3259 3260

	/*
3261 3262
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3263
	 */
3264
	shrink_node(pgdat, sc);
3265

3266
	/*
3267 3268 3269 3270 3271
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3272
	 */
3273
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3274
		sc->order = 0;
3275

3276
	return sc->nr_scanned >= sc->nr_to_reclaim;
3277 3278
}

L
Linus Torvalds 已提交
3279
/*
3280 3281 3282
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3283
 *
3284
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3285 3286
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3287
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3288 3289 3290
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3291
 */
3292
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3293 3294
{
	int i;
3295 3296
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3297
	struct zone *zone;
3298 3299
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3300
		.order = order,
3301
		.priority = DEF_PRIORITY,
3302
		.may_writepage = !laptop_mode,
3303
		.may_unmap = 1,
3304
		.may_swap = 1,
3305
	};
3306
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3307

3308
	do {
3309
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3310 3311
		bool raise_priority = true;

3312
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3313

3314
		/*
3315 3316 3317 3318 3319 3320 3321 3322
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3323 3324 3325 3326
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3327
				if (!managed_zone(zone))
3328
					continue;
3329

3330
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3331
				break;
L
Linus Torvalds 已提交
3332 3333
			}
		}
3334

3335
		/*
3336 3337 3338
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3339
		 */
3340 3341
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3342

3343 3344 3345 3346 3347 3348
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3349
		age_active_anon(pgdat, &sc);
3350

3351 3352 3353 3354
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3355
		if (sc.priority < DEF_PRIORITY - 2)
3356 3357
			sc.may_writepage = 1;

3358 3359 3360
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3361
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3362 3363 3364
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3365
		/*
3366 3367 3368
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3369
		 */
3370
		if (kswapd_shrink_node(pgdat, &sc))
3371
			raise_priority = false;
3372 3373 3374 3375 3376 3377 3378

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3379
				allow_direct_reclaim(pgdat))
3380
			wake_up_all(&pgdat->pfmemalloc_wait);
3381

3382 3383 3384
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3385

3386
		/*
3387 3388
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3389
		 */
3390 3391
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3392
			sc.priority--;
3393
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3394

3395 3396 3397
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3398
out:
3399
	snapshot_refaults(NULL, pgdat);
3400
	/*
3401 3402 3403 3404
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3405
	 */
3406
	return sc.order;
L
Linus Torvalds 已提交
3407 3408
}

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3425 3426
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3427 3428 3429 3430 3431 3432 3433 3434 3435
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3436 3437 3438 3439 3440 3441 3442
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3443
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3456
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3457

3458
		remaining = schedule_timeout(HZ/10);
3459 3460 3461 3462 3463 3464 3465

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3466
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3467 3468 3469
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3470 3471 3472 3473 3474 3475 3476 3477
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3478 3479
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3491 3492 3493 3494

		if (!kthread_should_stop())
			schedule();

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3505 3506
/*
 * The background pageout daemon, started as a kernel thread
3507
 * from the init process.
L
Linus Torvalds 已提交
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3520 3521
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3522 3523
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3524

L
Linus Torvalds 已提交
3525 3526 3527
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3528
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3529

R
Rusty Russell 已提交
3530
	if (!cpumask_empty(cpumask))
3531
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3546
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3547
	set_freezable();
L
Linus Torvalds 已提交
3548

3549 3550
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3551
	for ( ; ; ) {
3552
		bool ret;
3553

3554 3555 3556
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3557 3558 3559
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3560

3561 3562
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3563
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3564
		pgdat->kswapd_order = 0;
3565
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3566

3567 3568 3569 3570 3571 3572 3573 3574
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3586 3587
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3588
		fs_reclaim_acquire(GFP_KERNEL);
3589
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3590
		fs_reclaim_release(GFP_KERNEL);
3591 3592
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3593
	}
3594

3595
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3596
	current->reclaim_state = NULL;
3597

L
Linus Torvalds 已提交
3598 3599 3600 3601 3602 3603
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3604
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3605 3606 3607
{
	pg_data_t *pgdat;

3608
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3609 3610
		return;

3611
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3612
		return;
3613
	pgdat = zone->zone_pgdat;
3614 3615
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3616
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3617
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3618
		return;
3619

3620 3621 3622 3623
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return;

3624 3625
	if (pgdat_balanced(pgdat, order, classzone_idx))
		return;
3626

3627
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3628
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3629 3630
}

3631
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3632
/*
3633
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3634 3635 3636 3637 3638
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3639
 */
3640
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3641
{
3642 3643
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3644
		.nr_to_reclaim = nr_to_reclaim,
3645
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3646
		.reclaim_idx = MAX_NR_ZONES - 1,
3647
		.priority = DEF_PRIORITY,
3648
		.may_writepage = 1,
3649 3650
		.may_unmap = 1,
		.may_swap = 1,
3651
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3652
	};
3653
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3654 3655
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3656
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3657

3658
	noreclaim_flag = memalloc_noreclaim_save();
3659
	fs_reclaim_acquire(sc.gfp_mask);
3660 3661
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3662

3663
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3664

3665
	p->reclaim_state = NULL;
3666
	fs_reclaim_release(sc.gfp_mask);
3667
	memalloc_noreclaim_restore(noreclaim_flag);
3668

3669
	return nr_reclaimed;
L
Linus Torvalds 已提交
3670
}
3671
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3672 3673 3674 3675 3676

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3677
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3678
{
3679
	int nid;
L
Linus Torvalds 已提交
3680

3681 3682 3683
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3684

3685
		mask = cpumask_of_node(pgdat->node_id);
3686

3687 3688 3689
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3690
	}
3691
	return 0;
L
Linus Torvalds 已提交
3692 3693
}

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3709
		BUG_ON(system_state < SYSTEM_RUNNING);
3710 3711
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3712
		pgdat->kswapd = NULL;
3713 3714 3715 3716
	}
	return ret;
}

3717
/*
3718
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3719
 * hold mem_hotplug_begin/end().
3720 3721 3722 3723 3724
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3725
	if (kswapd) {
3726
		kthread_stop(kswapd);
3727 3728
		NODE_DATA(nid)->kswapd = NULL;
	}
3729 3730
}

L
Linus Torvalds 已提交
3731 3732
static int __init kswapd_init(void)
{
3733
	int nid, ret;
3734

L
Linus Torvalds 已提交
3735
	swap_setup();
3736
	for_each_node_state(nid, N_MEMORY)
3737
 		kswapd_run(nid);
3738 3739 3740 3741
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3742 3743 3744 3745
	return 0;
}

module_init(kswapd_init)
3746 3747 3748

#ifdef CONFIG_NUMA
/*
3749
 * Node reclaim mode
3750
 *
3751
 * If non-zero call node_reclaim when the number of free pages falls below
3752 3753
 * the watermarks.
 */
3754
int node_reclaim_mode __read_mostly;
3755

3756
#define RECLAIM_OFF 0
3757
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3758
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3759
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3760

3761
/*
3762
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3763 3764 3765
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3766
#define NODE_RECLAIM_PRIORITY 4
3767

3768
/*
3769
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3770 3771 3772 3773
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3774 3775 3776 3777 3778 3779
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3780
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3781
{
3782 3783 3784
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3795
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3796
{
3797 3798
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3799 3800

	/*
3801
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3802
	 * potentially reclaimable. Otherwise, we have to worry about
3803
	 * pages like swapcache and node_unmapped_file_pages() provides
3804 3805
	 * a better estimate
	 */
3806 3807
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3808
	else
3809
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3810 3811

	/* If we can't clean pages, remove dirty pages from consideration */
3812 3813
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3814 3815 3816 3817 3818 3819 3820 3821

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3822
/*
3823
 * Try to free up some pages from this node through reclaim.
3824
 */
3825
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3826
{
3827
	/* Minimum pages needed in order to stay on node */
3828
	const unsigned long nr_pages = 1 << order;
3829 3830
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3831
	unsigned int noreclaim_flag;
3832
	struct scan_control sc = {
3833
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3834
		.gfp_mask = current_gfp_context(gfp_mask),
3835
		.order = order,
3836 3837 3838
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3839
		.may_swap = 1,
3840
		.reclaim_idx = gfp_zone(gfp_mask),
3841
	};
3842 3843

	cond_resched();
3844
	/*
3845
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3846
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3847
	 * and RECLAIM_UNMAP.
3848
	 */
3849 3850
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
3851
	fs_reclaim_acquire(sc.gfp_mask);
3852 3853
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3854

3855
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3856 3857 3858 3859 3860
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3861
			shrink_node(pgdat, &sc);
3862
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3863
	}
3864

3865
	p->reclaim_state = NULL;
3866
	fs_reclaim_release(gfp_mask);
3867 3868
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
3869
	return sc.nr_reclaimed >= nr_pages;
3870
}
3871

3872
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3873
{
3874
	int ret;
3875 3876

	/*
3877
	 * Node reclaim reclaims unmapped file backed pages and
3878
	 * slab pages if we are over the defined limits.
3879
	 *
3880 3881
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3882 3883
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3884
	 * unmapped file backed pages.
3885
	 */
3886
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3887
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3888
		return NODE_RECLAIM_FULL;
3889 3890

	/*
3891
	 * Do not scan if the allocation should not be delayed.
3892
	 */
3893
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3894
		return NODE_RECLAIM_NOSCAN;
3895 3896

	/*
3897
	 * Only run node reclaim on the local node or on nodes that do not
3898 3899 3900 3901
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3902 3903
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3904

3905 3906
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3907

3908 3909
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3910

3911 3912 3913
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3914
	return ret;
3915
}
3916
#endif
L
Lee Schermerhorn 已提交
3917 3918 3919 3920 3921 3922

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3923
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3924 3925
 *
 * Reasons page might not be evictable:
3926
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3927
 * (2) page is part of an mlocked VMA
3928
 *
L
Lee Schermerhorn 已提交
3929
 */
3930
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3931
{
3932
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3933
}
3934

3935
#ifdef CONFIG_SHMEM
3936
/**
3937 3938 3939
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3940
 *
3941
 * Checks pages for evictability and moves them to the appropriate lru list.
3942 3943
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3944
 */
3945
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3946
{
3947
	struct lruvec *lruvec;
3948
	struct pglist_data *pgdat = NULL;
3949 3950 3951
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3952

3953 3954
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3955
		struct pglist_data *pagepgdat = page_pgdat(page);
3956

3957
		pgscanned++;
3958 3959 3960 3961 3962
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3963
		}
3964
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3965

3966 3967
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3968

3969
		if (page_evictable(page)) {
3970 3971
			enum lru_list lru = page_lru_base_type(page);

3972
			VM_BUG_ON_PAGE(PageActive(page), page);
3973
			ClearPageUnevictable(page);
3974 3975
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3976
			pgrescued++;
3977
		}
3978
	}
3979

3980
	if (pgdat) {
3981 3982
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3983
		spin_unlock_irq(&pgdat->lru_lock);
3984 3985
	}
}
3986
#endif /* CONFIG_SHMEM */