vmscan.c 120.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
L
Linus Torvalds 已提交
52 53 54 55 56

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
57
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
58

59 60
#include "internal.h"

61 62 63
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
64
struct scan_control {
65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

68 69 70 71 72
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
73

74 75 76 77 78
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
79

80
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
81 82 83 84 85 86 87 88
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

89 90 91 92 93 94 95
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
96

97 98 99 100 101
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
102 103 104 105 106 107 108 109 110 111 112 113
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

114 115 116 117 118
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
119 120 121 122 123 124 125 126 127 128

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
163 164 165 166 167
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
168 169 170 171

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

172
#ifdef CONFIG_MEMCG_KMEM
173 174 175 176 177 178 179 180 181 182 183 184 185 186

/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

187 188 189 190 191 192 193 194 195
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
196
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197 198 199
	if (id < 0)
		goto unlock;

200 201 202 203 204 205
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

206
		shrinker_nr_max = id + 1;
207
	}
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

A
Andrew Morton 已提交
236
#ifdef CONFIG_MEMCG
237 238
static bool global_reclaim(struct scan_control *sc)
{
239
	return !sc->target_mem_cgroup;
240
}
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
262
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263 264 265 266
		return true;
#endif
	return false;
}
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
290
#else
291 292 293 294
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
295 296 297 298 299

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
300 301 302 303 304 305 306 307 308 309 310 311

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
312 313
#endif

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

332 333 334 335 336 337 338
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
339
{
340 341 342
	unsigned long lru_size;
	int zid;

343
	if (!mem_cgroup_disabled())
344 345 346
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
347

348 349 350
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
351

352 353 354 355 356 357 358 359 360 361 362 363
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
364 365 366

}

L
Linus Torvalds 已提交
367
/*
G
Glauber Costa 已提交
368
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
369
 */
370
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
371
{
G
Glauber Costa 已提交
372 373 374 375 376 377 378 379
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
380 381 382 383 384 385

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

386
	return 0;
387 388 389 390 391

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
392 393 394 395
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
396 397 398 399 400 401
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

402 403 404
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
405

406 407
void register_shrinker_prepared(struct shrinker *shrinker)
{
408 409
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
410
#ifdef CONFIG_MEMCG_KMEM
411 412
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
413
#endif
414
	up_write(&shrinker_rwsem);
415 416 417 418 419 420 421 422 423
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
424
	return 0;
L
Linus Torvalds 已提交
425
}
426
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
427 428 429 430

/*
 * Remove one
 */
431
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
432
{
433 434
	if (!shrinker->nr_deferred)
		return;
435 436
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
437 438 439
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
440
	kfree(shrinker->nr_deferred);
441
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
442
}
443
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
444 445

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
446

447
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
448
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
449 450 451 452
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
453
	long freeable;
G
Glauber Costa 已提交
454 455 456 457 458
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
459
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
460

461 462 463
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

464
	freeable = shrinker->count_objects(shrinker, shrinkctl);
465 466
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
467 468 469 470 471 472 473 474 475

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
476 477 478
	delta = freeable >> priority;
	delta *= 4;
	do_div(delta, shrinker->seeks);
479 480 481 482 483 484 485 486 487 488 489

	/*
	 * Make sure we apply some minimal pressure on default priority
	 * even on small cgroups. Stale objects are not only consuming memory
	 * by themselves, but can also hold a reference to a dying cgroup,
	 * preventing it from being reclaimed. A dying cgroup with all
	 * corresponding structures like per-cpu stats and kmem caches
	 * can be really big, so it may lead to a significant waste of memory.
	 */
	delta = max_t(unsigned long long, delta, min(freeable, batch_size));

G
Glauber Costa 已提交
490 491
	total_scan += delta;
	if (total_scan < 0) {
492
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
493
		       shrinker->scan_objects, total_scan);
494
		total_scan = freeable;
495 496 497
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
498 499 500 501 502 503 504

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
505
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
506 507 508 509 510
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
511 512
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
513 514 515 516 517 518

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
519 520
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
521 522

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
523
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
524

525 526 527 528 529 530 531 532 533 534 535
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
536
	 * than the total number of objects on slab (freeable), we must be
537 538 539 540
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
541
	       total_scan >= freeable) {
D
Dave Chinner 已提交
542
		unsigned long ret;
543
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
544

545
		shrinkctl->nr_to_scan = nr_to_scan;
546
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
547 548 549 550
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
551

552 553 554
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
555 556 557 558

		cond_resched();
	}

559 560 561 562
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
563 564 565 566 567
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
568 569
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
570 571 572 573
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

574
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
575
	return freed;
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
#ifdef CONFIG_MEMCG_KMEM
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
	unsigned long freed = 0;
	int ret, i;

	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
606 607 608
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
609 610 611 612
			continue;
		}

		ret = do_shrink_slab(&sc, shrinker, priority);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
#else /* CONFIG_MEMCG_KMEM */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG_KMEM */

656
/**
657
 * shrink_slab - shrink slab caches
658 659
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
660
 * @memcg: memory cgroup whose slab caches to target
661
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
662
 *
663
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
664
 *
665 666
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
667
 *
668 669
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
670
 *
671 672
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
673
 *
674
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
675
 */
676 677
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
678
				 int priority)
L
Linus Torvalds 已提交
679 680
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
681
	unsigned long freed = 0;
682
	int ret;
L
Linus Torvalds 已提交
683

684
	if (!mem_cgroup_is_root(memcg))
685
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
686

687
	if (!down_read_trylock(&shrinker_rwsem))
688
		goto out;
L
Linus Torvalds 已提交
689 690

	list_for_each_entry(shrinker, &shrinker_list, list) {
691 692 693
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
694
			.memcg = memcg,
695
		};
696

697 698 699 700
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
701 702 703 704 705 706 707 708 709
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
710
	}
711

L
Linus Torvalds 已提交
712
	up_read(&shrinker_rwsem);
713 714
out:
	cond_resched();
D
Dave Chinner 已提交
715
	return freed;
L
Linus Torvalds 已提交
716 717
}

718 719 720 721 722 723 724 725
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
726
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
727
		do {
728
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
729 730 731 732 733 734 735 736 737 738 739 740
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
741 742
static inline int is_page_cache_freeable(struct page *page)
{
743 744 745 746 747
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
748 749 750
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
751 752
}

753
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
754
{
755
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
756
		return 1;
757
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
758
		return 1;
759
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
779
	lock_page(page);
780 781
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
782 783 784
	unlock_page(page);
}

785 786 787 788 789 790 791 792 793 794 795 796
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
797
/*
A
Andrew Morton 已提交
798 799
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
800
 */
801
static pageout_t pageout(struct page *page, struct address_space *mapping,
802
			 struct scan_control *sc)
L
Linus Torvalds 已提交
803 804 805 806 807 808 809 810
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
811
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
827
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
828 829
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
830
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
831 832 833 834 835 836 837
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
838
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
839 840 841 842 843 844 845
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
846 847
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
848 849 850 851 852 853 854
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
855
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
856 857 858
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
859

L
Linus Torvalds 已提交
860 861 862 863
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
864
		trace_mm_vmscan_writepage(page);
865
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
866 867 868 869 870 871
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

872
/*
N
Nick Piggin 已提交
873 874
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
875
 */
876 877
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
878
{
879
	unsigned long flags;
880
	int refcount;
881

882 883
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
884

M
Matthew Wilcox 已提交
885
	xa_lock_irqsave(&mapping->i_pages, flags);
886
	/*
N
Nick Piggin 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
906
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
907 908
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
909
	 * and thus under the i_pages lock, then this ordering is not required.
910
	 */
911 912 913 914 915
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
916
		goto cannot_free;
917
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
918
	if (unlikely(PageDirty(page))) {
919
		page_ref_unfreeze(page, refcount);
920
		goto cannot_free;
N
Nick Piggin 已提交
921
	}
922 923 924

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
925
		mem_cgroup_swapout(page, swap);
926
		__delete_from_swap_cache(page);
M
Matthew Wilcox 已提交
927
		xa_unlock_irqrestore(&mapping->i_pages, flags);
928
		put_swap_page(page, swap);
N
Nick Piggin 已提交
929
	} else {
930
		void (*freepage)(struct page *);
931
		void *shadow = NULL;
932 933

		freepage = mapping->a_ops->freepage;
934 935 936 937 938 939 940 941 942
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
943 944 945 946 947
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
948
		 * same address_space.
949 950
		 */
		if (reclaimed && page_is_file_cache(page) &&
951
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
952
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
953
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
954
		xa_unlock_irqrestore(&mapping->i_pages, flags);
955 956 957

		if (freepage != NULL)
			freepage(page);
958 959 960 961 962
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
963
	xa_unlock_irqrestore(&mapping->i_pages, flags);
964 965 966
	return 0;
}

N
Nick Piggin 已提交
967 968 969 970 971 972 973 974
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
975
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
976 977 978 979 980
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
981
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
982 983 984 985 986
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
987 988 989 990 991 992 993 994 995 996 997
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
998
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
999 1000 1001
	put_page(page);		/* drop ref from isolate */
}

1002 1003 1004
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1005
	PAGEREF_KEEP,
1006 1007 1008 1009 1010 1011
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1012
	int referenced_ptes, referenced_page;
1013 1014
	unsigned long vm_flags;

1015 1016
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1017
	referenced_page = TestClearPageReferenced(page);
1018 1019 1020 1021 1022 1023 1024 1025

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1026
	if (referenced_ptes) {
1027
		if (PageSwapBacked(page))
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1045
		if (referenced_page || referenced_ptes > 1)
1046 1047
			return PAGEREF_ACTIVATE;

1048 1049 1050 1051 1052 1053
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1054 1055
		return PAGEREF_KEEP;
	}
1056 1057

	/* Reclaim if clean, defer dirty pages to writeback */
1058
	if (referenced_page && !PageSwapBacked(page))
1059 1060 1061
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1062 1063
}

1064 1065 1066 1067
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1068 1069
	struct address_space *mapping;

1070 1071 1072 1073
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1074 1075
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1076 1077 1078 1079 1080 1081 1082 1083
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1084 1085 1086 1087 1088 1089 1090 1091

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1092 1093
}

L
Linus Torvalds 已提交
1094
/*
A
Andrew Morton 已提交
1095
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1096
 */
A
Andrew Morton 已提交
1097
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1098
				      struct pglist_data *pgdat,
1099
				      struct scan_control *sc,
1100
				      enum ttu_flags ttu_flags,
1101
				      struct reclaim_stat *stat,
1102
				      bool force_reclaim)
L
Linus Torvalds 已提交
1103 1104
{
	LIST_HEAD(ret_pages);
1105
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
1106
	int pgactivate = 0;
1107 1108 1109 1110 1111 1112
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
1113 1114
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119 1120 1121

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1122
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1123
		bool dirty, writeback;
L
Linus Torvalds 已提交
1124 1125 1126 1127 1128 1129

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1130
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1131 1132
			goto keep;

1133
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1134 1135

		sc->nr_scanned++;
1136

1137
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1138
			goto activate_locked;
L
Lee Schermerhorn 已提交
1139

1140
		if (!sc->may_unmap && page_mapped(page))
1141 1142
			goto keep_locked;

L
Linus Torvalds 已提交
1143
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1144 1145
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1146 1147
			sc->nr_scanned++;

1148 1149 1150
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1151
		/*
1152
		 * The number of dirty pages determines if a node is marked
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1164 1165 1166 1167 1168 1169
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1170
		mapping = page_mapping(page);
1171
		if (((dirty || writeback) && mapping &&
1172
		     inode_write_congested(mapping->host)) ||
1173
		    (writeback && PageReclaim(page)))
1174 1175
			nr_congested++;

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1187 1188
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1189
		 *
1190
		 * 2) Global or new memcg reclaim encounters a page that is
1191 1192 1193
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1194
		 *    reclaim and continue scanning.
1195
		 *
1196 1197
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1198 1199 1200 1201 1202
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1203
		 * 3) Legacy memcg encounters a page that is already marked
1204 1205 1206 1207
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1208 1209 1210 1211 1212 1213 1214 1215 1216
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1217
		 */
1218
		if (PageWriteback(page)) {
1219 1220 1221
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1222
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1223
				nr_immediate++;
1224
				goto activate_locked;
1225 1226

			/* Case 2 above */
1227
			} else if (sane_reclaim(sc) ||
1228
			    !PageReclaim(page) || !may_enter_fs) {
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1241
				nr_writeback++;
1242
				goto activate_locked;
1243 1244 1245

			/* Case 3 above */
			} else {
1246
				unlock_page(page);
1247
				wait_on_page_writeback(page);
1248 1249 1250
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1251
			}
1252
		}
L
Linus Torvalds 已提交
1253

1254 1255 1256
		if (!force_reclaim)
			references = page_check_references(page, sc);

1257 1258
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1259
			goto activate_locked;
1260
		case PAGEREF_KEEP:
1261
			nr_ref_keep++;
1262
			goto keep_locked;
1263 1264 1265 1266
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1267 1268 1269 1270

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1271
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1272
		 */
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1298 1299 1300
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1301 1302 1303
					if (!add_to_swap(page))
						goto activate_locked;
				}
1304

1305
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1306

1307 1308 1309
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1310 1311 1312 1313
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1314
		}
L
Linus Torvalds 已提交
1315 1316 1317 1318 1319

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1320
		if (page_mapped(page)) {
1321 1322 1323 1324 1325
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1326
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1327 1328 1329 1330 1331
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1332
			/*
1333 1334 1335 1336 1337 1338 1339 1340
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1341
			 */
1342
			if (page_is_file_cache(page) &&
1343 1344
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1345 1346 1347 1348 1349 1350
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1351
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1352 1353
				SetPageReclaim(page);

1354
				goto activate_locked;
1355 1356
			}

1357
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1358
				goto keep_locked;
1359
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1360
				goto keep_locked;
1361
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1362 1363
				goto keep_locked;

1364 1365 1366 1367 1368 1369
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1370
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1371 1372 1373 1374 1375
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1376
				if (PageWriteback(page))
1377
					goto keep;
1378
				if (PageDirty(page))
L
Linus Torvalds 已提交
1379
					goto keep;
1380

L
Linus Torvalds 已提交
1381 1382 1383 1384
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1385
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1405
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1416
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1417 1418
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1435 1436
		}

S
Shaohua Li 已提交
1437 1438 1439 1440 1441 1442 1443 1444
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1445

S
Shaohua Li 已提交
1446
			count_vm_event(PGLAZYFREED);
1447
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1448 1449
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1450 1451 1452 1453 1454 1455 1456
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1457
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1458
free_it:
1459
		nr_reclaimed++;
1460 1461 1462 1463 1464

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1465 1466 1467 1468 1469
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1470 1471 1472
		continue;

activate_locked:
1473
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1474 1475
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1476
			try_to_free_swap(page);
1477
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1478 1479 1480
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1481
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1482
		}
L
Linus Torvalds 已提交
1483 1484 1485 1486
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1487
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1488
	}
1489

1490
	mem_cgroup_uncharge_list(&free_pages);
1491
	try_to_unmap_flush();
1492
	free_unref_page_list(&free_pages);
1493

L
Linus Torvalds 已提交
1494
	list_splice(&ret_pages, page_list);
1495
	count_vm_events(PGACTIVATE, pgactivate);
1496

1497 1498 1499 1500 1501 1502
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1503 1504 1505
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1506
	}
1507
	return nr_reclaimed;
L
Linus Torvalds 已提交
1508 1509
}

1510 1511 1512 1513 1514 1515 1516 1517
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1518
	unsigned long ret;
1519 1520 1521 1522
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1523
		if (page_is_file_cache(page) && !PageDirty(page) &&
1524
		    !__PageMovable(page)) {
1525 1526 1527 1528 1529
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1530
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1531
			TTU_IGNORE_ACCESS, NULL, true);
1532
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1533
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1534 1535 1536
	return ret;
}

A
Andy Whitcroft 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1547
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1548 1549 1550 1551 1552 1553 1554
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1555 1556
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1557 1558
		return ret;

A
Andy Whitcroft 已提交
1559
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1560

1561 1562 1563 1564 1565 1566 1567 1568
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1569
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1570 1571 1572 1573 1574 1575
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1576
			bool migrate_dirty;
1577 1578 1579 1580

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1581 1582 1583 1584 1585
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1586
			 */
1587 1588 1589
			if (!trylock_page(page))
				return ret;

1590
			mapping = page_mapping(page);
1591
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1592 1593
			unlock_page(page);
			if (!migrate_dirty)
1594 1595 1596
				return ret;
		}
	}
1597

1598 1599 1600
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1614 1615 1616 1617 1618 1619

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1620
			enum lru_list lru, unsigned long *nr_zone_taken)
1621 1622 1623 1624 1625 1626 1627 1628 1629
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1630
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1631
#endif
1632 1633
	}

1634 1635
}

L
Linus Torvalds 已提交
1636
/*
1637
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1638 1639 1640 1641 1642 1643 1644 1645
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1646
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1647
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1648
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1649
 * @nr_scanned:	The number of pages that were scanned.
1650
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1651
 * @mode:	One of the LRU isolation modes
1652
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1653 1654 1655
 *
 * returns how many pages were moved onto *@dst.
 */
1656
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1657
		struct lruvec *lruvec, struct list_head *dst,
1658
		unsigned long *nr_scanned, struct scan_control *sc,
1659
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1660
{
H
Hugh Dickins 已提交
1661
	struct list_head *src = &lruvec->lists[lru];
1662
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1663
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1664
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1665
	unsigned long skipped = 0;
1666
	unsigned long scan, total_scan, nr_pages;
1667
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1668

1669 1670 1671 1672
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1673 1674
		struct page *page;

L
Linus Torvalds 已提交
1675 1676 1677
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1678
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1679

1680 1681
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1682
			nr_skipped[page_zonenum(page)]++;
1683 1684 1685
			continue;
		}

1686 1687 1688 1689 1690 1691 1692
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1693
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1694
		case 0:
M
Mel Gorman 已提交
1695 1696 1697
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1698 1699 1700 1701 1702 1703 1704
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1705

A
Andy Whitcroft 已提交
1706 1707 1708
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1709 1710
	}

1711 1712 1713 1714 1715 1716 1717
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1718 1719 1720
	if (!list_empty(&pages_skipped)) {
		int zid;

1721
		list_splice(&pages_skipped, src);
1722 1723 1724 1725 1726
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1727
			skipped += nr_skipped[zid];
1728 1729
		}
	}
1730
	*nr_scanned = total_scan;
1731
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1732
				    total_scan, skipped, nr_taken, mode, lru);
1733
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1734 1735 1736
	return nr_taken;
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1748 1749 1750
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1751 1752 1753 1754 1755
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1756
 *
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1767
	VM_BUG_ON_PAGE(!page_count(page), page);
1768
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1769

1770 1771
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1772
		struct lruvec *lruvec;
1773

1774
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1775
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1776
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1777
			int lru = page_lru(page);
1778
			get_page(page);
1779
			ClearPageLRU(page);
1780 1781
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1782
		}
1783
		spin_unlock_irq(zone_lru_lock(zone));
1784 1785 1786 1787
	}
	return ret;
}

1788
/*
F
Fengguang Wu 已提交
1789 1790 1791 1792 1793
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1794
 */
M
Mel Gorman 已提交
1795
static int too_many_isolated(struct pglist_data *pgdat, int file,
1796 1797 1798 1799 1800 1801 1802
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1803
	if (!sane_reclaim(sc))
1804 1805 1806
		return 0;

	if (file) {
M
Mel Gorman 已提交
1807 1808
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1809
	} else {
M
Mel Gorman 已提交
1810 1811
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1812 1813
	}

1814 1815 1816 1817 1818
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1819
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1820 1821
		inactive >>= 3;

1822 1823 1824
	return isolated > inactive;
}

1825
static noinline_for_stack void
H
Hugh Dickins 已提交
1826
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1827
{
1828
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1829
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1830
	LIST_HEAD(pages_to_free);
1831 1832 1833 1834 1835

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1836
		struct page *page = lru_to_page(page_list);
1837
		int lru;
1838

1839
		VM_BUG_ON_PAGE(PageLRU(page), page);
1840
		list_del(&page->lru);
1841
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1842
			spin_unlock_irq(&pgdat->lru_lock);
1843
			putback_lru_page(page);
M
Mel Gorman 已提交
1844
			spin_lock_irq(&pgdat->lru_lock);
1845 1846
			continue;
		}
1847

M
Mel Gorman 已提交
1848
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1849

1850
		SetPageLRU(page);
1851
		lru = page_lru(page);
1852 1853
		add_page_to_lru_list(page, lruvec, lru);

1854 1855
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1856 1857
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1858
		}
1859 1860 1861
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1862
			del_page_from_lru_list(page, lruvec, lru);
1863 1864

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1865
				spin_unlock_irq(&pgdat->lru_lock);
1866
				mem_cgroup_uncharge(page);
1867
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1868
				spin_lock_irq(&pgdat->lru_lock);
1869 1870
			} else
				list_add(&page->lru, &pages_to_free);
1871 1872 1873
		}
	}

1874 1875 1876 1877
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1878 1879
}

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1893
/*
1894
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1895
 * of reclaimed pages
L
Linus Torvalds 已提交
1896
 */
1897
static noinline_for_stack unsigned long
1898
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1899
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1900 1901
{
	LIST_HEAD(page_list);
1902
	unsigned long nr_scanned;
1903
	unsigned long nr_reclaimed = 0;
1904
	unsigned long nr_taken;
1905
	struct reclaim_stat stat = {};
1906
	isolate_mode_t isolate_mode = 0;
1907
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1908
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1909
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1910
	bool stalled = false;
1911

M
Mel Gorman 已提交
1912
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1913 1914 1915 1916 1917 1918
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1919 1920 1921 1922 1923 1924

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1925
	lru_add_drain();
1926 1927

	if (!sc->may_unmap)
1928
		isolate_mode |= ISOLATE_UNMAPPED;
1929

M
Mel Gorman 已提交
1930
	spin_lock_irq(&pgdat->lru_lock);
1931

1932 1933
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1934

M
Mel Gorman 已提交
1935
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1936
	reclaim_stat->recent_scanned[file] += nr_taken;
1937

1938 1939
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1940
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1941 1942 1943 1944
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1945
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1946 1947
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1948
	}
M
Mel Gorman 已提交
1949
	spin_unlock_irq(&pgdat->lru_lock);
1950

1951
	if (nr_taken == 0)
1952
		return 0;
A
Andy Whitcroft 已提交
1953

S
Shaohua Li 已提交
1954
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1955
				&stat, false);
1956

M
Mel Gorman 已提交
1957
	spin_lock_irq(&pgdat->lru_lock);
1958

1959 1960
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1961
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1962 1963 1964 1965
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1966
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1967 1968
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1969
	}
N
Nick Piggin 已提交
1970

1971
	putback_inactive_pages(lruvec, &page_list);
1972

M
Mel Gorman 已提交
1973
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1974

M
Mel Gorman 已提交
1975
	spin_unlock_irq(&pgdat->lru_lock);
1976

1977
	mem_cgroup_uncharge_list(&page_list);
1978
	free_unref_page_list(&page_list);
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1994 1995 1996 1997 1998 1999 2000 2001
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2002

M
Mel Gorman 已提交
2003
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2004
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2005
	return nr_reclaimed;
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
2015
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
2016
 * the pages are mapped, the processing is slow (page_referenced()) so we
2017
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
2018 2019 2020 2021
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
2022
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
2023
 * But we had to alter page->flags anyway.
2024 2025
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
2026
 */
2027

2028
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2029
				     struct list_head *list,
2030
				     struct list_head *pages_to_free,
2031 2032
				     enum lru_list lru)
{
M
Mel Gorman 已提交
2033
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2034
	struct page *page;
2035
	int nr_pages;
2036
	int nr_moved = 0;
2037 2038 2039

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
2040
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2041

2042
		VM_BUG_ON_PAGE(PageLRU(page), page);
2043 2044
		SetPageLRU(page);

2045
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
2046
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2047
		list_move(&page->lru, &lruvec->lists[lru]);
2048

2049 2050 2051
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
2052
			del_page_from_lru_list(page, lruvec, lru);
2053 2054

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
2055
				spin_unlock_irq(&pgdat->lru_lock);
2056
				mem_cgroup_uncharge(page);
2057
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
2058
				spin_lock_irq(&pgdat->lru_lock);
2059 2060
			} else
				list_add(&page->lru, pages_to_free);
2061 2062
		} else {
			nr_moved += nr_pages;
2063 2064
		}
	}
2065

2066
	if (!is_active_lru(lru)) {
2067
		__count_vm_events(PGDEACTIVATE, nr_moved);
2068 2069 2070
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
2071 2072

	return nr_moved;
2073
}
2074

H
Hugh Dickins 已提交
2075
static void shrink_active_list(unsigned long nr_to_scan,
2076
			       struct lruvec *lruvec,
2077
			       struct scan_control *sc,
2078
			       enum lru_list lru)
L
Linus Torvalds 已提交
2079
{
2080
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2081
	unsigned long nr_scanned;
2082
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2083
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2084
	LIST_HEAD(l_active);
2085
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2086
	struct page *page;
2087
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2088 2089
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2090
	isolate_mode_t isolate_mode = 0;
2091
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2092
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2093 2094

	lru_add_drain();
2095 2096

	if (!sc->may_unmap)
2097
		isolate_mode |= ISOLATE_UNMAPPED;
2098

M
Mel Gorman 已提交
2099
	spin_lock_irq(&pgdat->lru_lock);
2100

2101 2102
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
2103

M
Mel Gorman 已提交
2104
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2105
	reclaim_stat->recent_scanned[file] += nr_taken;
2106

M
Mel Gorman 已提交
2107
	__count_vm_events(PGREFILL, nr_scanned);
2108
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2109

M
Mel Gorman 已提交
2110
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2111 2112 2113 2114 2115

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2116

2117
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2118 2119 2120 2121
			putback_lru_page(page);
			continue;
		}

2122 2123 2124 2125 2126 2127 2128 2129
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2130 2131
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2132
			nr_rotated += hpage_nr_pages(page);
2133 2134 2135 2136 2137 2138 2139 2140 2141
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2142
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2143 2144 2145 2146
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2147

2148
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
2149 2150 2151
		list_add(&page->lru, &l_inactive);
	}

2152
	/*
2153
	 * Move pages back to the lru list.
2154
	 */
M
Mel Gorman 已提交
2155
	spin_lock_irq(&pgdat->lru_lock);
2156
	/*
2157 2158 2159
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2160
	 * get_scan_count.
2161
	 */
2162
	reclaim_stat->recent_rotated[file] += nr_rotated;
2163

2164 2165
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2166 2167
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2168

2169
	mem_cgroup_uncharge_list(&l_hold);
2170
	free_unref_page_list(&l_hold);
2171 2172
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2173 2174
}

2175 2176 2177
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2178
 *
2179 2180 2181
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2182
 *
2183 2184
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2185
 *
2186 2187
 * If that fails and refaulting is observed, the inactive list grows.
 *
2188
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2189
 * on this LRU, maintained by the pageout code. An inactive_ratio
2190
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2191
 *
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2202
 */
2203
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2204 2205
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2206
{
2207
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2208 2209 2210 2211 2212
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2213
	unsigned long gb;
2214

2215 2216 2217 2218 2219 2220
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2221

2222 2223
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2224

2225
	if (memcg)
2226
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2227
	else
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2244

2245 2246 2247 2248 2249
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2250

2251
	return inactive * inactive_ratio < active;
2252 2253
}

2254
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2255 2256
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2257
{
2258
	if (is_active_lru(lru)) {
2259 2260
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2261
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2262 2263 2264
		return 0;
	}

2265
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2266 2267
}

2268 2269 2270 2271 2272 2273 2274
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2275 2276 2277 2278 2279 2280
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2281 2282
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2283
 */
2284
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2285 2286
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2287
{
2288
	int swappiness = mem_cgroup_swappiness(memcg);
2289 2290 2291
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2292
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2293
	unsigned long anon_prio, file_prio;
2294
	enum scan_balance scan_balance;
2295
	unsigned long anon, file;
2296
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2297
	enum lru_list lru;
2298 2299

	/* If we have no swap space, do not bother scanning anon pages. */
2300
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2301
		scan_balance = SCAN_FILE;
2302 2303
		goto out;
	}
2304

2305 2306 2307 2308 2309 2310 2311
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2312
	if (!global_reclaim(sc) && !swappiness) {
2313
		scan_balance = SCAN_FILE;
2314 2315 2316 2317 2318 2319 2320 2321
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2322
	if (!sc->priority && swappiness) {
2323
		scan_balance = SCAN_EQUAL;
2324 2325 2326
		goto out;
	}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2337 2338 2339 2340
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2341

M
Mel Gorman 已提交
2342 2343 2344 2345 2346 2347
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2348
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2349 2350 2351 2352
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2353

M
Mel Gorman 已提交
2354
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2366 2367 2368
		}
	}

2369
	/*
2370 2371 2372 2373 2374 2375 2376
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2377
	 */
2378
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2379
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2380
		scan_balance = SCAN_FILE;
2381 2382 2383
		goto out;
	}

2384 2385
	scan_balance = SCAN_FRACT;

2386 2387 2388 2389
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2390
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2391
	file_prio = 200 - anon_prio;
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2404

2405 2406 2407 2408
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2409

M
Mel Gorman 已提交
2410
	spin_lock_irq(&pgdat->lru_lock);
2411 2412 2413
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2414 2415
	}

2416 2417 2418
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2419 2420 2421
	}

	/*
2422 2423 2424
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2425
	 */
2426
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2427
	ap /= reclaim_stat->recent_rotated[0] + 1;
2428

2429
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2430
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2431
	spin_unlock_irq(&pgdat->lru_lock);
2432

2433 2434 2435 2436
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2437 2438 2439 2440 2441
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2442

2443 2444 2445 2446 2447 2448 2449 2450
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2451

2452 2453 2454 2455 2456
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2457
			/*
2458 2459
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2460
			 */
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2475
		}
2476 2477 2478

		*lru_pages += size;
		nr[lru] = scan;
2479
	}
2480
}
2481

2482
/*
2483
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2484
 */
2485
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2486
			      struct scan_control *sc, unsigned long *lru_pages)
2487
{
2488
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2489
	unsigned long nr[NR_LRU_LISTS];
2490
	unsigned long targets[NR_LRU_LISTS];
2491 2492 2493 2494 2495
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2496
	bool scan_adjusted;
2497

2498
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2499

2500 2501 2502
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2517 2518 2519
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2520 2521 2522
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2523 2524 2525 2526 2527 2528
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2529
							    lruvec, memcg, sc);
2530 2531
			}
		}
2532

2533 2534
		cond_resched();

2535 2536 2537 2538 2539
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2540
		 * requested. Ensure that the anon and file LRUs are scanned
2541 2542 2543 2544 2545 2546 2547
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2548 2549 2550 2551 2552 2553 2554 2555 2556
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2588 2589 2590 2591 2592 2593 2594 2595
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2596
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2597 2598 2599 2600
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2601
/* Use reclaim/compaction for costly allocs or under memory pressure */
2602
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2603
{
2604
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2605
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2606
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2607 2608 2609 2610 2611
		return true;

	return false;
}

2612
/*
M
Mel Gorman 已提交
2613 2614 2615 2616 2617
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2618
 */
2619
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2620 2621 2622 2623 2624 2625
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2626
	int z;
2627 2628

	/* If not in reclaim/compaction mode, stop */
2629
	if (!in_reclaim_compaction(sc))
2630 2631
		return false;

2632
	/* Consider stopping depending on scan and reclaim activity */
2633
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2634
		/*
2635
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2636 2637
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2638
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2639 2640 2641 2642 2643
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2644
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2645 2646 2647 2648 2649 2650 2651 2652 2653
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2654 2655 2656 2657 2658

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2659
	pages_for_compaction = compact_gap(sc->order);
2660
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2661
	if (get_nr_swap_pages() > 0)
2662
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2663 2664 2665 2666 2667
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2668 2669
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2670
		if (!managed_zone(zone))
2671 2672 2673
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2674
		case COMPACT_SUCCESS:
2675 2676 2677 2678 2679 2680
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2681
	}
2682
	return true;
2683 2684
}

2685 2686 2687 2688 2689 2690
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2691
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2692
{
2693
	struct reclaim_state *reclaim_state = current->reclaim_state;
2694
	unsigned long nr_reclaimed, nr_scanned;
2695
	bool reclaimable = false;
L
Linus Torvalds 已提交
2696

2697 2698 2699
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2700
			.pgdat = pgdat,
2701 2702
			.priority = sc->priority,
		};
2703
		unsigned long node_lru_pages = 0;
2704
		struct mem_cgroup *memcg;
2705

2706 2707
		memset(&sc->nr, 0, sizeof(sc->nr));

2708 2709
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2710

2711 2712
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2713
			unsigned long lru_pages;
2714
			unsigned long reclaimed;
2715
			unsigned long scanned;
2716

R
Roman Gushchin 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2731 2732
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2733
					continue;
2734
				}
2735
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2736 2737 2738
				break;
			case MEMCG_PROT_NONE:
				break;
2739 2740
			}

2741
			reclaimed = sc->nr_reclaimed;
2742
			scanned = sc->nr_scanned;
2743 2744
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2745

2746 2747
			shrink_slab(sc->gfp_mask, pgdat->node_id,
				    memcg, sc->priority);
2748

2749 2750 2751 2752 2753
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2754
			/*
2755 2756
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2757
			 * node.
2758 2759 2760 2761 2762
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2763
			 */
2764 2765
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2766 2767 2768
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2769
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2770

2771 2772 2773
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2774 2775
		}

2776 2777
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2778 2779 2780
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2781 2782 2783
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2827 2828 2829 2830 2831 2832 2833 2834
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2835 2836 2837 2838 2839 2840 2841
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2842 2843
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2844

2845
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2846
					 sc->nr_scanned - nr_scanned, sc));
2847

2848 2849 2850 2851 2852 2853 2854 2855 2856
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2857
	return reclaimable;
2858 2859
}

2860
/*
2861 2862 2863
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2864
 */
2865
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2866
{
M
Mel Gorman 已提交
2867
	unsigned long watermark;
2868
	enum compact_result suitable;
2869

2870 2871 2872 2873 2874 2875 2876
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2877

2878
	/*
2879 2880 2881 2882 2883 2884 2885
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2886
	 */
2887
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2888

2889
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2890 2891
}

L
Linus Torvalds 已提交
2892 2893 2894 2895 2896 2897 2898 2899
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2900
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2901
{
2902
	struct zoneref *z;
2903
	struct zone *zone;
2904 2905
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2906
	gfp_t orig_mask;
2907
	pg_data_t *last_pgdat = NULL;
2908

2909 2910 2911 2912 2913
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2914
	orig_mask = sc->gfp_mask;
2915
	if (buffer_heads_over_limit) {
2916
		sc->gfp_mask |= __GFP_HIGHMEM;
2917
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2918
	}
2919

2920
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2921
					sc->reclaim_idx, sc->nodemask) {
2922 2923 2924 2925
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2926
		if (global_reclaim(sc)) {
2927 2928
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2929
				continue;
2930

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2942
			    compaction_ready(zone, sc)) {
2943 2944
				sc->compaction_ready = true;
				continue;
2945
			}
2946

2947 2948 2949 2950 2951 2952 2953 2954 2955
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2956 2957 2958 2959 2960 2961 2962
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2963
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2964 2965 2966 2967
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2968
			/* need some check for avoid more shrink_zone() */
2969
		}
2970

2971 2972 2973 2974
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2975
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2976
	}
2977

2978 2979 2980 2981 2982
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2983
}
2984

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2995
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2996 2997 2998 2999 3000 3001 3002 3003
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
3004 3005 3006 3007 3008 3009 3010 3011
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3012 3013 3014 3015
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3016 3017 3018
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3019
 */
3020
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3021
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3022
{
3023
	int initial_priority = sc->priority;
3024 3025 3026
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3027
retry:
3028 3029
	delayacct_freepages_start();

3030
	if (global_reclaim(sc))
3031
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3032

3033
	do {
3034 3035
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3036
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3037
		shrink_zones(zonelist, sc);
3038

3039
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3040 3041 3042 3043
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3044

3045 3046 3047 3048 3049 3050
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3051
	} while (--sc->priority >= 0);
3052

3053 3054 3055 3056 3057 3058 3059
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3060
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3061 3062
	}

3063 3064
	delayacct_freepages_end();

3065 3066 3067
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3068
	/* Aborted reclaim to try compaction? don't OOM, then */
3069
	if (sc->compaction_ready)
3070 3071
		return 1;

3072
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3073
	if (sc->memcg_low_skipped) {
3074
		sc->priority = initial_priority;
3075 3076
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3077 3078 3079
		goto retry;
	}

3080
	return 0;
L
Linus Torvalds 已提交
3081 3082
}

3083
static bool allow_direct_reclaim(pg_data_t *pgdat)
3084 3085 3086 3087 3088 3089 3090
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3091 3092 3093
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3094 3095
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3096 3097 3098 3099
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3100 3101
			continue;

3102 3103 3104 3105
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3106 3107 3108 3109
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3110 3111 3112 3113
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3114
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3126 3127 3128 3129
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3130
 */
3131
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3132 3133
					nodemask_t *nodemask)
{
3134
	struct zoneref *z;
3135
	struct zone *zone;
3136
	pg_data_t *pgdat = NULL;
3137 3138 3139 3140 3141 3142 3143 3144 3145

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3146 3147 3148 3149 3150 3151 3152 3153
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3154

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3170
					gfp_zone(gfp_mask), nodemask) {
3171 3172 3173 3174 3175
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3176
		if (allow_direct_reclaim(pgdat))
3177 3178 3179 3180 3181 3182
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3183
		goto out;
3184

3185 3186 3187
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3198
			allow_direct_reclaim(pgdat), HZ);
3199 3200

		goto check_pending;
3201 3202 3203 3204
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3205
		allow_direct_reclaim(pgdat));
3206 3207 3208 3209 3210 3211 3212

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3213 3214
}

3215
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3216
				gfp_t gfp_mask, nodemask_t *nodemask)
3217
{
3218
	unsigned long nr_reclaimed;
3219
	struct scan_control sc = {
3220
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3221
		.gfp_mask = current_gfp_context(gfp_mask),
3222
		.reclaim_idx = gfp_zone(gfp_mask),
3223 3224 3225
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3226
		.may_writepage = !laptop_mode,
3227
		.may_unmap = 1,
3228
		.may_swap = 1,
3229 3230
	};

G
Greg Thelen 已提交
3231 3232 3233 3234 3235 3236 3237 3238
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3239
	/*
3240 3241 3242
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3243
	 */
3244
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3245 3246
		return 1;

3247 3248
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3249
				sc.gfp_mask,
3250
				sc.reclaim_idx);
3251

3252
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3253 3254 3255 3256

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3257 3258
}

A
Andrew Morton 已提交
3259
#ifdef CONFIG_MEMCG
3260

3261
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3262
						gfp_t gfp_mask, bool noswap,
3263
						pg_data_t *pgdat,
3264
						unsigned long *nr_scanned)
3265 3266
{
	struct scan_control sc = {
3267
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3268
		.target_mem_cgroup = memcg,
3269 3270
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3271
		.reclaim_idx = MAX_NR_ZONES - 1,
3272 3273
		.may_swap = !noswap,
	};
3274
	unsigned long lru_pages;
3275

3276 3277
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3278

3279
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3280
						      sc.may_writepage,
3281 3282
						      sc.gfp_mask,
						      sc.reclaim_idx);
3283

3284 3285 3286
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3287
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3288 3289 3290
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3291
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3292 3293 3294

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3295
	*nr_scanned = sc.nr_scanned;
3296 3297 3298
	return sc.nr_reclaimed;
}

3299
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3300
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3301
					   gfp_t gfp_mask,
3302
					   bool may_swap)
3303
{
3304
	struct zonelist *zonelist;
3305
	unsigned long nr_reclaimed;
3306
	int nid;
3307
	unsigned int noreclaim_flag;
3308
	struct scan_control sc = {
3309
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3310
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3311
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3312
		.reclaim_idx = MAX_NR_ZONES - 1,
3313 3314 3315 3316
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3317
		.may_swap = may_swap,
3318
	};
3319

3320 3321 3322 3323 3324
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3325
	nid = mem_cgroup_select_victim_node(memcg);
3326

3327
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3328 3329 3330

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3331 3332
					    sc.gfp_mask,
					    sc.reclaim_idx);
3333

3334
	noreclaim_flag = memalloc_noreclaim_save();
3335
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3336
	memalloc_noreclaim_restore(noreclaim_flag);
3337 3338 3339 3340

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3341 3342 3343
}
#endif

3344
static void age_active_anon(struct pglist_data *pgdat,
3345
				struct scan_control *sc)
3346
{
3347
	struct mem_cgroup *memcg;
3348

3349 3350 3351 3352 3353
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3354
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3355

3356
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3357
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3358
					   sc, LRU_ACTIVE_ANON);
3359 3360 3361

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3362 3363
}

3364 3365 3366 3367 3368
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3369
{
3370 3371 3372
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3373

3374 3375
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3376

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3394 3395
}

3396 3397 3398 3399 3400 3401 3402 3403
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3404 3405 3406 3407 3408 3409
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3410
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3411
{
3412
	/*
3413
	 * The throttled processes are normally woken up in balance_pgdat() as
3414
	 * soon as allow_direct_reclaim() is true. But there is a potential
3415 3416 3417 3418 3419 3420 3421 3422 3423
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3424
	 */
3425 3426
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3427

3428 3429 3430 3431
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3432 3433 3434
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3435 3436
	}

3437
	return false;
3438 3439
}

3440
/*
3441 3442
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3443 3444
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3445 3446
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3447
 */
3448
static bool kswapd_shrink_node(pg_data_t *pgdat,
3449
			       struct scan_control *sc)
3450
{
3451 3452
	struct zone *zone;
	int z;
3453

3454 3455
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3456
	for (z = 0; z <= sc->reclaim_idx; z++) {
3457
		zone = pgdat->node_zones + z;
3458
		if (!managed_zone(zone))
3459
			continue;
3460

3461 3462
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3463 3464

	/*
3465 3466
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3467
	 */
3468
	shrink_node(pgdat, sc);
3469

3470
	/*
3471 3472 3473 3474 3475
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3476
	 */
3477
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3478
		sc->order = 0;
3479

3480
	return sc->nr_scanned >= sc->nr_to_reclaim;
3481 3482
}

L
Linus Torvalds 已提交
3483
/*
3484 3485 3486
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3487
 *
3488
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3489 3490
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3491
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3492 3493 3494
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3495
 */
3496
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3497 3498
{
	int i;
3499 3500
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3501
	struct zone *zone;
3502 3503
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3504
		.order = order,
3505
		.priority = DEF_PRIORITY,
3506
		.may_writepage = !laptop_mode,
3507
		.may_unmap = 1,
3508
		.may_swap = 1,
3509
	};
3510 3511 3512

	__fs_reclaim_acquire();

3513
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3514

3515
	do {
3516
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3517
		bool raise_priority = true;
3518
		bool ret;
3519

3520
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3521

3522
		/*
3523 3524 3525 3526 3527 3528 3529 3530
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3531 3532 3533 3534
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3535
				if (!managed_zone(zone))
3536
					continue;
3537

3538
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3539
				break;
L
Linus Torvalds 已提交
3540 3541
			}
		}
3542

3543
		/*
3544 3545 3546
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3547
		 */
3548 3549
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3550

3551 3552 3553 3554 3555 3556
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3557
		age_active_anon(pgdat, &sc);
3558

3559 3560 3561 3562
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3563
		if (sc.priority < DEF_PRIORITY - 2)
3564 3565
			sc.may_writepage = 1;

3566 3567 3568
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3569
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3570 3571 3572
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3573
		/*
3574 3575 3576
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3577
		 */
3578
		if (kswapd_shrink_node(pgdat, &sc))
3579
			raise_priority = false;
3580 3581 3582 3583 3584 3585 3586

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3587
				allow_direct_reclaim(pgdat))
3588
			wake_up_all(&pgdat->pfmemalloc_wait);
3589

3590
		/* Check if kswapd should be suspending */
3591 3592 3593 3594
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3595
			break;
3596

3597
		/*
3598 3599
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3600
		 */
3601 3602
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3603
			sc.priority--;
3604
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3605

3606 3607 3608
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3609
out:
3610
	snapshot_refaults(NULL, pgdat);
3611
	__fs_reclaim_release();
3612
	/*
3613 3614 3615 3616
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3617
	 */
3618
	return sc.order;
L
Linus Torvalds 已提交
3619 3620
}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3637 3638
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3639 3640 3641 3642 3643 3644 3645 3646 3647
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3648 3649 3650 3651 3652 3653 3654
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3655
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3668
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3669

3670
		remaining = schedule_timeout(HZ/10);
3671 3672 3673 3674 3675 3676 3677

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3678
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3679 3680 3681
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3682 3683 3684 3685 3686 3687 3688 3689
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3690 3691
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3703 3704 3705 3706

		if (!kthread_should_stop())
			schedule();

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3717 3718
/*
 * The background pageout daemon, started as a kernel thread
3719
 * from the init process.
L
Linus Torvalds 已提交
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3732 3733
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3734 3735
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3736

L
Linus Torvalds 已提交
3737 3738 3739
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3740
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3741

R
Rusty Russell 已提交
3742
	if (!cpumask_empty(cpumask))
3743
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3758
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3759
	set_freezable();
L
Linus Torvalds 已提交
3760

3761 3762
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3763
	for ( ; ; ) {
3764
		bool ret;
3765

3766 3767 3768
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3769 3770 3771
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3772

3773 3774
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3775
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3776
		pgdat->kswapd_order = 0;
3777
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3778

3779 3780 3781 3782 3783 3784 3785 3786
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3798 3799
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3800 3801 3802
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3803
	}
3804

3805
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3806
	current->reclaim_state = NULL;
3807

L
Linus Torvalds 已提交
3808 3809 3810 3811
	return 0;
}

/*
3812 3813 3814 3815 3816
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3817
 */
3818 3819
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3820 3821 3822
{
	pg_data_t *pgdat;

3823
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3824 3825
		return;

3826
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3827
		return;
3828
	pgdat = zone->zone_pgdat;
3829 3830
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3831
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3832
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3833
		return;
3834

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
	    pgdat_balanced(pgdat, order, classzone_idx)) {
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3847
		return;
3848
	}
3849

3850 3851
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3852
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3853 3854
}

3855
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3856
/*
3857
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3858 3859 3860 3861 3862
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3863
 */
3864
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3865
{
3866 3867
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3868
		.nr_to_reclaim = nr_to_reclaim,
3869
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3870
		.reclaim_idx = MAX_NR_ZONES - 1,
3871
		.priority = DEF_PRIORITY,
3872
		.may_writepage = 1,
3873 3874
		.may_unmap = 1,
		.may_swap = 1,
3875
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3876
	};
3877
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3878 3879
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3880
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3881

3882
	fs_reclaim_acquire(sc.gfp_mask);
3883
	noreclaim_flag = memalloc_noreclaim_save();
3884 3885
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3886

3887
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3888

3889
	p->reclaim_state = NULL;
3890
	memalloc_noreclaim_restore(noreclaim_flag);
3891
	fs_reclaim_release(sc.gfp_mask);
3892

3893
	return nr_reclaimed;
L
Linus Torvalds 已提交
3894
}
3895
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3896 3897 3898 3899 3900

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3901
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3902
{
3903
	int nid;
L
Linus Torvalds 已提交
3904

3905 3906 3907
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3908

3909
		mask = cpumask_of_node(pgdat->node_id);
3910

3911 3912 3913
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3914
	}
3915
	return 0;
L
Linus Torvalds 已提交
3916 3917
}

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3933
		BUG_ON(system_state < SYSTEM_RUNNING);
3934 3935
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3936
		pgdat->kswapd = NULL;
3937 3938 3939 3940
	}
	return ret;
}

3941
/*
3942
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3943
 * hold mem_hotplug_begin/end().
3944 3945 3946 3947 3948
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3949
	if (kswapd) {
3950
		kthread_stop(kswapd);
3951 3952
		NODE_DATA(nid)->kswapd = NULL;
	}
3953 3954
}

L
Linus Torvalds 已提交
3955 3956
static int __init kswapd_init(void)
{
3957
	int nid, ret;
3958

L
Linus Torvalds 已提交
3959
	swap_setup();
3960
	for_each_node_state(nid, N_MEMORY)
3961
 		kswapd_run(nid);
3962 3963 3964 3965
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3966 3967 3968 3969
	return 0;
}

module_init(kswapd_init)
3970 3971 3972

#ifdef CONFIG_NUMA
/*
3973
 * Node reclaim mode
3974
 *
3975
 * If non-zero call node_reclaim when the number of free pages falls below
3976 3977
 * the watermarks.
 */
3978
int node_reclaim_mode __read_mostly;
3979

3980
#define RECLAIM_OFF 0
3981
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3982
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3983
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3984

3985
/*
3986
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3987 3988 3989
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3990
#define NODE_RECLAIM_PRIORITY 4
3991

3992
/*
3993
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3994 3995 3996 3997
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3998 3999 4000 4001 4002 4003
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4004
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4005
{
4006 4007 4008
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4019
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4020
{
4021 4022
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4023 4024

	/*
4025
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4026
	 * potentially reclaimable. Otherwise, we have to worry about
4027
	 * pages like swapcache and node_unmapped_file_pages() provides
4028 4029
	 * a better estimate
	 */
4030 4031
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4032
	else
4033
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4034 4035

	/* If we can't clean pages, remove dirty pages from consideration */
4036 4037
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4038 4039 4040 4041 4042 4043 4044 4045

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4046
/*
4047
 * Try to free up some pages from this node through reclaim.
4048
 */
4049
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4050
{
4051
	/* Minimum pages needed in order to stay on node */
4052
	const unsigned long nr_pages = 1 << order;
4053 4054
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4055
	unsigned int noreclaim_flag;
4056
	struct scan_control sc = {
4057
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4058
		.gfp_mask = current_gfp_context(gfp_mask),
4059
		.order = order,
4060 4061 4062
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4063
		.may_swap = 1,
4064
		.reclaim_idx = gfp_zone(gfp_mask),
4065
	};
4066 4067

	cond_resched();
4068
	fs_reclaim_acquire(sc.gfp_mask);
4069
	/*
4070
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4071
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4072
	 * and RECLAIM_UNMAP.
4073
	 */
4074 4075
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4076 4077
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4078

4079
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4080
		/*
4081
		 * Free memory by calling shrink node with increasing
4082 4083 4084
		 * priorities until we have enough memory freed.
		 */
		do {
4085
			shrink_node(pgdat, &sc);
4086
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4087
	}
4088

4089
	p->reclaim_state = NULL;
4090 4091
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4092
	fs_reclaim_release(sc.gfp_mask);
4093
	return sc.nr_reclaimed >= nr_pages;
4094
}
4095

4096
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4097
{
4098
	int ret;
4099 4100

	/*
4101
	 * Node reclaim reclaims unmapped file backed pages and
4102
	 * slab pages if we are over the defined limits.
4103
	 *
4104 4105
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4106 4107
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4108
	 * unmapped file backed pages.
4109
	 */
4110
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4111
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4112
		return NODE_RECLAIM_FULL;
4113 4114

	/*
4115
	 * Do not scan if the allocation should not be delayed.
4116
	 */
4117
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4118
		return NODE_RECLAIM_NOSCAN;
4119 4120

	/*
4121
	 * Only run node reclaim on the local node or on nodes that do not
4122 4123 4124 4125
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4126 4127
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4128

4129 4130
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4131

4132 4133
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4134

4135 4136 4137
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4138
	return ret;
4139
}
4140
#endif
L
Lee Schermerhorn 已提交
4141 4142 4143 4144 4145 4146

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4147
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4148 4149
 *
 * Reasons page might not be evictable:
4150
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4151
 * (2) page is part of an mlocked VMA
4152
 *
L
Lee Schermerhorn 已提交
4153
 */
4154
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4155
{
4156 4157 4158 4159 4160 4161 4162
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4163
}
4164

4165
#ifdef CONFIG_SHMEM
4166
/**
4167 4168 4169
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
4170
 *
4171
 * Checks pages for evictability and moves them to the appropriate lru list.
4172 4173
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
4174
 */
4175
void check_move_unevictable_pages(struct page **pages, int nr_pages)
4176
{
4177
	struct lruvec *lruvec;
4178
	struct pglist_data *pgdat = NULL;
4179 4180 4181
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4182

4183 4184
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
4185
		struct pglist_data *pagepgdat = page_pgdat(page);
4186

4187
		pgscanned++;
4188 4189 4190 4191 4192
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4193
		}
4194
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4195

4196 4197
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4198

4199
		if (page_evictable(page)) {
4200 4201
			enum lru_list lru = page_lru_base_type(page);

4202
			VM_BUG_ON_PAGE(PageActive(page), page);
4203
			ClearPageUnevictable(page);
4204 4205
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4206
			pgrescued++;
4207
		}
4208
	}
4209

4210
	if (pgdat) {
4211 4212
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4213
		spin_unlock_irq(&pgdat->lru_lock);
4214 4215
	}
}
4216
#endif /* CONFIG_SHMEM */