fib_trie.c 66.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52

53
#include <linux/cache.h>
54
#include <linux/uaccess.h>
J
Jiri Slaby 已提交
55
#include <linux/bitops.h>
56 57 58 59 60 61 62 63 64
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
65
#include <linux/inetdevice.h>
66 67 68
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
69
#include <linux/rcupdate.h>
70 71 72 73
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
74
#include <linux/slab.h>
75
#include <linux/export.h>
76
#include <linux/vmalloc.h>
77
#include <linux/notifier.h>
78
#include <net/net_namespace.h>
79 80 81 82 83 84
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
85
#include <net/fib_notifier.h>
D
David Ahern 已提交
86
#include <trace/events/fib.h>
87 88
#include "fib_lookup.h"

89 90
static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
				   enum fib_event_type event_type, u32 dst,
91
				   int dst_len, struct fib_alias *fa)
92 93 94 95
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
96 97 98 99
		.fi = fa->fa_info,
		.tos = fa->fa_tos,
		.type = fa->fa_type,
		.tb_id = fa->tb_id,
100
	};
101
	return call_fib4_notifier(nb, net, event_type, &info.info);
102 103
}

104 105
static int call_fib_entry_notifiers(struct net *net,
				    enum fib_event_type event_type, u32 dst,
D
David Ahern 已提交
106 107
				    int dst_len, struct fib_alias *fa,
				    struct netlink_ext_ack *extack)
108 109
{
	struct fib_entry_notifier_info info = {
D
David Ahern 已提交
110
		.info.extack = extack,
111 112
		.dst = dst,
		.dst_len = dst_len,
113 114 115 116
		.fi = fa->fa_info,
		.tos = fa->fa_tos,
		.type = fa->fa_type,
		.tb_id = fa->tb_id,
117
	};
118
	return call_fib4_notifiers(net, event_type, &info.info);
119 120
}

R
Robert Olsson 已提交
121
#define MAX_STAT_DEPTH 32
122

123 124
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
125 126 127

typedef unsigned int t_key;

128 129 130
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
131

132
struct key_vector {
133 134
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
135
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
136
	unsigned char slen;
A
Alexander Duyck 已提交
137
	union {
138
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
139
		struct hlist_head leaf;
140
		/* This array is valid if (pos | bits) > 0 (TNODE) */
141
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
142
	};
143 144
};

145
struct tnode {
146
	struct rcu_head rcu;
147 148
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
149
	struct key_vector __rcu *parent;
150
	struct key_vector kv[1];
151
#define tn_bits kv[0].bits
152 153 154
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
155 156
#define LEAF_SIZE	TNODE_SIZE(1)

157 158 159 160 161 162 163
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
164
	unsigned int resize_node_skipped;
165 166 167 168 169 170 171 172 173
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
174
	unsigned int prefixes;
R
Robert Olsson 已提交
175
	unsigned int nodesizes[MAX_STAT_DEPTH];
176
};
177 178

struct trie {
179
	struct key_vector kv[1];
180
#ifdef CONFIG_IP_FIB_TRIE_STATS
181
	struct trie_use_stats __percpu *stats;
182 183 184
#endif
};

185
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
186 187 188 189 190 191 192 193
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
194

195 196
static struct kmem_cache *fn_alias_kmem __ro_after_init;
static struct kmem_cache *trie_leaf_kmem __ro_after_init;
197

198 199 200 201 202
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

203
/* caller must hold RTNL */
204
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
205
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
206

207
/* caller must hold RCU read lock or RTNL */
208
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
209
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
210

211
/* wrapper for rcu_assign_pointer */
212
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
213
{
A
Alexander Duyck 已提交
214
	if (n)
215
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
216 217
}

218
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
219 220 221

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
222
 */
223
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
224
{
225
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
226
}
R
Robert Olsson 已提交
227

228 229
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

230 231 232 233
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

234 235 236
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

237 238 239
	return index >> kv->pos;
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
286
 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
287 288 289 290 291 292 293 294
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
295
 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
296 297
 * at this point.
 */
298

299 300
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
301
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
302
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
303 304

static void __alias_free_mem(struct rcu_head *head)
305
{
R
Robert Olsson 已提交
306 307
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
308 309
}

R
Robert Olsson 已提交
310
static inline void alias_free_mem_rcu(struct fib_alias *fa)
311
{
R
Robert Olsson 已提交
312 313
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
314

315
#define TNODE_KMALLOC_MAX \
316
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
317
#define TNODE_VMALLOC_MAX \
318
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
319

320
static void __node_free_rcu(struct rcu_head *head)
321
{
322
	struct tnode *n = container_of(head, struct tnode, rcu);
323

324
	if (!n->tn_bits)
325 326
		kmem_cache_free(trie_leaf_kmem, n);
	else
327
		kvfree(n);
328 329
}

330
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
331

332
static struct tnode *tnode_alloc(int bits)
333
{
334 335 336 337 338 339 340 341 342
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
343
	if (size <= PAGE_SIZE)
344
		return kzalloc(size, GFP_KERNEL);
345
	else
346
		return vzalloc(size);
347
}
R
Robert Olsson 已提交
348

349
static inline void empty_child_inc(struct key_vector *n)
350
{
351
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
352 353
}

354
static inline void empty_child_dec(struct key_vector *n)
355
{
356
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
357 358
}

359
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
360
{
361 362
	struct key_vector *l;
	struct tnode *kv;
363

364
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
365 366 367 368
	if (!kv)
		return NULL;

	/* initialize key vector */
369
	l = kv->kv;
370 371 372 373 374 375 376 377 378
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
379 380 381
	return l;
}

382
static struct key_vector *tnode_new(t_key key, int pos, int bits)
383
{
384
	unsigned int shift = pos + bits;
385 386
	struct key_vector *tn;
	struct tnode *tnode;
387 388 389

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
390

391
	tnode = tnode_alloc(bits);
392 393 394
	if (!tnode)
		return NULL;

395 396 397
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

398
	if (bits == KEYLENGTH)
399
		tnode->full_children = 1;
400
	else
401
		tnode->empty_children = 1ul << bits;
402

403
	tn = tnode->kv;
404 405 406 407 408
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

409 410 411
	return tn;
}

412
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
413 414
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
415
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
416
{
417
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
418 419
}

420 421 422
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
423 424
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
425
{
426
	struct key_vector *chi = get_child(tn, i);
427
	int isfull, wasfull;
428

429
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
430

431
	/* update emptyChildren, overflow into fullChildren */
432
	if (!n && chi)
433
		empty_child_inc(tn);
434
	if (n && !chi)
435
		empty_child_dec(tn);
436

437
	/* update fullChildren */
438
	wasfull = tnode_full(tn, chi);
439
	isfull = tnode_full(tn, n);
440

441
	if (wasfull && !isfull)
442
		tn_info(tn)->full_children--;
443
	else if (!wasfull && isfull)
444
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
445

446 447 448
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

449
	rcu_assign_pointer(tn->tnode[i], n);
450 451
}

452
static void update_children(struct key_vector *tn)
453 454 455 456
{
	unsigned long i;

	/* update all of the child parent pointers */
457
	for (i = child_length(tn); i;) {
458
		struct key_vector *inode = get_child(tn, --i);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

474 475
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
476
{
477 478
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
479
	else
480
		put_child(tp, get_index(key, tp), n);
481 482
}

483
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
484
{
485
	tn_info(tn)->rcu.next = NULL;
486 487
}

488 489
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
490
{
491 492
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
493
}
E
Eric Dumazet 已提交
494

495
static void tnode_free(struct key_vector *tn)
496
{
497
	struct callback_head *head = &tn_info(tn)->rcu;
498 499 500

	while (head) {
		head = head->next;
501
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
502 503
		node_free(tn);

504
		tn = container_of(head, struct tnode, rcu)->kv;
505 506 507 508 509
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
510 511 512
	}
}

513 514 515
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
516
{
517
	struct key_vector *tp = node_parent(oldtnode);
518 519 520 521
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
522
	put_child_root(tp, tn->key, tn);
523 524 525 526 527 528 529 530

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
531
	for (i = child_length(tn); i;) {
532
		struct key_vector *inode = get_child(tn, --i);
533 534 535

		/* resize child node */
		if (tnode_full(tn, inode))
536
			tn = resize(t, inode);
537
	}
538

539
	return tp;
540 541
}

542 543
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
544
{
545
	struct key_vector *tn;
546
	unsigned long i;
547
	t_key m;
548

S
Stephen Hemminger 已提交
549
	pr_debug("In inflate\n");
550

551
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
552
	if (!tn)
553
		goto notnode;
554

555 556 557
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

558 559 560 561
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
562
	 */
563
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
564
		struct key_vector *inode = get_child(oldtnode, --i);
565
		struct key_vector *node0, *node1;
566
		unsigned long j, k;
567

568
		/* An empty child */
569
		if (!inode)
570 571 572
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
573
		if (!tnode_full(oldtnode, inode)) {
574
			put_child(tn, get_index(inode->key, tn), inode);
575 576 577
			continue;
		}

578 579 580
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

581 582
		/* An internal node with two children */
		if (inode->bits == 1) {
583 584
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
585
			continue;
586 587
		}

O
Olof Johansson 已提交
588
		/* We will replace this node 'inode' with two new
589
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
590 591 592 593 594
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
595
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
596 597
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
598 599 600
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
601
		 */
602 603 604
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
605
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
606

607
		tnode_free_append(tn, node1);
608 609 610 611 612
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
613
		for (k = child_length(inode), j = k / 2; j;) {
614 615 616 617
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
618
		}
619

620 621 622
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
623

624 625 626 627
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
628

629
	/* setup the parent pointers into and out of this node */
630
	return replace(t, oldtnode, tn);
631
nomem:
632 633
	/* all pointers should be clean so we are done */
	tnode_free(tn);
634 635
notnode:
	return NULL;
636 637
}

638 639
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
640
{
641
	struct key_vector *tn;
642
	unsigned long i;
643

S
Stephen Hemminger 已提交
644
	pr_debug("In halve\n");
645

646
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
647
	if (!tn)
648
		goto notnode;
649

650 651 652
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

653 654 655 656
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
657
	 */
658
	for (i = child_length(oldtnode); i;) {
659 660
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
661
		struct key_vector *inode;
662

663 664 665 666 667
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
668

669
		/* Two nonempty children */
670
		inode = tnode_new(node0->key, oldtnode->pos, 1);
671 672
		if (!inode)
			goto nomem;
673
		tnode_free_append(tn, inode);
674

675 676 677 678 679 680 681
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
682
	}
683

684
	/* setup the parent pointers into and out of this node */
685 686 687 688 689 690
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
691 692
}

693 694
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
695
{
696
	struct key_vector *n, *tp;
697 698 699
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
700
	for (n = NULL, i = child_length(oldtnode); !n && i;)
701
		n = get_child(oldtnode, --i);
702 703 704

	/* compress one level */
	tp = node_parent(oldtnode);
705
	put_child_root(tp, oldtnode->key, n);
706 707 708 709
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
710 711

	return tp;
712 713
}

714
static unsigned char update_suffix(struct key_vector *tn)
715 716 717
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;
718 719 720 721 722 723 724
	unsigned char slen_max;

	/* only vector 0 can have a suffix length greater than or equal to
	 * tn->pos + tn->bits, the second highest node will have a suffix
	 * length at most of tn->pos + tn->bits - 1
	 */
	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
725 726 727 728 729 730

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
731
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
732
		struct key_vector *n = get_child(tn, i);
733 734 735 736 737 738 739 740 741

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

742 743
		/* stop searching if we have hit the maximum possible value */
		if (slen >= slen_max)
744 745 746 747 748 749 750 751
			break;
	}

	tn->slen = slen;

	return slen;
}

752 753 754 755 756 757 758 759
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
760
 * child_length() and instead of multiplying by 2 (since the
761 762 763 764
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
765
 * The left-hand side may look a bit weird: child_length(tn)
766 767 768 769 770 771 772 773 774
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
775
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
776 777
 *     tn->full_children;
 *
778
 * new_child_length = child_length(tn) * 2;
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
795
 * 100 * (child_length(tn) - tn->empty_children +
796 797 798
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
799
 * 100 * (child_length(tn) - tn->empty_children +
800
 *    tn->full_children) >=
801
 *      inflate_threshold * child_length(tn) * 2
802 803
 *
 * shorten again:
804
 * 50 * (tn->full_children + child_length(tn) -
805
 *    tn->empty_children) >= inflate_threshold *
806
 *    child_length(tn)
807 808
 *
 */
809
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
810
{
811
	unsigned long used = child_length(tn);
812 813 814
	unsigned long threshold = used;

	/* Keep root node larger */
815
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
816 817
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
818

819 820 821
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
822 823
}

824
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
825
{
826
	unsigned long used = child_length(tn);
827 828 829
	unsigned long threshold = used;

	/* Keep root node larger */
830
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
831
	used -= tn_info(tn)->empty_children;
832

833 834 835 836 837
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

838
static inline bool should_collapse(struct key_vector *tn)
839
{
840
	unsigned long used = child_length(tn);
841

842
	used -= tn_info(tn)->empty_children;
843 844

	/* account for bits == KEYLENGTH case */
845
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
846 847 848 849
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
850 851
}

852
#define MAX_WORK 10
853
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
854
{
855 856 857
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
858
	struct key_vector *tp = node_parent(tn);
859
	unsigned long cindex = get_index(tn->key, tp);
860
	int max_work = MAX_WORK;
861 862 863 864

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

865 866 867 868
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
869
	BUG_ON(tn != get_child(tp, cindex));
870

871 872
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
873
	 */
874
	while (should_inflate(tp, tn) && max_work) {
875 876
		tp = inflate(t, tn);
		if (!tp) {
877
#ifdef CONFIG_IP_FIB_TRIE_STATS
878
			this_cpu_inc(stats->resize_node_skipped);
879 880 881
#endif
			break;
		}
882

883
		max_work--;
884
		tn = get_child(tp, cindex);
885 886
	}

887 888 889
	/* update parent in case inflate failed */
	tp = node_parent(tn);

890 891
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
892
		return tp;
893

894
	/* Halve as long as the number of empty children in this
895 896
	 * node is above threshold.
	 */
897
	while (should_halve(tp, tn) && max_work) {
898 899
		tp = halve(t, tn);
		if (!tp) {
900
#ifdef CONFIG_IP_FIB_TRIE_STATS
901
			this_cpu_inc(stats->resize_node_skipped);
902 903 904 905
#endif
			break;
		}

906
		max_work--;
907
		tn = get_child(tp, cindex);
908
	}
909 910

	/* Only one child remains */
911 912 913
	if (should_collapse(tn))
		return collapse(t, tn);

914
	/* update parent in case halve failed */
915
	return node_parent(tn);
916 917
}

918
static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
919
{
920 921 922 923 924
	unsigned char node_slen = tn->slen;

	while ((node_slen > tn->pos) && (node_slen > slen)) {
		slen = update_suffix(tn);
		if (node_slen == slen)
925
			break;
926 927 928

		tn = node_parent(tn);
		node_slen = tn->slen;
929 930 931
	}
}

932
static void node_push_suffix(struct key_vector *tn, unsigned char slen)
933
{
934 935
	while (tn->slen < slen) {
		tn->slen = slen;
936 937 938 939
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
940
/* rcu_read_lock needs to be hold by caller from readside */
941 942
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
943
{
944 945 946 947 948 949 950 951 952
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
953

954
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
955 956 957 958 959 960

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
961
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
962
		 *     we have a mismatch in skip bits and failed
963 964
		 *   else
		 *     we know the value is cindex
965 966 967 968
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
969
		 */
970 971 972 973
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
974

975 976
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
977

978
	*tp = pn;
979

A
Alexander Duyck 已提交
980
	return n;
981 982
}

983 984 985
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
986
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
987
					u8 tos, u32 prio, u32 tb_id)
988 989 990 991 992 993
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

994
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
995 996 997 998
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
999 1000 1001 1002
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
1003 1004 1005 1006 1007 1008 1009 1010 1011
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

1012
static void trie_rebalance(struct trie *t, struct key_vector *tn)
1013
{
1014 1015
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
1016 1017
}

1018
static int fib_insert_node(struct trie *t, struct key_vector *tp,
1019
			   struct fib_alias *new, t_key key)
1020
{
1021
	struct key_vector *n, *l;
1022

1023
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
1024
	if (!l)
1025
		goto noleaf;
1026 1027

	/* retrieve child from parent node */
1028
	n = get_child(tp, get_index(key, tp));
1029

1030 1031 1032 1033 1034 1035 1036
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1037
		struct key_vector *tn;
1038

1039
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1040 1041
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1042

1043 1044 1045
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1046

1047
		/* start adding routes into the node */
1048
		put_child_root(tp, key, tn);
1049
		node_set_parent(n, tn);
1050

1051
		/* parent now has a NULL spot where the leaf can go */
1052
		tp = tn;
1053
	}
O
Olof Johansson 已提交
1054

1055
	/* Case 3: n is NULL, and will just insert a new leaf */
1056
	node_push_suffix(tp, new->fa_slen);
1057
	NODE_INIT_PARENT(l, tp);
1058
	put_child_root(tp, key, l);
1059 1060 1061
	trie_rebalance(t, tp);

	return 0;
1062 1063 1064 1065
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1066 1067
}

1068 1069
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1070 1071 1072 1073 1074 1075 1076
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1077
	} else {
1078 1079 1080 1081 1082
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1083 1084 1085
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1086 1087 1088 1089 1090 1091 1092
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1093
	}
R
Robert Olsson 已提交
1094

1095 1096 1097
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
1098
		node_push_suffix(tp, new->fa_slen);
1099 1100 1101
	}

	return 0;
1102 1103
}

1104
static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1105
{
1106 1107
	if (plen > KEYLENGTH) {
		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1108
		return false;
1109
	}
1110

1111 1112 1113
	if ((plen < KEYLENGTH) && (key << plen)) {
		NL_SET_ERR_MSG(extack,
			       "Invalid prefix for given prefix length");
1114
		return false;
1115
	}
1116 1117 1118 1119

	return true;
}

1120
/* Caller must hold RTNL. */
1121
int fib_table_insert(struct net *net, struct fib_table *tb,
1122
		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1123
{
1124
	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1125
	struct trie *t = (struct trie *)tb->tb_data;
1126
	struct fib_alias *fa, *new_fa;
1127
	struct key_vector *l, *tp;
1128
	u16 nlflags = NLM_F_EXCL;
1129
	struct fib_info *fi;
A
Alexander Duyck 已提交
1130 1131
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1132
	u8 tos = cfg->fc_tos;
1133
	u32 key;
1134 1135
	int err;

1136
	key = ntohl(cfg->fc_dst);
1137

1138
	if (!fib_valid_key_len(key, plen, extack))
1139 1140
		return -EINVAL;

1141 1142
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);

1143
	fi = fib_create_info(cfg, extack);
1144 1145
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1146
		goto err;
1147
	}
1148

1149
	l = fib_find_node(t, &tp, key);
1150 1151
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1152 1153 1154 1155 1156 1157

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1158 1159
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1160 1161
	 */

1162 1163 1164
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1165 1166

		err = -EEXIST;
1167
		if (cfg->fc_nlflags & NLM_F_EXCL)
1168 1169
			goto out;

1170 1171
		nlflags &= ~NLM_F_EXCL;

1172 1173 1174 1175 1176 1177 1178
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1179
		hlist_for_each_entry_from(fa, fa_list) {
1180 1181 1182
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1193
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1194 1195 1196
			struct fib_info *fi_drop;
			u8 state;

1197
			nlflags |= NLM_F_REPLACE;
1198 1199 1200 1201
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1202
				goto out;
1203
			}
R
Robert Olsson 已提交
1204
			err = -ENOBUFS;
1205
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1206
			if (!new_fa)
R
Robert Olsson 已提交
1207
				goto out;
1208 1209

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1210 1211
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1212
			new_fa->fa_type = cfg->fc_type;
1213
			state = fa->fa_state;
1214
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1215
			new_fa->fa_slen = fa->fa_slen;
1216
			new_fa->tb_id = tb->tb_id;
1217
			new_fa->fa_default = -1;
1218

1219
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
D
David Ahern 已提交
1220
						 key, plen, new_fa, extack);
1221 1222 1223
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				  tb->tb_id, &cfg->fc_nlinfo, nlflags);

1224
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1225

R
Robert Olsson 已提交
1226
			alias_free_mem_rcu(fa);
1227 1228 1229

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1230
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1231

O
Olof Johansson 已提交
1232
			goto succeeded;
1233 1234 1235 1236 1237
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1238 1239
		if (fa_match)
			goto out;
1240

1241 1242
		if (cfg->fc_nlflags & NLM_F_APPEND) {
			event = FIB_EVENT_ENTRY_APPEND;
1243
			nlflags |= NLM_F_APPEND;
1244
		} else {
1245
			fa = fa_first;
1246
		}
1247 1248
	}
	err = -ENOENT;
1249
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1250 1251
		goto out;

1252
	nlflags |= NLM_F_CREATE;
1253
	err = -ENOBUFS;
1254
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1255
	if (!new_fa)
1256 1257 1258 1259
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1260
	new_fa->fa_type = cfg->fc_type;
1261
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1262
	new_fa->fa_slen = slen;
1263
	new_fa->tb_id = tb->tb_id;
1264
	new_fa->fa_default = -1;
1265

1266
	/* Insert new entry to the list. */
1267 1268
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1269
		goto out_free_new_fa;
1270

1271 1272 1273
	if (!plen)
		tb->tb_num_default++;

1274
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
D
David Ahern 已提交
1275
	call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1276
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1277
		  &cfg->fc_nlinfo, nlflags);
1278 1279
succeeded:
	return 0;
1280 1281 1282

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1283 1284
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1285
err:
1286 1287 1288
	return err;
}

1289
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1290 1291 1292 1293 1294 1295
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1296
/* should be called with rcu_read_lock */
1297
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1298
		     struct fib_result *res, int fib_flags)
1299
{
1300
	struct trie *t = (struct trie *) tb->tb_data;
1301 1302 1303
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1304
	const t_key key = ntohl(flp->daddr);
1305
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1306
	struct fib_alias *fa;
1307
	unsigned long index;
1308
	t_key cindex;
O
Olof Johansson 已提交
1309

D
David Ahern 已提交
1310 1311
	trace_fib_table_lookup(tb->tb_id, flp);

1312 1313 1314 1315
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1316
	if (!n)
1317
		return -EAGAIN;
1318 1319

#ifdef CONFIG_IP_FIB_TRIE_STATS
1320
	this_cpu_inc(stats->gets);
1321 1322
#endif

1323 1324
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1325
		index = get_cindex(key, n);
1326 1327 1328 1329 1330 1331

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1332
		 *   if (index >= (1ul << bits))
1333
		 *     we have a mismatch in skip bits and failed
1334 1335
		 *   else
		 *     we know the value is cindex
1336 1337 1338 1339
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1340
		 */
1341
		if (index >= (1ul << n->bits))
1342
			break;
1343

1344 1345
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1346
			goto found;
1347

1348 1349
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1350
		 */
1351
		if (n->slen > n->pos) {
1352 1353
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1354
		}
1355

1356
		n = get_child_rcu(n, index);
1357 1358 1359
		if (unlikely(!n))
			goto backtrace;
	}
1360

1361 1362 1363
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1364
		struct key_vector __rcu **cptr = n->tnode;
1365

1366 1367 1368
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1369
		 */
1370
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1371
			goto backtrace;
O
Olof Johansson 已提交
1372

1373 1374 1375
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1376

1377 1378 1379
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1380 1381
		 */

1382
		while ((n = rcu_dereference(*cptr)) == NULL) {
1383 1384
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1385 1386
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1387
#endif
1388 1389 1390 1391 1392 1393 1394 1395
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1396 1397 1398 1399 1400
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1401
					return -EAGAIN;
1402 1403 1404 1405
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1406
				pn = node_parent_rcu(pn);
1407 1408 1409 1410 1411 1412 1413
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1414
			cptr = &pn->tnode[cindex];
1415
		}
1416
	}
1417

1418
found:
1419 1420 1421
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1422
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1423 1424 1425
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1426

1427 1428 1429 1430
		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
			if (index >= (1ul << fa->fa_slen))
				continue;
		}
A
Alexander Duyck 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1440
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1441
			this_cpu_inc(stats->semantic_match_passed);
1442
#endif
A
Alexander Duyck 已提交
1443 1444 1445 1446 1447 1448
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1449
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1450 1451 1452

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1453 1454 1455 1456 1457
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
1458
			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1459 1460 1461 1462
				if (flp->flowi4_oif &&
				    flp->flowi4_oif != nh->nh_oif)
					continue;
			}
A
Alexander Duyck 已提交
1463 1464

			if (!(fib_flags & FIB_LOOKUP_NOREF))
1465
				refcount_inc(&fi->fib_clntref);
A
Alexander Duyck 已提交
1466

1467
			res->prefix = htonl(n->key);
A
Alexander Duyck 已提交
1468 1469 1470 1471 1472 1473 1474
			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1475
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1476
			this_cpu_inc(stats->semantic_match_passed);
1477
#endif
D
David Ahern 已提交
1478 1479
			trace_fib_table_lookup_nh(nh);

A
Alexander Duyck 已提交
1480
			return err;
1481
		}
1482
	}
1483
#ifdef CONFIG_IP_FIB_TRIE_STATS
1484
	this_cpu_inc(stats->semantic_match_miss);
1485 1486
#endif
	goto backtrace;
1487
}
1488
EXPORT_SYMBOL_GPL(fib_table_lookup);
1489

1490 1491
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1504 1505
		if (tp->slen == l->slen)
			node_pull_suffix(tp, tp->pos);
1506
		put_child_root(tp, l->key, NULL);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
1518
	node_pull_suffix(tp, fa->fa_slen);
1519 1520 1521
}

/* Caller must hold RTNL. */
1522
int fib_table_delete(struct net *net, struct fib_table *tb,
1523
		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1524 1525 1526
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1527
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1528 1529
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1530 1531
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1532

1533
	key = ntohl(cfg->fc_dst);
1534

1535
	if (!fib_valid_key_len(key, plen, extack))
1536 1537
		return -EINVAL;

1538
	l = fib_find_node(t, &tp, key);
1539
	if (!l)
1540 1541
		return -ESRCH;

1542
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1543 1544 1545
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1546
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1547 1548

	fa_to_delete = NULL;
1549
	hlist_for_each_entry_from(fa, fa_list) {
1550 1551
		struct fib_info *fi = fa->fa_info;

1552 1553 1554
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1555 1556
			break;

1557 1558
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1559
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1560 1561
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1562 1563
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
1564 1565
		    fib_nh_match(cfg, fi, extack) == 0 &&
		    fib_metrics_match(cfg, fi)) {
1566 1567 1568 1569 1570
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1571 1572
	if (!fa_to_delete)
		return -ESRCH;
1573

1574
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
D
David Ahern 已提交
1575
				 fa_to_delete, extack);
1576
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1577
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1578

1579 1580 1581
	if (!plen)
		tb->tb_num_default--;

1582
	fib_remove_alias(t, tp, l, fa_to_delete);
1583

1584
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1585
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1586

1587 1588
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1589
	return 0;
1590 1591
}

1592
/* Scan for the next leaf starting at the provided key value */
1593
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1594
{
1595
	struct key_vector *pn, *n = *tn;
1596
	unsigned long cindex;
1597

1598
	/* this loop is meant to try and find the key in the trie */
1599
	do {
1600 1601
		/* record parent and next child index */
		pn = n;
1602
		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1603 1604 1605

		if (cindex >> pn->bits)
			break;
1606

1607
		/* descend into the next child */
1608
		n = get_child_rcu(pn, cindex++);
1609 1610 1611 1612 1613 1614 1615
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1616

1617
	/* this loop will search for the next leaf with a greater key */
1618
	while (!IS_TRIE(pn)) {
1619 1620 1621
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1622

1623 1624 1625 1626
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1627

1628
		/* grab the next available node */
1629
		n = get_child_rcu(pn, cindex++);
1630 1631
		if (!n)
			continue;
1632

1633 1634 1635
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1636

1637 1638 1639 1640
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1641

1642 1643 1644 1645
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1646
	*tn = pn;
1647
	return n;
1648 1649
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1747 1748
					     NULL, l->key)) {
				kmem_cache_free(fn_alias_kmem, new_fa);
1749
				goto out;
1750
			}
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;

1787 1788 1789 1790
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;
		}

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
	}
}

1835
/* Caller must hold RTNL. */
1836
int fib_table_flush(struct net *net, struct fib_table *tb)
1837
{
1838
	struct trie *t = (struct trie *)tb->tb_data;
1839 1840
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1841 1842
	struct hlist_node *tmp;
	struct fib_alias *fa;
1843
	int found = 0;
1844

1845 1846 1847 1848
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1849

1850 1851
		if (!(cindex--)) {
			t_key pkey = pn->key;
1852

1853 1854 1855
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1856

1857 1858 1859 1860
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1861 1862 1863
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1864

1865 1866
			continue;
		}
1867

1868 1869 1870 1871
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1872

1873 1874 1875 1876
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1877

1878 1879
			continue;
		}
1880

1881 1882
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1883

1884 1885
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
			    tb->tb_id != fa->tb_id) {
1886 1887 1888
				slen = fa->fa_slen;
				continue;
			}
1889

1890 1891
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
						 n->key,
D
David Ahern 已提交
1892 1893
						 KEYLENGTH - fa->fa_slen, fa,
						 NULL);
1894 1895 1896 1897
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1898 1899
		}

1900 1901
		/* update leaf slen */
		n->slen = slen;
1902

1903 1904 1905 1906
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1907
	}
1908

S
Stephen Hemminger 已提交
1909
	pr_debug("trie_flush found=%d\n", found);
1910 1911 1912
	return found;
}

1913
static void fib_leaf_notify(struct net *net, struct key_vector *l,
1914
			    struct fib_table *tb, struct notifier_block *nb)
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
{
	struct fib_alias *fa;

	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (!fi)
			continue;

		/* local and main table can share the same trie,
		 * so don't notify twice for the same entry.
		 */
		if (tb->tb_id != fa->tb_id)
			continue;

1930
		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1931
					KEYLENGTH - fa->fa_slen, fa);
1932 1933 1934 1935
	}
}

static void fib_table_notify(struct net *net, struct fib_table *tb,
1936
			     struct notifier_block *nb)
1937 1938 1939 1940 1941 1942
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *l, *tp = t->kv;
	t_key key = 0;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1943
		fib_leaf_notify(net, l, tb, nb);
1944 1945 1946 1947 1948 1949 1950 1951

		key = l->key + 1;
		/* stop in case of wrap around */
		if (key < l->key)
			break;
	}
}

1952
void fib_notify(struct net *net, struct notifier_block *nb)
1953 1954 1955 1956 1957 1958 1959 1960
{
	unsigned int h;

	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1961
			fib_table_notify(net, tb, nb);
1962 1963 1964
	}
}

1965
static void __trie_free_rcu(struct rcu_head *head)
1966
{
1967
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1968 1969 1970
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1971 1972
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1973
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1974 1975 1976
	kfree(tb);
}

1977 1978 1979 1980 1981
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1982
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1983
			     struct sk_buff *skb, struct netlink_callback *cb)
1984
{
A
Alexander Duyck 已提交
1985
	__be32 xkey = htonl(l->key);
1986
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1987
	int i, s_i;
1988

A
Alexander Duyck 已提交
1989
	s_i = cb->args[4];
1990 1991
	i = 0;

R
Robert Olsson 已提交
1992
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1993
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1994 1995
		int err;

1996 1997 1998 1999 2000
		if (i < s_i) {
			i++;
			continue;
		}

2001 2002 2003 2004 2005
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

2006 2007 2008 2009 2010 2011
		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
				    tb->tb_id, fa->fa_type,
				    xkey, KEYLENGTH - fa->fa_slen,
				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
		if (err < 0) {
2012
			cb->args[4] = i;
2013
			return err;
2014
		}
2015
		i++;
2016
	}
2017

2018
	cb->args[4] = i;
2019 2020 2021
	return skb->len;
}

2022
/* rcu_read_lock needs to be hold by caller from readside */
2023 2024
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
2025
{
2026
	struct trie *t = (struct trie *)tb->tb_data;
2027
	struct key_vector *l, *tp = t->kv;
2028 2029 2030
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
2031 2032
	int count = cb->args[2];
	t_key key = cb->args[3];
2033

2034
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2035 2036 2037 2038
		int err;

		err = fn_trie_dump_leaf(l, tb, skb, cb);
		if (err < 0) {
2039 2040
			cb->args[3] = key;
			cb->args[2] = count;
2041
			return err;
2042
		}
2043

2044
		++count;
2045 2046
		key = l->key + 1;

2047 2048
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2049 2050 2051 2052

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
2053
	}
2054 2055 2056 2057

	cb->args[3] = key;
	cb->args[2] = count;

2058 2059 2060
	return skb->len;
}

2061
void __init fib_trie_init(void)
2062
{
2063 2064
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
2065 2066 2067
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2068
					   LEAF_SIZE,
2069
					   0, SLAB_PANIC, NULL);
2070
}
2071

2072
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2073 2074 2075
{
	struct fib_table *tb;
	struct trie *t;
2076 2077 2078 2079
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
2080

2081
	tb = kzalloc(sz, GFP_KERNEL);
2082
	if (!tb)
2083 2084 2085
		return NULL;

	tb->tb_id = id;
2086
	tb->tb_num_default = 0;
2087 2088 2089 2090
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
2091 2092

	t = (struct trie *) tb->tb_data;
2093 2094
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2095 2096 2097 2098 2099 2100 2101
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2102 2103 2104 2105

	return tb;
}

2106 2107 2108
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2109
	struct seq_net_private p;
2110
	struct fib_table *tb;
2111
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2112 2113
	unsigned int index;
	unsigned int depth;
2114
};
2115

2116
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2117
{
2118
	unsigned long cindex = iter->index;
2119 2120
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2121

2122 2123
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2124

2125 2126 2127 2128 2129 2130 2131
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2132
			if (IS_LEAF(n)) {
2133 2134
				iter->tnode = pn;
				iter->index = cindex;
2135 2136
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2137
				iter->tnode = n;
2138 2139 2140
				iter->index = 0;
				++iter->depth;
			}
2141

2142 2143
			return n;
		}
2144

2145 2146 2147 2148
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2149
		--iter->depth;
2150
	}
2151

2152 2153 2154 2155
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2156
	return NULL;
2157 2158
}

2159 2160
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2161
{
2162
	struct key_vector *n, *pn;
2163

S
Stephen Hemminger 已提交
2164
	if (!t)
2165 2166
		return NULL;

2167
	pn = t->kv;
2168
	n = rcu_dereference(pn->tnode[0]);
2169
	if (!n)
2170
		return NULL;
2171

2172
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2173
		iter->tnode = n;
2174 2175 2176
		iter->index = 0;
		iter->depth = 1;
	} else {
2177
		iter->tnode = pn;
2178 2179
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2180
	}
2181 2182

	return n;
2183
}
O
Olof Johansson 已提交
2184

2185 2186
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2187
	struct key_vector *n;
2188
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2189

2190
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2191

2192
	rcu_read_lock();
2193
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2194
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2195
			struct fib_alias *fa;
2196

2197 2198 2199 2200
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2201

A
Alexander Duyck 已提交
2202
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2203
				++s->prefixes;
2204 2205
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2206 2207
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2208
			s->nullpointers += tn_info(n)->empty_children;
2209 2210
		}
	}
R
Robert Olsson 已提交
2211
	rcu_read_unlock();
2212 2213
}

2214 2215 2216 2217
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2218
{
E
Eric Dumazet 已提交
2219
	unsigned int i, max, pointers, bytes, avdepth;
2220

2221 2222 2223 2224
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2225

2226 2227
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2228
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2229

2230
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2231
	bytes = LEAF_SIZE * stat->leaves;
2232 2233

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2234
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2235

2236
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2237
	bytes += TNODE_SIZE(0) * stat->tnodes;
2238

R
Robert Olsson 已提交
2239 2240
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2241
		max--;
2242

2243
	pointers = 0;
2244
	for (i = 1; i < max; i++)
2245
		if (stat->nodesizes[i] != 0) {
2246
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2247 2248 2249
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2250
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2251

2252
	bytes += sizeof(struct key_vector *) * pointers;
2253 2254
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2255
}
R
Robert Olsson 已提交
2256

2257
#ifdef CONFIG_IP_FIB_TRIE_STATS
2258
static void trie_show_usage(struct seq_file *seq,
2259
			    const struct trie_use_stats __percpu *stats)
2260
{
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2276
	seq_printf(seq, "\nCounters:\n---------\n");
2277 2278
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2279
	seq_printf(seq, "semantic match passed = %u\n",
2280 2281 2282 2283
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2284
}
2285 2286
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2287
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2288
{
2289 2290 2291 2292 2293 2294
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2295
}
2296

2297

2298 2299
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2300
	struct net *net = (struct net *)seq->private;
2301
	unsigned int h;
2302

2303
	seq_printf(seq,
2304
		   "Basic info: size of leaf:"
2305
		   " %zd bytes, size of tnode: %zd bytes.\n",
2306
		   LEAF_SIZE, TNODE_SIZE(0));
2307

2308 2309 2310 2311
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2312
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2313 2314
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2315

2316 2317 2318 2319 2320 2321 2322 2323
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2324
			trie_show_usage(seq, t->stats);
2325 2326 2327
#endif
		}
	}
2328

2329
	return 0;
2330 2331
}

2332
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2333
{
2334
	return single_open_net(inode, file, fib_triestat_seq_show);
2335 2336
}

2337
static const struct file_operations fib_triestat_fops = {
2338 2339 2340
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2341
	.release = single_release_net,
2342 2343
};

2344
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2345
{
2346 2347
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2348
	loff_t idx = 0;
2349
	unsigned int h;
2350

2351 2352 2353
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2354

2355
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2356
			struct key_vector *n;
2357 2358 2359 2360 2361 2362 2363 2364 2365

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2366
	}
2367

2368 2369 2370
	return NULL;
}

2371
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2372
	__acquires(RCU)
2373
{
2374
	rcu_read_lock();
2375
	return fib_trie_get_idx(seq, *pos);
2376 2377
}

2378
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2379
{
2380
	struct fib_trie_iter *iter = seq->private;
2381
	struct net *net = seq_file_net(seq);
2382 2383 2384
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2385
	struct key_vector *n;
2386

2387
	++*pos;
2388 2389 2390 2391
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2392

2393 2394
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2395
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2396 2397 2398 2399 2400
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2401

2402 2403 2404
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2405
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2406 2407 2408 2409 2410
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2411
	return NULL;
2412 2413 2414 2415

found:
	iter->tb = tb;
	return n;
2416
}
2417

2418
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2419
	__releases(RCU)
2420
{
2421 2422
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2423

2424 2425
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2426 2427
	while (n-- > 0)
		seq_puts(seq, "   ");
2428
}
2429

2430
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2431
{
S
Stephen Hemminger 已提交
2432
	switch (s) {
2433 2434 2435 2436 2437 2438
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2439
		snprintf(buf, len, "scope=%d", s);
2440 2441 2442
		return buf;
	}
}
2443

2444
static const char *const rtn_type_names[__RTN_MAX] = {
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2458

E
Eric Dumazet 已提交
2459
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2460 2461 2462
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2463
	snprintf(buf, len, "type %u", t);
2464
	return buf;
2465 2466
}

2467 2468
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2469
{
2470
	const struct fib_trie_iter *iter = seq->private;
2471
	struct key_vector *n = v;
2472

2473
	if (IS_TRIE(node_parent_rcu(n)))
2474
		fib_table_print(seq, iter->tb);
2475

2476
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2477
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2478

2479 2480 2481
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2482 2483
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2484
	} else {
A
Alexander Duyck 已提交
2485
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2486
		struct fib_alias *fa;
2487 2488

		seq_indent(seq, iter->depth);
2489
		seq_printf(seq, "  |-- %pI4\n", &val);
2490

A
Alexander Duyck 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2504
		}
2505
	}
2506

2507 2508 2509
	return 0;
}

2510
static const struct seq_operations fib_trie_seq_ops = {
2511 2512 2513 2514
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2515 2516
};

2517
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2518
{
2519 2520
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2521 2522
}

2523
static const struct file_operations fib_trie_fops = {
2524 2525 2526
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2527
	.release = seq_release_net,
2528 2529
};

2530 2531
struct fib_route_iter {
	struct seq_net_private p;
2532
	struct fib_table *main_tb;
2533
	struct key_vector *tnode;
2534 2535 2536 2537
	loff_t	pos;
	t_key	key;
};

2538 2539
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2540
{
2541
	struct key_vector *l, **tp = &iter->tnode;
2542
	t_key key;
2543

2544
	/* use cached location of previously found key */
2545 2546 2547
	if (iter->pos > 0 && pos >= iter->pos) {
		key = iter->key;
	} else {
2548
		iter->pos = 1;
2549
		key = 0;
2550 2551
	}

2552 2553 2554
	pos -= iter->pos;

	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2555
		key = l->key + 1;
2556
		iter->pos++;
2557 2558 2559 2560 2561
		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2562 2563 2564
	}

	if (l)
2565
		iter->key = l->key;	/* remember it */
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2577
	struct trie *t;
2578 2579

	rcu_read_lock();
2580

2581
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2582 2583 2584
	if (!tb)
		return NULL;

2585
	iter->main_tb = tb;
2586 2587
	t = (struct trie *)tb->tb_data;
	iter->tnode = t->kv;
2588 2589 2590 2591 2592

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	iter->pos = 0;
2593
	iter->key = KEY_MAX;
2594 2595

	return SEQ_START_TOKEN;
2596 2597 2598 2599 2600
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2601
	struct key_vector *l = NULL;
2602
	t_key key = iter->key + 1;
2603 2604

	++*pos;
2605 2606 2607 2608 2609 2610

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
2611
		iter->key = l->key;
2612
		iter->pos++;
2613 2614
	} else {
		iter->pos = 0;
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2626
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2627
{
E
Eric Dumazet 已提交
2628
	unsigned int flags = 0;
2629

E
Eric Dumazet 已提交
2630 2631
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2632 2633
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2634
	if (mask == htonl(0xFFFFFFFF))
2635 2636 2637
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2638 2639
}

2640 2641 2642
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2643
 *	and needs to be same as fib_hash output to avoid breaking
2644 2645 2646
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2647
{
2648 2649
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2650
	struct fib_alias *fa;
2651
	struct key_vector *l = v;
2652
	__be32 prefix;
2653

2654 2655 2656 2657 2658 2659
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2660

2661 2662
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2663 2664 2665 2666
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2667

A
Alexander Duyck 已提交
2668 2669 2670
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2671

2672 2673 2674
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2696

A
Alexander Duyck 已提交
2697
		seq_pad(seq, '\n');
2698 2699 2700 2701 2702
	}

	return 0;
}

2703
static const struct seq_operations fib_route_seq_ops = {
2704 2705 2706
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2707
	.show   = fib_route_seq_show,
2708 2709
};

2710
static int fib_route_seq_open(struct inode *inode, struct file *file)
2711
{
2712
	return seq_open_net(inode, file, &fib_route_seq_ops,
2713
			    sizeof(struct fib_route_iter));
2714 2715
}

2716
static const struct file_operations fib_route_fops = {
2717 2718 2719
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2720
	.release = seq_release_net,
2721 2722
};

2723
int __net_init fib_proc_init(struct net *net)
2724
{
2725
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2726 2727
		goto out1;

2728 2729
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2730 2731
		goto out2;

2732
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2733 2734
		goto out3;

2735
	return 0;
2736 2737

out3:
2738
	remove_proc_entry("fib_triestat", net->proc_net);
2739
out2:
2740
	remove_proc_entry("fib_trie", net->proc_net);
2741 2742
out1:
	return -ENOMEM;
2743 2744
}

2745
void __net_exit fib_proc_exit(struct net *net)
2746
{
2747 2748 2749
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2750 2751 2752
}

#endif /* CONFIG_PROC_FS */