entry_64.S 49.2 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11
 * Some of this is documented in Documentation/x86/entry_64.rst
12
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18
 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 20
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
SYM_CODE_START(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
SYM_CODE_END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	btl	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
96
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145
SYM_CODE_START(entry_SYSCALL_64)
146
	UNWIND_HINT_EMPTY
147 148 149 150 151
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
152

153
	swapgs
154
	/* tss.sp2 is scratch space. */
155
	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
156
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
157
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158 159

	/* Construct struct pt_regs on stack */
160 161 162 163 164
	pushq	$__USER_DS				/* pt_regs->ss */
	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
	pushq	%r11					/* pt_regs->flags */
	pushq	$__USER_CS				/* pt_regs->cs */
	pushq	%rcx					/* pt_regs->ip */
165
SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
166
	pushq	%rax					/* pt_regs->orig_ax */
167 168

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
169

170 171
	TRACE_IRQS_OFF

172
	/* IRQs are off. */
173 174
	movq	%rax, %rdi
	movq	%rsp, %rsi
175 176
	call	do_syscall_64		/* returns with IRQs disabled */

177
	TRACE_IRQS_ON			/* return enables interrupts */
178 179 180

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
181 182
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
183
	 */
184 185
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
186 187 188

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
189 190 191 192

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
193
	 * the kernel, since userspace controls RSP.
194
	 *
195
	 * If width of "canonical tail" ever becomes variable, this will need
196
	 * to be updated to remain correct on both old and new CPUs.
197
	 *
198 199
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
200
	 */
201
#ifdef CONFIG_X86_5LEVEL
202 203
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
204
#else
205 206
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
207
#endif
208

209 210
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
211
	jne	swapgs_restore_regs_and_return_to_usermode
212

213
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
214
	jne	swapgs_restore_regs_and_return_to_usermode
215

216 217
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
218
	jne	swapgs_restore_regs_and_return_to_usermode
219 220

	/*
221 222 223 224 225 226 227 228 229
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
230
	 *
231
	 *           movq	$stuck_here, %rcx
232 233 234 235 236 237
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
238
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
239
	jnz	swapgs_restore_regs_and_return_to_usermode
240 241 242

	/* nothing to check for RSP */

243
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
244
	jne	swapgs_restore_regs_and_return_to_usermode
245 246

	/*
247 248
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
249 250
	 */
syscall_return_via_sysret:
251
	/* rcx and r11 are already restored (see code above) */
252
	POP_REGS pop_rdi=0 skip_r11rcx=1
253 254 255 256 257 258

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
259
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
260
	UNWIND_HINT_EMPTY
261 262 263 264 265 266 267 268

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
269 270
	STACKLEAK_ERASE_NOCLOBBER

271
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
272

273
	popq	%rdi
274
	popq	%rsp
275
	USERGS_SYSRET64
276
SYM_CODE_END(entry_SYSCALL_64)
277

278 279 280 281
/*
 * %rdi: prev task
 * %rsi: next task
 */
282
SYM_FUNC_START(__switch_to_asm)
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

298
#ifdef CONFIG_STACKPROTECTOR
299
	movq	TASK_stack_canary(%rsi), %rbx
300
	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
301 302
#endif

303 304 305 306 307 308 309 310
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
311
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
312 313
#endif

314 315 316 317 318 319 320 321 322
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
323
SYM_FUNC_END(__switch_to_asm)
324

325 326 327
/*
 * A newly forked process directly context switches into this address.
 *
328
 * rax: prev task we switched from
329 330
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
331
 */
332
SYM_CODE_START(ret_from_fork)
333
	UNWIND_HINT_EMPTY
334
	movq	%rax, %rdi
335
	call	schedule_tail			/* rdi: 'prev' task parameter */
336

337 338
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
339

340
2:
341
	UNWIND_HINT_REGS
342
	movq	%rsp, %rdi
343 344
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
345
	jmp	swapgs_restore_regs_and_return_to_usermode
346 347 348

1:
	/* kernel thread */
349
	UNWIND_HINT_EMPTY
350
	movq	%r12, %rdi
351
	CALL_NOSPEC rbx
352 353 354 355 356 357 358
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
359
SYM_CODE_END(ret_from_fork)
360

361
/*
362 363
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
364
 */
365
	.align 8
366
SYM_CODE_START(irq_entries_start)
367 368
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
369
	UNWIND_HINT_IRET_REGS
370
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
371 372
	jmp	common_interrupt
	.align	8
373
	vector=vector+1
374
    .endr
375
SYM_CODE_END(irq_entries_start)
376

377
	.align 8
378
SYM_CODE_START(spurious_entries_start)
379 380 381 382 383 384 385 386
    vector=FIRST_SYSTEM_VECTOR
    .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
	UNWIND_HINT_IRET_REGS
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
	jmp	common_spurious
	.align	8
	vector=vector+1
    .endr
387
SYM_CODE_END(spurious_entries_start)
388

389 390
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
391 392 393
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
394 395 396
	jz .Lokay_\@
	ud2
.Lokay_\@:
397
	popq %rax
398 399 400 401 402 403 404 405 406 407
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
408
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
409
	DEBUG_ENTRY_ASSERT_IRQS_OFF
410 411 412 413 414 415 416 417 418

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
419
	movq	%rsp, \old_rsp
420
	.endif
421 422 423 424 425

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

426
	incl	PER_CPU_VAR(irq_count)
427
	jnz	.Lirq_stack_push_old_rsp_\@
428 429 430 431 432 433 434 435 436

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
437 438 439 440 441 442 443
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

444
	movq	\old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
445
	movq	PER_CPU_VAR(hardirq_stack_ptr), %rsp
446 447 448 449 450 451 452

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
453
	 */
454 455 456 457 458
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
459

460
.Lirq_stack_push_old_rsp_\@:
461
	pushq	\old_rsp
462 463 464 465

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
466 467 468 469 470 471 472 473 474

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
475 476 477 478 479
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
480
.macro LEAVE_IRQ_STACK regs=1
481 482 483 484
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

485 486 487 488
	.if \regs
	UNWIND_HINT_REGS
	.endif

489 490 491 492 493 494 495 496
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

497
/*
498
 * Interrupt entry helper function.
499
 *
500 501 502 503 504 505 506 507 508 509 510 511
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
512
 */
513
SYM_CODE_START(interrupt_entry)
514
	UNWIND_HINT_IRET_REGS offset=16
515
	ASM_CLAC
516
	cld
517

518
	testb	$3, CS-ORIG_RAX+8(%rsp)
519 520
	jz	1f
	SWAPGS
521
	FENCE_SWAPGS_USER_ENTRY
522 523 524 525 526 527
	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
528
	pushq	%rdi
529

530 531 532 533
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
534 535 536 537 538 539

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
540 541 542 543 544 545

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
546
	UNWIND_HINT_IRET_REGS
547 548 549 550
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */

	movq	(%rdi), %rdi
551
	jmp	2f
552
1:
553 554
	FENCE_SWAPGS_KERNEL_ENTRY
2:
555 556
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
557

558
	testb	$3, CS+8(%rsp)
559
	jz	1f
560 561

	/*
562 563
	 * IRQ from user mode.
	 *
564 565
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
566
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
567 568 569 570 571 572
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

573
	CALL_enter_from_user_mode
574

575
1:
576
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
577 578 579
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

580
	ret
581
SYM_CODE_END(interrupt_entry)
582
_ASM_NOKPROBE(interrupt_entry)
583

584 585

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
586

587 588 589 590
/*
 * The interrupt stubs push (~vector+0x80) onto the stack and
 * then jump to common_spurious/interrupt.
 */
591
SYM_CODE_START_LOCAL(common_spurious)
592 593 594 595 596
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	smp_spurious_interrupt		/* rdi points to pt_regs */
	jmp	ret_from_intr
597
SYM_CODE_END(common_spurious)
598 599 600
_ASM_NOKPROBE(common_spurious)

/* common_interrupt is a hotpath. Align it */
601
	.p2align CONFIG_X86_L1_CACHE_SHIFT
602
SYM_CODE_START_LOCAL(common_interrupt)
603
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
604 605 606
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
607
	/* 0(%rsp): old RSP */
608
ret_from_intr:
609
	DISABLE_INTERRUPTS(CLBR_ANY)
610
	TRACE_IRQS_OFF
611

612
	LEAVE_IRQ_STACK
613

614
	testb	$3, CS(%rsp)
615
	jz	retint_kernel
616

617
	/* Interrupt came from user space */
J
Jiri Slaby 已提交
618
.Lretint_user:
619 620
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
621
	TRACE_IRQS_ON
622

623
SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
624 625
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
626
	testb	$3, CS(%rsp)
627 628 629 630
	jnz	1f
	ud2
1:
#endif
631
	POP_REGS pop_rdi=0
632 633 634 635 636 637

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
638
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
639
	UNWIND_HINT_EMPTY
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
655
	STACKLEAK_ERASE_NOCLOBBER
656

657
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
658

659 660 661
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
662 663
	INTERRUPT_RETURN

664

665
/* Returning to kernel space */
666
retint_kernel:
T
Thomas Gleixner 已提交
667
#ifdef CONFIG_PREEMPTION
668 669
	/* Interrupts are off */
	/* Check if we need preemption */
670
	btl	$9, EFLAGS(%rsp)		/* were interrupts off? */
671
	jnc	1f
672
	cmpl	$0, PER_CPU_VAR(__preempt_count)
673
	jnz	1f
674
	call	preempt_schedule_irq
675
1:
676
#endif
677 678 679 680
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
681

682
SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
683 684
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
685
	testb	$3, CS(%rsp)
686 687 688 689
	jz	1f
	ud2
1:
#endif
690
	POP_REGS
691
	addq	$8, %rsp	/* skip regs->orig_ax */
692 693 694 695
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
696 697
	INTERRUPT_RETURN

698
SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
699
	UNWIND_HINT_IRET_REGS
700 701 702 703
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
704
#ifdef CONFIG_X86_ESPFIX64
705 706
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
707
#endif
708

709
SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
A
Andy Lutomirski 已提交
710 711 712 713 714 715
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
716
	iretq
I
Ingo Molnar 已提交
717

718
#ifdef CONFIG_X86_ESPFIX64
719
native_irq_return_ldt:
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
742 743 744
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

745
	movq	PER_CPU_VAR(espfix_waddr), %rdi
746 747
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
748
	movq	%rax, (1*8)(%rdi)
749
	movq	(2*8)(%rsp), %rax		/* user CS */
750
	movq	%rax, (2*8)(%rdi)
751
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
752
	movq	%rax, (3*8)(%rdi)
753
	movq	(5*8)(%rsp), %rax		/* user SS */
754
	movq	%rax, (5*8)(%rdi)
755
	movq	(4*8)(%rsp), %rax		/* user RSP */
756
	movq	%rax, (4*8)(%rdi)
757 758 759 760 761 762 763 764 765 766 767 768
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
769
	orq	PER_CPU_VAR(espfix_stack), %rax
770

771
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
772 773 774
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

775
	movq	%rax, %rsp
776
	UNWIND_HINT_IRET_REGS offset=8
777 778 779 780 781 782 783 784 785 786 787 788

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
789
	jmp	native_irq_return_iret
790
#endif
791
SYM_CODE_END(common_interrupt)
792
_ASM_NOKPROBE(common_interrupt)
793

L
Linus Torvalds 已提交
794 795
/*
 * APIC interrupts.
796
 */
797
.macro apicinterrupt3 num sym do_sym
798
SYM_CODE_START(\sym)
799
	UNWIND_HINT_IRET_REGS
800
	pushq	$~(\num)
801 802 803
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
804
	jmp	ret_from_intr
805
SYM_CODE_END(\sym)
806
_ASM_NOKPROBE(\sym)
807
.endm
L
Linus Torvalds 已提交
808

809
/* Make sure APIC interrupt handlers end up in the irqentry section: */
810 811
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
812

813
.macro apicinterrupt num sym do_sym
814
PUSH_SECTION_IRQENTRY
815
apicinterrupt3 \num \sym \do_sym
816
POP_SECTION_IRQENTRY
817 818
.endm

819
#ifdef CONFIG_SMP
820 821
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
822
#endif
L
Linus Torvalds 已提交
823

N
Nick Piggin 已提交
824
#ifdef CONFIG_X86_UV
825
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
826
#endif
827 828 829

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
830

831
#ifdef CONFIG_HAVE_KVM
832 833
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
834
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
835 836
#endif

837
#ifdef CONFIG_X86_MCE_THRESHOLD
838
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
839 840
#endif

841
#ifdef CONFIG_X86_MCE_AMD
842
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
843 844
#endif

845
#ifdef CONFIG_X86_THERMAL_VECTOR
846
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
847
#endif
848

849
#ifdef CONFIG_SMP
850 851 852
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
853
#endif
L
Linus Torvalds 已提交
854

855 856
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
857

858
#ifdef CONFIG_IRQ_WORK
859
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
860 861
#endif

L
Linus Torvalds 已提交
862 863
/*
 * Exception entry points.
864
 */
865
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
866

867
.macro idtentry_part do_sym, has_error_code:req, read_cr2:req, paranoid:req, shift_ist=-1, ist_offset=0
868 869 870 871 872 873 874 875 876

	.if \paranoid
	call	paranoid_entry
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
	.else
	call	error_entry
	.endif
	UNWIND_HINT_REGS

877
	.if \read_cr2
878 879 880 881 882 883
	/*
	 * Store CR2 early so subsequent faults cannot clobber it. Use R12 as
	 * intermediate storage as RDX can be clobbered in enter_from_user_mode().
	 * GET_CR2_INTO can clobber RAX.
	 */
	GET_CR2_INTO(%r12);
884 885
	.endif

886 887 888 889 890
	.if \shift_ist != -1
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
	.else
	TRACE_IRQS_OFF
	.endif
891 892 893 894 895 896

	.if \paranoid == 0
	testb	$3, CS(%rsp)
	jz	.Lfrom_kernel_no_context_tracking_\@
	CALL_enter_from_user_mode
.Lfrom_kernel_no_context_tracking_\@:
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	.endif

	movq	%rsp, %rdi			/* pt_regs pointer */

	.if \has_error_code
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
	.else
	xorl	%esi, %esi			/* no error code */
	.endif

	.if \shift_ist != -1
	subq	$\ist_offset, CPU_TSS_IST(\shift_ist)
	.endif

912 913 914 915
	.if \read_cr2
	movq	%r12, %rdx			/* Move CR2 into 3rd argument */
	.endif

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	call	\do_sym

	.if \shift_ist != -1
	addq	$\ist_offset, CPU_TSS_IST(\shift_ist)
	.endif

	.if \paranoid
	/* this procedure expect "no swapgs" flag in ebx */
	jmp	paranoid_exit
	.else
	jmp	error_exit
	.endif

.endm

931 932 933
/**
 * idtentry - Generate an IDT entry stub
 * @sym:		Name of the generated entry point
934 935 936
 * @do_sym:		C function to be called
 * @has_error_code:	True if this IDT vector has an error code on the stack
 * @paranoid:		non-zero means that this vector may be invoked from
937 938 939
 *			kernel mode with user GSBASE and/or user CR3.
 *			2 is special -- see below.
 * @shift_ist:		Set to an IST index if entries from kernel mode should
940
 *			decrement the IST stack so that nested entries get a
941
 *			fresh stack.  (This is for #DB, which has a nasty habit
942 943
 *			of recursing.)
 * @create_gap:		create a 6-word stack gap when coming from kernel mode.
944
 * @read_cr2:		load CR2 into the 3rd argument; done before calling any C code
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
 *
 * idtentry generates an IDT stub that sets up a usable kernel context,
 * creates struct pt_regs, and calls @do_sym.  The stub has the following
 * special behaviors:
 *
 * On an entry from user mode, the stub switches from the trampoline or
 * IST stack to the normal thread stack.  On an exit to user mode, the
 * normal exit-to-usermode path is invoked.
 *
 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
 * whereas we omit the preemption check if @paranoid != 0.  This is purely
 * because the implementation is simpler this way.  The kernel only needs
 * to check for asynchronous kernel preemption when IRQ handlers return.
 *
 * If @paranoid == 0, then the stub will handle IRET faults by pretending
 * that the fault came from user mode.  It will handle gs_change faults by
 * pretending that the fault happened with kernel GSBASE.  Since this handling
 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
 * @paranoid == 0.  This special handling will do the wrong thing for
 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
 *
 * @paranoid == 2 is special: the stub will never switch stacks.  This is for
 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
 */
969
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0 read_cr2=0
970
SYM_CODE_START(\sym)
971
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
972

973
	/* Sanity check */
974
	.if \shift_ist != -1 && \paranoid != 1
975 976 977
	.error "using shift_ist requires paranoid=1"
	.endif

978 979 980 981
	.if \create_gap && \paranoid
	.error "using create_gap requires paranoid=0"
	.endif

982
	ASM_CLAC
983

984
	.if \has_error_code == 0
985
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
986 987
	.endif

988
	.if \paranoid == 1
989
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
990
	jnz	.Lfrom_usermode_switch_stack_\@
991
	.endif
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	.if \create_gap == 1
	/*
	 * If coming from kernel space, create a 6-word gap to allow the
	 * int3 handler to emulate a call instruction.
	 */
	testb	$3, CS-ORIG_RAX(%rsp)
	jnz	.Lfrom_usermode_no_gap_\@
	.rept	6
	pushq	5*8(%rsp)
	.endr
	UNWIND_HINT_IRET_REGS offset=8
.Lfrom_usermode_no_gap_\@:
	.endif

1007
	idtentry_part \do_sym, \has_error_code, \read_cr2, \paranoid, \shift_ist, \ist_offset
1008

1009
	.if \paranoid == 1
1010
	/*
1011
	 * Entry from userspace.  Switch stacks and treat it
1012 1013 1014
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1015
.Lfrom_usermode_switch_stack_\@:
1016
	idtentry_part \do_sym, \has_error_code, \read_cr2, paranoid=0
1017 1018
	.endif

1019
_ASM_NOKPROBE(\sym)
1020
SYM_CODE_END(\sym)
1021
.endm
1022

1023 1024 1025 1026 1027
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
1028
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2 read_cr2=1
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1042
SYM_FUNC_START(native_load_gs_index)
1043
	FRAME_BEGIN
1044
	pushfq
1045
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1046
	TRACE_IRQS_OFF
1047
	SWAPGS
1048
.Lgs_change:
1049
	movl	%edi, %gs
1050
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1051
	SWAPGS
1052
	TRACE_IRQS_FLAGS (%rsp)
1053
	popfq
1054
	FRAME_END
1055
	ret
1056
SYM_FUNC_END(native_load_gs_index)
1057
EXPORT_SYMBOL(native_load_gs_index)
1058

1059
	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
1060
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1061
	/* running with kernelgs */
1062
SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
1063
	SWAPGS					/* switch back to user gs */
1064 1065 1066 1067 1068 1069
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1070 1071 1072
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1073
SYM_CODE_END(.Lbad_gs)
1074
	.previous
1075

1076
/* Call softirq on interrupt stack. Interrupts are off. */
1077
SYM_FUNC_START(do_softirq_own_stack)
1078 1079
	pushq	%rbp
	mov	%rsp, %rbp
1080
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1081
	call	__do_softirq
1082
	LEAVE_IRQ_STACK regs=0
1083
	leaveq
1084
	ret
1085
SYM_FUNC_END(do_softirq_own_stack)
1086

1087
#ifdef CONFIG_XEN_PV
1088
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1089 1090

/*
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
J
Jiri Slaby 已提交
1103 1104
/* do_hypervisor_callback(struct *pt_regs) */
SYM_CODE_START_LOCAL(xen_do_hypervisor_callback)
1105

1106 1107 1108 1109
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1110
	UNWIND_HINT_FUNC
1111
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1112
	UNWIND_HINT_REGS
1113 1114

	ENTER_IRQ_STACK old_rsp=%r10
1115
	call	xen_evtchn_do_upcall
1116 1117
	LEAVE_IRQ_STACK

T
Thomas Gleixner 已提交
1118
#ifndef CONFIG_PREEMPTION
1119
	call	xen_maybe_preempt_hcall
1120
#endif
1121
	jmp	error_exit
J
Jiri Slaby 已提交
1122
SYM_CODE_END(xen_do_hypervisor_callback)
1123 1124

/*
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1137
SYM_CODE_START(xen_failsafe_callback)
1138
	UNWIND_HINT_EMPTY
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1151
	/* All segments match their saved values => Category 2 (Bad IRET). */
1152 1153 1154 1155
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1156
	UNWIND_HINT_IRET_REGS offset=8
1157
	jmp	general_protection
1158
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1159 1160 1161
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1162
	UNWIND_HINT_IRET_REGS
1163
	pushq	$-1 /* orig_ax = -1 => not a system call */
1164
	PUSH_AND_CLEAR_REGS
1165
	ENCODE_FRAME_POINTER
1166
	jmp	error_exit
1167
SYM_CODE_END(xen_failsafe_callback)
1168
#endif /* CONFIG_XEN_PV */
1169

1170
#ifdef CONFIG_XEN_PVHVM
1171
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1172
	xen_hvm_callback_vector xen_evtchn_do_upcall
1173
#endif
1174

1175

1176
#if IS_ENABLED(CONFIG_HYPERV)
1177
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1178
	hyperv_callback_vector hyperv_vector_handler
1179 1180 1181

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1182 1183 1184

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1185 1186
#endif /* CONFIG_HYPERV */

1187 1188 1189 1190 1191
#if IS_ENABLED(CONFIG_ACRN_GUEST)
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
	acrn_hv_callback_vector acrn_hv_vector_handler
#endif

1192
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
1193
idtentry int3			do_int3			has_error_code=0	create_gap=1
1194 1195
idtentry stack_segment		do_stack_segment	has_error_code=1

1196
#ifdef CONFIG_XEN_PV
1197
idtentry xennmi			do_nmi			has_error_code=0
1198
idtentry xendebug		do_debug		has_error_code=0
1199
#endif
1200 1201

idtentry general_protection	do_general_protection	has_error_code=1
1202
idtentry page_fault		do_page_fault		has_error_code=1	read_cr2=1
1203

1204
#ifdef CONFIG_X86_MCE
1205
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1206 1207
#endif

1208
/*
1209
 * Save all registers in pt_regs, and switch gs if needed.
1210 1211 1212
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
J
Jiri Slaby 已提交
1213
SYM_CODE_START_LOCAL(paranoid_entry)
1214
	UNWIND_HINT_FUNC
1215
	cld
1216 1217
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1218 1219
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1220
	rdmsr
1221 1222
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1223
	SWAPGS
1224
	xorl	%ebx, %ebx
1225 1226

1:
1227 1228
	/*
	 * Always stash CR3 in %r14.  This value will be restored,
1229 1230 1231
	 * verbatim, at exit.  Needed if paranoid_entry interrupted
	 * another entry that already switched to the user CR3 value
	 * but has not yet returned to userspace.
1232 1233 1234
	 *
	 * This is also why CS (stashed in the "iret frame" by the
	 * hardware at entry) can not be used: this may be a return
1235
	 * to kernel code, but with a user CR3 value.
1236
	 */
1237 1238
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

1239 1240 1241 1242 1243 1244 1245
	/*
	 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
	 * unconditional CR3 write, even in the PTI case.  So do an lfence
	 * to prevent GS speculation, regardless of whether PTI is enabled.
	 */
	FENCE_SWAPGS_KERNEL_ENTRY

1246
	ret
J
Jiri Slaby 已提交
1247
SYM_CODE_END(paranoid_entry)
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1258 1259
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1260
 */
J
Jiri Slaby 已提交
1261
SYM_CODE_START_LOCAL(paranoid_exit)
1262
	UNWIND_HINT_REGS
1263
	DISABLE_INTERRUPTS(CLBR_ANY)
1264
	TRACE_IRQS_OFF_DEBUG
1265
	testl	%ebx, %ebx			/* swapgs needed? */
1266
	jnz	.Lparanoid_exit_no_swapgs
1267
	TRACE_IRQS_IRETQ
1268
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1269
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1270
	SWAPGS_UNSAFE_STACK
1271
	jmp	restore_regs_and_return_to_kernel
1272
.Lparanoid_exit_no_swapgs:
1273
	TRACE_IRQS_IRETQ_DEBUG
1274
	/* Always restore stashed CR3 value (see paranoid_entry) */
1275
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1276
	jmp restore_regs_and_return_to_kernel
J
Jiri Slaby 已提交
1277
SYM_CODE_END(paranoid_exit)
1278 1279

/*
1280
 * Save all registers in pt_regs, and switch GS if needed.
1281
 */
J
Jiri Slaby 已提交
1282
SYM_CODE_START_LOCAL(error_entry)
1283
	UNWIND_HINT_FUNC
1284
	cld
1285 1286
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1287
	testb	$3, CS+8(%rsp)
1288
	jz	.Lerror_kernelspace
1289

1290 1291 1292 1293
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1294
	SWAPGS
1295
	FENCE_SWAPGS_USER_ENTRY
1296 1297
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1298

1299
.Lerror_entry_from_usermode_after_swapgs:
1300 1301 1302 1303 1304 1305 1306
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12
1307
	ret
1308

1309 1310
.Lerror_entry_done_lfence:
	FENCE_SWAPGS_KERNEL_ENTRY
1311
.Lerror_entry_done:
1312 1313
	ret

1314 1315 1316 1317 1318 1319
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1320
.Lerror_kernelspace:
1321 1322
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1323
	je	.Lerror_bad_iret
1324 1325
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1326
	je	.Lbstep_iret
1327
	cmpq	$.Lgs_change, RIP+8(%rsp)
1328
	jne	.Lerror_entry_done_lfence
1329 1330

	/*
1331
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1332
	 * gsbase and proceed.  We'll fix up the exception and land in
1333
	 * .Lgs_change's error handler with kernel gsbase.
1334
	 */
1335
	SWAPGS
1336
	FENCE_SWAPGS_USER_ENTRY
1337
	jmp .Lerror_entry_done
1338

1339
.Lbstep_iret:
1340
	/* Fix truncated RIP */
1341
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1342 1343
	/* fall through */

1344
.Lerror_bad_iret:
1345
	/*
1346 1347
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1348
	 */
A
Andy Lutomirski 已提交
1349
	SWAPGS
1350
	FENCE_SWAPGS_USER_ENTRY
1351
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1352 1353 1354

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1355
	 * as if we faulted immediately after IRET.
1356
	 */
1357 1358 1359
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1360
	jmp	.Lerror_entry_from_usermode_after_swapgs
J
Jiri Slaby 已提交
1361
SYM_CODE_END(error_entry)
1362

J
Jiri Slaby 已提交
1363
SYM_CODE_START_LOCAL(error_exit)
1364
	UNWIND_HINT_REGS
1365
	DISABLE_INTERRUPTS(CLBR_ANY)
1366
	TRACE_IRQS_OFF
1367 1368
	testb	$3, CS(%rsp)
	jz	retint_kernel
J
Jiri Slaby 已提交
1369
	jmp	.Lretint_user
J
Jiri Slaby 已提交
1370
SYM_CODE_END(error_exit)
1371

1372 1373 1374
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1375 1376 1377 1378
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1379
 */
1380
SYM_CODE_START(nmi)
1381
	UNWIND_HINT_IRET_REGS
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1400 1401 1402
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1403 1404
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1405
	 *    o Modify the "iret" location to jump to the repeat_nmi
1406 1407 1408 1409 1410 1411 1412 1413
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1414 1415 1416 1417 1418
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1419 1420
	 */

1421 1422
	ASM_CLAC

1423
	/* Use %rdx as our temp variable throughout */
1424
	pushq	%rdx
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1435 1436 1437
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1438 1439
	 */

1440
	swapgs
1441
	cld
1442
	FENCE_SWAPGS_USER_ENTRY
1443
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1444 1445
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1446
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1447 1448 1449 1450 1451
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1452
	UNWIND_HINT_IRET_REGS
1453
	pushq   $-1		/* pt_regs->orig_ax */
1454
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1455
	ENCODE_FRAME_POINTER
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1467
	/*
1468
	 * Return back to user mode.  We must *not* do the normal exit
1469
	 * work, because we don't want to enable interrupts.
1470
	 */
1471
	jmp	swapgs_restore_regs_and_return_to_usermode
1472

1473
.Lnmi_from_kernel:
1474
	/*
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1515
	/*
1516 1517
	 * Determine whether we're a nested NMI.
	 *
1518 1519 1520 1521 1522 1523
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1524
	 */
1525 1526 1527 1528 1529 1530 1531 1532

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1533

1534
	/*
1535
	 * Now check "NMI executing".  If it's set, then we're nested.
1536 1537
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1538
	 */
1539 1540
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1541 1542

	/*
1543 1544
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1545 1546 1547 1548 1549 1550 1551 1552
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1553
	 */
1554 1555 1556 1557 1558
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1559

1560 1561 1562 1563
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1564 1565 1566 1567 1568 1569 1570

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1571

1572 1573
nested_nmi:
	/*
1574 1575
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1576
	 */
1577
	subq	$8, %rsp
1578 1579 1580
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1581
	pushfq
1582 1583
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1584 1585

	/* Put stack back */
1586
	addq	$(6*8), %rsp
1587 1588

nested_nmi_out:
1589
	popq	%rdx
1590

1591
	/* We are returning to kernel mode, so this cannot result in a fault. */
1592
	iretq
1593 1594

first_nmi:
1595
	/* Restore rdx. */
1596
	movq	(%rsp), %rdx
1597

1598 1599
	/* Make room for "NMI executing". */
	pushq	$0
1600

1601
	/* Leave room for the "iret" frame */
1602
	subq	$(5*8), %rsp
1603

1604
	/* Copy the "original" frame to the "outermost" frame */
1605
	.rept 5
1606
	pushq	11*8(%rsp)
1607
	.endr
1608
	UNWIND_HINT_IRET_REGS
1609

1610 1611
	/* Everything up to here is safe from nested NMIs */

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1623
	iretq			/* continues at repeat_nmi below */
1624
	UNWIND_HINT_IRET_REGS
1625 1626 1627
1:
#endif

1628
repeat_nmi:
1629 1630 1631 1632 1633 1634 1635 1636
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1637 1638 1639 1640
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1641 1642
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1643
	 */
1644
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1645

1646
	/*
1647 1648 1649
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1650
	 */
1651
	addq	$(10*8), %rsp
1652
	.rept 5
1653
	pushq	-6*8(%rsp)
1654
	.endr
1655
	subq	$(5*8), %rsp
1656
end_repeat_nmi:
1657 1658

	/*
1659 1660 1661
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1662
	 */
1663
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1664

1665
	/*
1666
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1667 1668 1669 1670 1671
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1672
	call	paranoid_entry
1673
	UNWIND_HINT_REGS
1674

1675
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1676 1677 1678
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1679

1680
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1681
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1682

1683 1684
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1685 1686 1687
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1688
	POP_REGS
1689

1690 1691 1692 1693 1694
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1695

1696 1697 1698
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1699 1700 1701 1702 1703
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1704 1705 1706
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1707 1708

	/*
1709 1710 1711 1712
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1713
	 */
1714
	iretq
1715
SYM_CODE_END(nmi)
1716

1717 1718 1719 1720 1721
#ifndef CONFIG_IA32_EMULATION
/*
 * This handles SYSCALL from 32-bit code.  There is no way to program
 * MSRs to fully disable 32-bit SYSCALL.
 */
1722
SYM_CODE_START(ignore_sysret)
1723
	UNWIND_HINT_EMPTY
1724
	mov	$-ENOSYS, %eax
1725
	sysretl
1726
SYM_CODE_END(ignore_sysret)
1727
#endif
1728

1729
SYM_CODE_START(rewind_stack_do_exit)
1730
	UNWIND_HINT_FUNC
1731 1732 1733 1734
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1735
	leaq	-PTREGS_SIZE(%rax), %rsp
1736
	UNWIND_HINT_REGS
1737 1738

	call	do_exit
1739
SYM_CODE_END(rewind_stack_do_exit)