entry_64.S 43.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <linux/err.h>
L
Linus Torvalds 已提交
40

41 42
.code64
.section .entry.text, "ax"
43

44
#ifdef CONFIG_PARAVIRT
45
ENTRY(native_usergs_sysret64)
46 47
	swapgs
	sysretq
48
ENDPROC(native_usergs_sysret64)
49 50
#endif /* CONFIG_PARAVIRT */

51
.macro TRACE_IRQS_IRETQ
52
#ifdef CONFIG_TRACE_IRQFLAGS
53 54
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
55 56 57 58 59
	TRACE_IRQS_ON
1:
#endif
.endm

60 61 62 63 64 65 66 67 68 69 70 71 72 73
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
74
	call	debug_stack_set_zero
75
	TRACE_IRQS_OFF
76
	call	debug_stack_reset
77 78 79
.endm

.macro TRACE_IRQS_ON_DEBUG
80
	call	debug_stack_set_zero
81
	TRACE_IRQS_ON
82
	call	debug_stack_reset
83 84
.endm

85
.macro TRACE_IRQS_IRETQ_DEBUG
86 87
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
88 89 90 91 92
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
93 94 95
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
96 97
#endif

L
Linus Torvalds 已提交
98
/*
99
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
100
 *
101 102 103 104 105 106 107 108 109 110
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
111
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
112 113 114 115 116 117
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
118
 * rax  system call number
119 120
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
121 122
 * rdi  arg0
 * rsi  arg1
123
 * rdx  arg2
124
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
125 126
 * r8   arg4
 * r9   arg5
127
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
128
 *
L
Linus Torvalds 已提交
129 130
 * Only called from user space.
 *
131
 * When user can change pt_regs->foo always force IRET. That is because
132 133
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
134
 */
L
Linus Torvalds 已提交
135

136
ENTRY(entry_SYSCALL_64)
137 138 139 140 141
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
142 143 144 145 146 147
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
148
GLOBAL(entry_SYSCALL_64_after_swapgs)
149

150 151
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
152

153 154
	TRACE_IRQS_OFF

155
	/* Construct struct pt_regs on stack */
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

173 174 175 176
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
177 178
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
179 180
	jnz	entry_SYSCALL64_slow_path

181
entry_SYSCALL_64_fastpath:
182 183 184 185 186 187 188
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
189
#if __SYSCALL_MASK == ~0
190
	cmpq	$__NR_syscall_max, %rax
191
#else
192 193
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
194
#endif
195 196
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
197 198 199

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
200 201
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
202
	 */
203
	call	*sys_call_table(, %rax, 8)
204 205
.Lentry_SYSCALL_64_after_fastpath_call:

206
	movq	%rax, RAX(%rsp)
207
1:
208 209

	/*
210 211 212
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
213
	 */
214
	DISABLE_INTERRUPTS(CLBR_ANY)
215
	TRACE_IRQS_OFF
216 217
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
218
	jnz	1f
219

220 221
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
222 223 224
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
225
	movq	RSP(%rsp), %rsp
226
	USERGS_SYSRET64
L
Linus Torvalds 已提交
227

228 229 230 231 232 233
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
234
	TRACE_IRQS_ON
235
	ENABLE_INTERRUPTS(CLBR_ANY)
236
	SAVE_EXTRA_REGS
237
	movq	%rsp, %rdi
238 239
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
240

241 242
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
243
	SAVE_EXTRA_REGS
244
	movq	%rsp, %rdi
245 246 247
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
248
	RESTORE_EXTRA_REGS
249
	TRACE_IRQS_IRETQ		/* we're about to change IF */
250 251 252 253 254

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
255 256 257 258
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
259 260 261 262

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
263
	 * the kernel, since userspace controls RSP.
264
	 *
265
	 * If width of "canonical tail" ever becomes variable, this will need
266
	 * to be updated to remain correct on both old and new CPUs.
267
	 *
268 269
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
270
	 */
271 272
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273

274 275 276
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
277

278 279
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
280

281 282 283
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
284 285

	/*
286 287 288 289 290 291 292 293 294
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
295
	 *
296
	 *           movq	$stuck_here, %rcx
297 298 299 300 301 302
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
303 304
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
305 306 307

	/* nothing to check for RSP */

308 309
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
310 311

	/*
312 313
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
314 315
	 */
syscall_return_via_sysret:
316 317
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
318
	movq	RSP(%rsp), %rsp
319 320 321 322 323
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
324
END(entry_SYSCALL_64)
325

326 327 328
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
329 330 331
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
332 333
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
334
	 * IRQs are on.
335 336 337 338
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

339 340 341 342
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
343
	DISABLE_INTERRUPTS(CLBR_ANY)
344
	TRACE_IRQS_OFF
345
	popq	%rax
346
	jmp	entry_SYSCALL64_slow_path
347 348

1:
349
	jmp	*%rax				/* Called from C */
350 351 352 353 354 355 356 357 358 359 360 361 362 363
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

401 402 403
/*
 * A newly forked process directly context switches into this address.
 *
404
 * rax: prev task we switched from
405 406
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
407 408
 */
ENTRY(ret_from_fork)
409
	movq	%rax, %rdi
410
	call	schedule_tail			/* rdi: 'prev' task parameter */
411

412 413
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
414

415
2:
416
	movq	%rsp, %rdi
417 418 419 420
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
421 422 423 424 425 426 427 428 429 430 431 432

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
433 434
END(ret_from_fork)

435
/*
436 437
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
438
 */
439
	.align 8
440
ENTRY(irq_entries_start)
441 442
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
443
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
444 445 446 447
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
448 449
END(irq_entries_start)

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
	pushfq
	testl $X86_EFLAGS_IF, (%rsp)
	jz .Lokay_\@
	ud2
.Lokay_\@:
	addq $8, %rsp
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
.macro ENTER_IRQ_STACK old_rsp
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
	incl	PER_CPU_VAR(irq_count)

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
	 */

	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	\old_rsp
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
.macro LEAVE_IRQ_STACK
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

503
/*
L
Linus Torvalds 已提交
504 505 506
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
507 508 509
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
510

511
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
512
	.macro interrupt func
513
	cld
514 515 516
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
517
	ENCODE_FRAME_POINTER
518

519
	testb	$3, CS(%rsp)
520
	jz	1f
521 522 523 524 525

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
526
	SWAPGS
527 528 529 530 531 532 533 534 535 536 537

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

538
	CALL_enter_from_user_mode
539

540
1:
541
	ENTER_IRQ_STACK old_rsp=%rdi
542 543 544
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

545
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
546 547
	.endm

548 549 550 551
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
552 553
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
554
	ASM_CLAC
555
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
556
	interrupt do_IRQ
557
	/* 0(%rsp): old RSP */
558
ret_from_intr:
559
	DISABLE_INTERRUPTS(CLBR_ANY)
560
	TRACE_IRQS_OFF
561

562
	LEAVE_IRQ_STACK
563

564
	testb	$3, CS(%rsp)
565
	jz	retint_kernel
566

567 568 569 570
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
571
	TRACE_IRQS_IRETQ
572
	SWAPGS
573
	jmp	restore_regs_and_iret
574

575
/* Returning to kernel space */
576
retint_kernel:
577 578 579
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
580
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
581
	jnc	1f
582
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
583
	jnz	1f
584
	call	preempt_schedule_irq
585
	jmp	0b
586
1:
587
#endif
588 589 590 591
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
592 593 594 595 596

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
597
GLOBAL(restore_regs_and_iret)
598
	RESTORE_EXTRA_REGS
599
restore_c_regs_and_iret:
600 601
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
602 603 604
	INTERRUPT_RETURN

ENTRY(native_iret)
605 606 607 608
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
609
#ifdef CONFIG_X86_ESPFIX64
610 611
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
612
#endif
613

614
.global native_irq_return_iret
615
native_irq_return_iret:
A
Andy Lutomirski 已提交
616 617 618 619 620 621
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
622
	iretq
I
Ingo Molnar 已提交
623

624
#ifdef CONFIG_X86_ESPFIX64
625
native_irq_return_ldt:
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
648
	SWAPGS
649
	movq	PER_CPU_VAR(espfix_waddr), %rdi
650 651
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
652
	movq	%rax, (1*8)(%rdi)
653
	movq	(2*8)(%rsp), %rax		/* user CS */
654
	movq	%rax, (2*8)(%rdi)
655
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
656
	movq	%rax, (3*8)(%rdi)
657
	movq	(5*8)(%rsp), %rax		/* user SS */
658
	movq	%rax, (5*8)(%rdi)
659
	movq	(4*8)(%rsp), %rax		/* user RSP */
660
	movq	%rax, (4*8)(%rdi)
661 662 663 664 665 666 667 668 669 670 671 672 673
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
674
	orq	PER_CPU_VAR(espfix_stack), %rax
675
	SWAPGS
676
	movq	%rax, %rsp
677 678 679 680 681 682 683 684 685 686 687 688

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
689
	jmp	native_irq_return_iret
690
#endif
691
END(common_interrupt)
692

L
Linus Torvalds 已提交
693 694
/*
 * APIC interrupts.
695
 */
696
.macro apicinterrupt3 num sym do_sym
697
ENTRY(\sym)
698
	ASM_CLAC
699
	pushq	$~(\num)
700
.Lcommon_\sym:
701
	interrupt \do_sym
702
	jmp	ret_from_intr
703 704
END(\sym)
.endm
L
Linus Torvalds 已提交
705

706 707 708 709 710 711 712 713 714 715 716 717
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

718 719 720 721 722 723 724 725 726
/* Make sure APIC interrupt handlers end up in the irqentry section: */
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
# define POP_SECTION_IRQENTRY	.popsection
#else
# define PUSH_SECTION_IRQENTRY
# define POP_SECTION_IRQENTRY
#endif

727
.macro apicinterrupt num sym do_sym
728
PUSH_SECTION_IRQENTRY
729 730
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
731
POP_SECTION_IRQENTRY
732 733
.endm

734
#ifdef CONFIG_SMP
735 736
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
737
#endif
L
Linus Torvalds 已提交
738

N
Nick Piggin 已提交
739
#ifdef CONFIG_X86_UV
740
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
741
#endif
742 743 744

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
745

746
#ifdef CONFIG_HAVE_KVM
747 748
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
749 750
#endif

751
#ifdef CONFIG_X86_MCE_THRESHOLD
752
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
753 754
#endif

755
#ifdef CONFIG_X86_MCE_AMD
756
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
757 758
#endif

759
#ifdef CONFIG_X86_THERMAL_VECTOR
760
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
761
#endif
762

763
#ifdef CONFIG_SMP
764 765 766
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
767
#endif
L
Linus Torvalds 已提交
768

769 770
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
771

772
#ifdef CONFIG_IRQ_WORK
773
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
774 775
#endif

L
Linus Torvalds 已提交
776 777
/*
 * Exception entry points.
778
 */
779
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
780 781

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
782
ENTRY(\sym)
783 784 785 786 787
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

788
	ASM_CLAC
789
	PARAVIRT_ADJUST_EXCEPTION_FRAME
790 791

	.ifeq \has_error_code
792
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
793 794
	.endif

795
	ALLOC_PT_GPREGS_ON_STACK
796 797

	.if \paranoid
798
	.if \paranoid == 1
799 800
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
801
	.endif
802
	call	paranoid_entry
803
	.else
804
	call	error_entry
805
	.endif
806
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
807 808

	.if \paranoid
809
	.if \shift_ist != -1
810
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
811
	.else
812
	TRACE_IRQS_OFF
813
	.endif
814
	.endif
815

816
	movq	%rsp, %rdi			/* pt_regs pointer */
817 818

	.if \has_error_code
819 820
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
821
	.else
822
	xorl	%esi, %esi			/* no error code */
823 824
	.endif

825
	.if \shift_ist != -1
826
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
827 828
	.endif

829
	call	\do_sym
830

831
	.if \shift_ist != -1
832
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
833 834
	.endif

835
	/* these procedures expect "no swapgs" flag in ebx */
836
	.if \paranoid
837
	jmp	paranoid_exit
838
	.else
839
	jmp	error_exit
840 841
	.endif

842 843 844 845 846 847 848
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
849
	call	error_entry
850 851


852 853 854
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
855

856
	movq	%rsp, %rdi			/* pt_regs pointer */
857 858

	.if \has_error_code
859 860
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
861
	.else
862
	xorl	%esi, %esi			/* no error code */
863 864
	.endif

865
	call	\do_sym
866

867
	jmp	error_exit			/* %ebx: no swapgs flag */
868
	.endif
869
END(\sym)
870
.endm
871

872
#ifdef CONFIG_TRACING
873 874 875
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
876 877
.endm
#else
878 879
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
880 881 882
.endm
#endif

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
902
ENTRY(native_load_gs_index)
903
	pushfq
904
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
905
	SWAPGS
906
.Lgs_change:
907
	movl	%edi, %gs
908
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
909
	SWAPGS
910
	popfq
911
	ret
912
END(native_load_gs_index)
913
EXPORT_SYMBOL(native_load_gs_index)
914

915
	_ASM_EXTABLE(.Lgs_change, bad_gs)
916
	.section .fixup, "ax"
L
Linus Torvalds 已提交
917
	/* running with kernelgs */
918
bad_gs:
919
	SWAPGS					/* switch back to user gs */
920 921 922 923 924 925
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
926 927 928
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
929
	.previous
930

931
/* Call softirq on interrupt stack. Interrupts are off. */
932
ENTRY(do_softirq_own_stack)
933 934
	pushq	%rbp
	mov	%rsp, %rbp
935
	ENTER_IRQ_STACK old_rsp=%r11
936
	call	__do_softirq
937
	LEAVE_IRQ_STACK
938
	leaveq
939
	ret
940
END(do_softirq_own_stack)
941

942
#ifdef CONFIG_XEN
943
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
944 945

/*
946 947 948 949 950 951 952 953 954 955 956 957
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
958 959
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

960 961 962 963
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
964
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
965 966

	ENTER_IRQ_STACK old_rsp=%r10
967
	call	xen_evtchn_do_upcall
968 969
	LEAVE_IRQ_STACK

970
#ifndef CONFIG_PREEMPT
971
	call	xen_maybe_preempt_hcall
972
#endif
973
	jmp	error_exit
974
END(xen_do_hypervisor_callback)
975 976

/*
977 978 979 980 981 982 983 984 985 986 987 988
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
989
ENTRY(xen_failsafe_callback)
990 991 992 993 994 995 996 997 998 999 1000 1001
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1002
	/* All segments match their saved values => Category 2 (Bad IRET). */
1003 1004 1005 1006 1007 1008 1009
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
1010
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1011 1012 1013 1014
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
1015 1016 1017
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1018
	ENCODE_FRAME_POINTER
1019
	jmp	error_exit
1020 1021
END(xen_failsafe_callback)

1022
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1023 1024
	xen_hvm_callback_vector xen_evtchn_do_upcall

1025
#endif /* CONFIG_XEN */
1026

1027
#if IS_ENABLED(CONFIG_HYPERV)
1028
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1029 1030 1031
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1032 1033 1034 1035
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1036
#ifdef CONFIG_XEN
1037 1038 1039
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1040
#endif
1041 1042 1043 1044

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
1045
#ifdef CONFIG_KVM_GUEST
1046
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1047
#endif
1048

1049
#ifdef CONFIG_X86_MCE
1050
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1051 1052
#endif

1053 1054 1055 1056 1057 1058
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1059 1060 1061
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1062
	ENCODE_FRAME_POINTER 8
1063 1064
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1065
	rdmsr
1066 1067
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1068
	SWAPGS
1069
	xorl	%ebx, %ebx
1070
1:	ret
1071
END(paranoid_entry)
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1082 1083
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1084
 */
1085
ENTRY(paranoid_exit)
1086
	DISABLE_INTERRUPTS(CLBR_ANY)
1087
	TRACE_IRQS_OFF_DEBUG
1088 1089
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1090
	TRACE_IRQS_IRETQ
1091
	SWAPGS_UNSAFE_STACK
1092
	jmp	paranoid_exit_restore
1093
paranoid_exit_no_swapgs:
1094
	TRACE_IRQS_IRETQ_DEBUG
1095
paranoid_exit_restore:
1096 1097 1098
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1099
	INTERRUPT_RETURN
1100 1101 1102
END(paranoid_exit)

/*
1103
 * Save all registers in pt_regs, and switch gs if needed.
1104
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1105 1106 1107
 */
ENTRY(error_entry)
	cld
1108 1109
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1110
	ENCODE_FRAME_POINTER 8
1111
	xorl	%ebx, %ebx
1112
	testb	$3, CS+8(%rsp)
1113
	jz	.Lerror_kernelspace
1114

1115 1116 1117 1118
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1119
	SWAPGS
1120

1121
.Lerror_entry_from_usermode_after_swapgs:
1122 1123 1124 1125 1126 1127
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1128
	CALL_enter_from_user_mode
1129
	ret
1130

1131
.Lerror_entry_done:
1132 1133 1134
	TRACE_IRQS_OFF
	ret

1135 1136 1137 1138 1139 1140
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1141
.Lerror_kernelspace:
1142 1143 1144
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1145
	je	.Lerror_bad_iret
1146 1147
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1148
	je	.Lbstep_iret
1149
	cmpq	$.Lgs_change, RIP+8(%rsp)
1150
	jne	.Lerror_entry_done
1151 1152

	/*
1153
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1154
	 * gsbase and proceed.  We'll fix up the exception and land in
1155
	 * .Lgs_change's error handler with kernel gsbase.
1156
	 */
1157 1158
	SWAPGS
	jmp .Lerror_entry_done
1159

1160
.Lbstep_iret:
1161
	/* Fix truncated RIP */
1162
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1163 1164
	/* fall through */

1165
.Lerror_bad_iret:
1166 1167 1168 1169
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1170
	SWAPGS
1171 1172 1173 1174 1175 1176

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1177 1178 1179
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1180
	decl	%ebx
1181
	jmp	.Lerror_entry_from_usermode_after_swapgs
1182 1183 1184
END(error_entry)


1185
/*
1186
 * On entry, EBX is a "return to kernel mode" flag:
1187 1188 1189
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1190
ENTRY(error_exit)
1191
	DISABLE_INTERRUPTS(CLBR_ANY)
1192
	TRACE_IRQS_OFF
1193
	testl	%ebx, %ebx
1194 1195
	jnz	retint_kernel
	jmp	retint_user
1196 1197
END(error_exit)

1198
/* Runs on exception stack */
1199
ENTRY(nmi)
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1210
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1229 1230 1231
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1232 1233
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1234
	 *    o Modify the "iret" location to jump to the repeat_nmi
1235 1236 1237 1238 1239 1240 1241 1242
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1243 1244 1245 1246 1247
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1248 1249
	 */

1250
	/* Use %rdx as our temp variable throughout */
1251
	pushq	%rdx
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1262 1263 1264
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1265 1266
	 */

1267
	SWAPGS_UNSAFE_STACK
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1292
	ENCODE_FRAME_POINTER
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1304
	/*
1305
	 * Return back to user mode.  We must *not* do the normal exit
1306
	 * work, because we don't want to enable interrupts.
1307
	 */
1308
	SWAPGS
1309
	jmp	restore_regs_and_iret
1310

1311
.Lnmi_from_kernel:
1312
	/*
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1353
	/*
1354 1355
	 * Determine whether we're a nested NMI.
	 *
1356 1357 1358 1359 1360 1361
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1362
	 */
1363 1364 1365 1366 1367 1368 1369 1370

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1371

1372
	/*
1373
	 * Now check "NMI executing".  If it's set, then we're nested.
1374 1375
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1376
	 */
1377 1378
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1379 1380

	/*
1381 1382
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1383 1384 1385 1386 1387 1388 1389 1390
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1391
	 */
1392 1393 1394 1395 1396
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1397

1398 1399 1400 1401
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1402 1403 1404 1405 1406 1407 1408

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1409

1410 1411
nested_nmi:
	/*
1412 1413
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1414
	 */
1415
	subq	$8, %rsp
1416 1417 1418
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1419
	pushfq
1420 1421
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1422 1423

	/* Put stack back */
1424
	addq	$(6*8), %rsp
1425 1426

nested_nmi_out:
1427
	popq	%rdx
1428

1429
	/* We are returning to kernel mode, so this cannot result in a fault. */
1430 1431 1432
	INTERRUPT_RETURN

first_nmi:
1433
	/* Restore rdx. */
1434
	movq	(%rsp), %rdx
1435

1436 1437
	/* Make room for "NMI executing". */
	pushq	$0
1438

1439
	/* Leave room for the "iret" frame */
1440
	subq	$(5*8), %rsp
1441

1442
	/* Copy the "original" frame to the "outermost" frame */
1443
	.rept 5
1444
	pushq	11*8(%rsp)
1445
	.endr
1446

1447 1448
	/* Everything up to here is safe from nested NMIs */

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1:
#endif

1464
repeat_nmi:
1465 1466 1467 1468 1469 1470 1471 1472
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1473 1474 1475 1476
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1477 1478
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1479
	 */
1480
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1481

1482
	/*
1483 1484 1485
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1486
	 */
1487
	addq	$(10*8), %rsp
1488
	.rept 5
1489
	pushq	-6*8(%rsp)
1490
	.endr
1491
	subq	$(5*8), %rsp
1492
end_repeat_nmi:
1493 1494

	/*
1495 1496 1497
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1498
	 */
1499
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1500 1501
	ALLOC_PT_GPREGS_ON_STACK

1502
	/*
1503
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1504 1505 1506 1507 1508
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1509
	call	paranoid_entry
1510

1511
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1512 1513 1514
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1515

1516 1517
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1518 1519 1520
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1521 1522
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1523 1524

	/* Point RSP at the "iret" frame. */
1525
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1537 1538 1539 1540 1541 1542

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1543
	INTERRUPT_RETURN
1544 1545 1546
END(nmi)

ENTRY(ignore_sysret)
1547
	mov	$-ENOSYS, %eax
1548 1549
	sysret
END(ignore_sysret)
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
	leaq	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)