entry_64.S 45.2 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	bt	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95 96
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 164
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165 166 167 168 169 170 171 172

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

173 174 175
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
195
	JMP_NOSPEC %rdi
196 197 198 199 200 201 202 203 204 205
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

206
ENTRY(entry_SYSCALL_64)
207
	UNWIND_HINT_EMPTY
208 209 210 211 212
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
213

214
	swapgs
215
	/*
216
	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217 218
	 * is not required to switch CR3.
	 */
219 220
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221 222

	/* Construct struct pt_regs on stack */
223 224 225 226 227
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
228
GLOBAL(entry_SYSCALL_64_after_hwframe)
229
	pushq	%rax				/* pt_regs->orig_ax */
230 231

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
232

233 234
	TRACE_IRQS_OFF

235
	/* IRQs are off. */
236
	movq	%rsp, %rdi
237 238
	call	do_syscall_64		/* returns with IRQs disabled */

239
	TRACE_IRQS_IRETQ		/* we're about to change IF */
240 241 242

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
243 244
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
245
	 */
246 247
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
248 249 250

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
251 252 253 254

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
255
	 * the kernel, since userspace controls RSP.
256
	 *
257
	 * If width of "canonical tail" ever becomes variable, this will need
258
	 * to be updated to remain correct on both old and new CPUs.
259
	 *
260 261
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
262
	 */
263 264
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
265

266 267
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
268
	jne	swapgs_restore_regs_and_return_to_usermode
269

270
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
271
	jne	swapgs_restore_regs_and_return_to_usermode
272

273 274
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
275
	jne	swapgs_restore_regs_and_return_to_usermode
276 277

	/*
278 279 280 281 282 283 284 285 286
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
287
	 *
288
	 *           movq	$stuck_here, %rcx
289 290 291 292 293 294
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
295
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
296
	jnz	swapgs_restore_regs_and_return_to_usermode
297 298 299

	/* nothing to check for RSP */

300
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
301
	jne	swapgs_restore_regs_and_return_to_usermode
302 303

	/*
304 305
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
306 307
	 */
syscall_return_via_sysret:
308
	/* rcx and r11 are already restored (see code above) */
309
	UNWIND_HINT_EMPTY
310
	POP_REGS pop_rdi=0 skip_r11rcx=1
311 312 313 314 315 316

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
317
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
318 319 320 321 322 323 324 325

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
326
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
327

328
	popq	%rdi
329
	popq	%rsp
330
	USERGS_SYSRET64
331
END(entry_SYSCALL_64)
332

333 334 335 336 337
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
338
	UNWIND_HINT_FUNC
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

359 360 361 362 363 364 365 366
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
367 368
	/* Clobbers %rbx */
	FILL_RETURN_BUFFER RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
369 370
#endif

371 372 373 374 375 376 377 378 379 380 381
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

382 383 384
/*
 * A newly forked process directly context switches into this address.
 *
385
 * rax: prev task we switched from
386 387
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
388 389
 */
ENTRY(ret_from_fork)
390
	UNWIND_HINT_EMPTY
391
	movq	%rax, %rdi
392
	call	schedule_tail			/* rdi: 'prev' task parameter */
393

394 395
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
396

397
2:
398
	UNWIND_HINT_REGS
399
	movq	%rsp, %rdi
400 401
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
402
	jmp	swapgs_restore_regs_and_return_to_usermode
403 404 405 406

1:
	/* kernel thread */
	movq	%r12, %rdi
407
	CALL_NOSPEC %rbx
408 409 410 411 412 413 414
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
415 416
END(ret_from_fork)

417
/*
418 419
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
420
 */
421
	.align 8
422
ENTRY(irq_entries_start)
423 424
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
425
	UNWIND_HINT_IRET_REGS
426
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
427 428
	jmp	common_interrupt
	.align	8
429
	vector=vector+1
430
    .endr
431 432
END(irq_entries_start)

433 434
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
435 436 437
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
438 439 440
	jz .Lokay_\@
	ud2
.Lokay_\@:
441
	popq %rax
442 443 444 445 446 447 448 449 450 451
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
452
.macro ENTER_IRQ_STACK regs=1 old_rsp
453 454
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
455 456 457 458 459

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

460
	incl	PER_CPU_VAR(irq_count)
461
	jnz	.Lirq_stack_push_old_rsp_\@
462 463 464 465 466 467 468 469 470

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
487
	 */
488 489 490 491 492
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
493

494
.Lirq_stack_push_old_rsp_\@:
495
	pushq	\old_rsp
496 497 498 499

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
500 501 502 503 504
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
505
.macro LEAVE_IRQ_STACK regs=1
506 507 508 509
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

510 511 512 513
	.if \regs
	UNWIND_HINT_REGS
	.endif

514 515 516 517 518 519 520 521
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

522
/*
L
Linus Torvalds 已提交
523 524 525
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
526 527 528
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
529

530
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
531
	.macro interrupt func
532
	cld
533 534 535 536 537 538 539

	testb	$3, CS-ORIG_RAX(%rsp)
	jz	1f
	SWAPGS
	call	switch_to_thread_stack
1:

540
	PUSH_AND_CLEAR_REGS
541
	ENCODE_FRAME_POINTER
542

543
	testb	$3, CS(%rsp)
544
	jz	1f
545 546

	/*
547 548
	 * IRQ from user mode.
	 *
549 550 551 552 553 554 555 556 557
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

558
	CALL_enter_from_user_mode
559

560
1:
561
	ENTER_IRQ_STACK old_rsp=%rdi
562 563 564
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

565
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
566 567
	.endm

568 569 570 571
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
572 573
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
574
	ASM_CLAC
575
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
576
	interrupt do_IRQ
577
	/* 0(%rsp): old RSP */
578
ret_from_intr:
579
	DISABLE_INTERRUPTS(CLBR_ANY)
580
	TRACE_IRQS_OFF
581

582
	LEAVE_IRQ_STACK
583

584
	testb	$3, CS(%rsp)
585
	jz	retint_kernel
586

587 588 589 590
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
591
	TRACE_IRQS_IRETQ
592

593
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
594 595
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
596
	testb	$3, CS(%rsp)
597 598 599 600
	jnz	1f
	ud2
1:
#endif
601
	POP_REGS pop_rdi=0
602 603 604 605 606 607

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
608
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

625
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
626

627 628 629
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
630 631
	INTERRUPT_RETURN

632

633
/* Returning to kernel space */
634
retint_kernel:
635 636 637
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
638
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
639
	jnc	1f
640
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
641
	jnz	1f
642
	call	preempt_schedule_irq
643
	jmp	0b
644
1:
645
#endif
646 647 648 649
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
650

651 652 653
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
654
	testb	$3, CS(%rsp)
655 656 657 658
	jz	1f
	ud2
1:
#endif
659
	POP_REGS
660
	addq	$8, %rsp	/* skip regs->orig_ax */
661 662 663 664
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
665 666 667
	INTERRUPT_RETURN

ENTRY(native_iret)
668
	UNWIND_HINT_IRET_REGS
669 670 671 672
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
673
#ifdef CONFIG_X86_ESPFIX64
674 675
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
676
#endif
677

678
.global native_irq_return_iret
679
native_irq_return_iret:
A
Andy Lutomirski 已提交
680 681 682 683 684 685
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
686
	iretq
I
Ingo Molnar 已提交
687

688
#ifdef CONFIG_X86_ESPFIX64
689
native_irq_return_ldt:
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
712 713 714
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

715
	movq	PER_CPU_VAR(espfix_waddr), %rdi
716 717
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
718
	movq	%rax, (1*8)(%rdi)
719
	movq	(2*8)(%rsp), %rax		/* user CS */
720
	movq	%rax, (2*8)(%rdi)
721
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
722
	movq	%rax, (3*8)(%rdi)
723
	movq	(5*8)(%rsp), %rax		/* user SS */
724
	movq	%rax, (5*8)(%rdi)
725
	movq	(4*8)(%rsp), %rax		/* user RSP */
726
	movq	%rax, (4*8)(%rdi)
727 728 729 730 731 732 733 734 735 736 737 738
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
739
	orq	PER_CPU_VAR(espfix_stack), %rax
740

741
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
742 743 744
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

745
	movq	%rax, %rsp
746
	UNWIND_HINT_IRET_REGS offset=8
747 748 749 750 751 752 753 754 755 756 757 758

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
759
	jmp	native_irq_return_iret
760
#endif
761
END(common_interrupt)
762

L
Linus Torvalds 已提交
763 764
/*
 * APIC interrupts.
765
 */
766
.macro apicinterrupt3 num sym do_sym
767
ENTRY(\sym)
768
	UNWIND_HINT_IRET_REGS
769
	ASM_CLAC
770
	pushq	$~(\num)
771
.Lcommon_\sym:
772
	interrupt \do_sym
773
	jmp	ret_from_intr
774 775
END(\sym)
.endm
L
Linus Torvalds 已提交
776

777
/* Make sure APIC interrupt handlers end up in the irqentry section: */
778 779
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
780

781
.macro apicinterrupt num sym do_sym
782
PUSH_SECTION_IRQENTRY
783
apicinterrupt3 \num \sym \do_sym
784
POP_SECTION_IRQENTRY
785 786
.endm

787
#ifdef CONFIG_SMP
788 789
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
790
#endif
L
Linus Torvalds 已提交
791

N
Nick Piggin 已提交
792
#ifdef CONFIG_X86_UV
793
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
794
#endif
795 796 797

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
798

799
#ifdef CONFIG_HAVE_KVM
800 801
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
802
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
803 804
#endif

805
#ifdef CONFIG_X86_MCE_THRESHOLD
806
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
807 808
#endif

809
#ifdef CONFIG_X86_MCE_AMD
810
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
811 812
#endif

813
#ifdef CONFIG_X86_THERMAL_VECTOR
814
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
815
#endif
816

817
#ifdef CONFIG_SMP
818 819 820
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
821
#endif
L
Linus Torvalds 已提交
822

823 824
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
825

826
#ifdef CONFIG_IRQ_WORK
827
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
828 829
#endif

L
Linus Torvalds 已提交
830 831
/*
 * Exception entry points.
832
 */
833
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
834

835 836 837 838 839 840 841 842 843
/*
 * Switch to the thread stack.  This is called with the IRET frame and
 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
 * space has not been allocated for them.)
 */
ENTRY(switch_to_thread_stack)
	UNWIND_HINT_FUNC

	pushq	%rdi
844 845
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
	ret
END(switch_to_thread_stack)
862 863

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
864
ENTRY(\sym)
865
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
866

867 868 869 870 871
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

872
	ASM_CLAC
873

874
	.if \has_error_code == 0
875
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
876 877
	.endif

878 879 880
	/* Save all registers in pt_regs */
	PUSH_AND_CLEAR_REGS
	ENCODE_FRAME_POINTER
881

882
	.if \paranoid < 2
883
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
884
	jnz	.Lfrom_usermode_switch_stack_\@
885
	.endif
886 887

	.if \paranoid
888
	call	paranoid_entry
889
	.else
890
	call	error_entry
891
	.endif
892
	UNWIND_HINT_REGS
893
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
894 895

	.if \paranoid
896
	.if \shift_ist != -1
897
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
898
	.else
899
	TRACE_IRQS_OFF
900
	.endif
901
	.endif
902

903
	movq	%rsp, %rdi			/* pt_regs pointer */
904 905

	.if \has_error_code
906 907
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
908
	.else
909
	xorl	%esi, %esi			/* no error code */
910 911
	.endif

912
	.if \shift_ist != -1
913
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
914 915
	.endif

916
	call	\do_sym
917

918
	.if \shift_ist != -1
919
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
920 921
	.endif

922
	/* these procedures expect "no swapgs" flag in ebx */
923
	.if \paranoid
924
	jmp	paranoid_exit
925
	.else
926
	jmp	error_exit
927 928
	.endif

929
	.if \paranoid < 2
930
	/*
931
	 * Entry from userspace.  Switch stacks and treat it
932 933 934
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
935
.Lfrom_usermode_switch_stack_\@:
936
	call	error_entry
937

938
	movq	%rsp, %rdi			/* pt_regs pointer */
939 940

	.if \has_error_code
941 942
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
943
	.else
944
	xorl	%esi, %esi			/* no error code */
945 946
	.endif

947
	call	\do_sym
948

949
	jmp	error_exit			/* %ebx: no swapgs flag */
950
	.endif
951
END(\sym)
952
.endm
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
973
ENTRY(native_load_gs_index)
974
	FRAME_BEGIN
975
	pushfq
976
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
977
	TRACE_IRQS_OFF
978
	SWAPGS
979
.Lgs_change:
980
	movl	%edi, %gs
981
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
982
	SWAPGS
983
	TRACE_IRQS_FLAGS (%rsp)
984
	popfq
985
	FRAME_END
986
	ret
987
ENDPROC(native_load_gs_index)
988
EXPORT_SYMBOL(native_load_gs_index)
989

990
	_ASM_EXTABLE(.Lgs_change, bad_gs)
991
	.section .fixup, "ax"
L
Linus Torvalds 已提交
992
	/* running with kernelgs */
993
bad_gs:
994
	SWAPGS					/* switch back to user gs */
995 996 997 998 999 1000
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1001 1002 1003
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1004
	.previous
1005

1006
/* Call softirq on interrupt stack. Interrupts are off. */
1007
ENTRY(do_softirq_own_stack)
1008 1009
	pushq	%rbp
	mov	%rsp, %rbp
1010
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1011
	call	__do_softirq
1012
	LEAVE_IRQ_STACK regs=0
1013
	leaveq
1014
	ret
1015
ENDPROC(do_softirq_own_stack)
1016

1017
#ifdef CONFIG_XEN
1018
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1019 1020

/*
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1033 1034
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1035 1036 1037 1038
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1039
	UNWIND_HINT_FUNC
1040
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1041
	UNWIND_HINT_REGS
1042 1043

	ENTER_IRQ_STACK old_rsp=%r10
1044
	call	xen_evtchn_do_upcall
1045 1046
	LEAVE_IRQ_STACK

1047
#ifndef CONFIG_PREEMPT
1048
	call	xen_maybe_preempt_hcall
1049
#endif
1050
	jmp	error_exit
1051
END(xen_do_hypervisor_callback)
1052 1053

/*
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1066
ENTRY(xen_failsafe_callback)
1067
	UNWIND_HINT_EMPTY
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1080
	/* All segments match their saved values => Category 2 (Bad IRET). */
1081 1082 1083 1084
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1085
	UNWIND_HINT_IRET_REGS offset=8
1086
	jmp	general_protection
1087
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1088 1089 1090
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1091
	UNWIND_HINT_IRET_REGS
1092
	pushq	$-1 /* orig_ax = -1 => not a system call */
1093
	PUSH_AND_CLEAR_REGS
1094
	ENCODE_FRAME_POINTER
1095
	jmp	error_exit
1096 1097
END(xen_failsafe_callback)

1098
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1099 1100
	xen_hvm_callback_vector xen_evtchn_do_upcall

1101
#endif /* CONFIG_XEN */
1102

1103
#if IS_ENABLED(CONFIG_HYPERV)
1104
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1105
	hyperv_callback_vector hyperv_vector_handler
1106 1107 1108

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1109 1110
#endif /* CONFIG_HYPERV */

1111 1112 1113 1114
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1115
#ifdef CONFIG_XEN
1116
idtentry xennmi			do_nmi			has_error_code=0
1117 1118
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1119
#endif
1120 1121

idtentry general_protection	do_general_protection	has_error_code=1
1122
idtentry page_fault		do_page_fault		has_error_code=1
1123

G
Gleb Natapov 已提交
1124
#ifdef CONFIG_KVM_GUEST
1125
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1126
#endif
1127

1128
#ifdef CONFIG_X86_MCE
1129
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1130 1131
#endif

1132
/*
1133
 * Switch gs if needed.
1134 1135 1136 1137
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1138
	UNWIND_HINT_FUNC
1139
	cld
1140 1141
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1142
	rdmsr
1143 1144
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1145
	SWAPGS
1146
	xorl	%ebx, %ebx
1147 1148 1149 1150 1151

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1152
END(paranoid_entry)
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1163 1164
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1165
 */
1166
ENTRY(paranoid_exit)
1167
	UNWIND_HINT_REGS
1168
	DISABLE_INTERRUPTS(CLBR_ANY)
1169
	TRACE_IRQS_OFF_DEBUG
1170
	testl	%ebx, %ebx			/* swapgs needed? */
1171
	jnz	.Lparanoid_exit_no_swapgs
1172
	TRACE_IRQS_IRETQ
P
Peter Zijlstra 已提交
1173
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1174
	SWAPGS_UNSAFE_STACK
1175 1176
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1177
	TRACE_IRQS_IRETQ_DEBUG
1178
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1179 1180
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1181 1182 1183
END(paranoid_exit)

/*
1184
 * Switch gs if needed.
1185
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1186 1187
 */
ENTRY(error_entry)
1188
	UNWIND_HINT_REGS offset=8
1189
	cld
1190
	testb	$3, CS+8(%rsp)
1191
	jz	.Lerror_kernelspace
1192

1193 1194 1195 1196
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1197
	SWAPGS
1198 1199
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1200

1201
.Lerror_entry_from_usermode_after_swapgs:
1202 1203 1204 1205 1206 1207 1208 1209
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1210 1211 1212 1213 1214 1215
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1216
	CALL_enter_from_user_mode
1217
	ret
1218

1219
.Lerror_entry_done:
1220 1221 1222
	TRACE_IRQS_OFF
	ret

1223 1224 1225 1226 1227 1228
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1229
.Lerror_kernelspace:
1230 1231 1232
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1233
	je	.Lerror_bad_iret
1234 1235
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1236
	je	.Lbstep_iret
1237
	cmpq	$.Lgs_change, RIP+8(%rsp)
1238
	jne	.Lerror_entry_done
1239 1240

	/*
1241
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1242
	 * gsbase and proceed.  We'll fix up the exception and land in
1243
	 * .Lgs_change's error handler with kernel gsbase.
1244
	 */
1245
	SWAPGS
1246
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1247
	jmp .Lerror_entry_done
1248

1249
.Lbstep_iret:
1250
	/* Fix truncated RIP */
1251
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1252 1253
	/* fall through */

1254
.Lerror_bad_iret:
1255
	/*
1256 1257
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1258
	 */
A
Andy Lutomirski 已提交
1259
	SWAPGS
1260
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1261 1262 1263 1264 1265 1266

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1267 1268 1269
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1270
	decl	%ebx
1271
	jmp	.Lerror_entry_from_usermode_after_swapgs
1272 1273 1274
END(error_entry)


1275
/*
1276
 * On entry, EBX is a "return to kernel mode" flag:
1277 1278 1279
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1280
ENTRY(error_exit)
1281
	UNWIND_HINT_REGS
1282
	DISABLE_INTERRUPTS(CLBR_ANY)
1283
	TRACE_IRQS_OFF
1284
	testl	%ebx, %ebx
1285 1286
	jnz	retint_kernel
	jmp	retint_user
1287 1288
END(error_exit)

1289 1290 1291
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1292 1293 1294 1295
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1296
 */
1297
ENTRY(nmi)
1298
	UNWIND_HINT_IRET_REGS
1299

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1317 1318 1319
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1320 1321
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1322
	 *    o Modify the "iret" location to jump to the repeat_nmi
1323 1324 1325 1326 1327 1328 1329 1330
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1331 1332 1333 1334 1335
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1336 1337
	 */

1338 1339
	ASM_CLAC

1340
	/* Use %rdx as our temp variable throughout */
1341
	pushq	%rdx
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1352 1353 1354
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1355 1356
	 */

1357
	swapgs
1358
	cld
1359
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1360 1361
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1362
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1363 1364 1365 1366 1367
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1368
	UNWIND_HINT_IRET_REGS
1369
	pushq   $-1		/* pt_regs->orig_ax */
1370
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1371
	ENCODE_FRAME_POINTER
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1383
	/*
1384
	 * Return back to user mode.  We must *not* do the normal exit
1385
	 * work, because we don't want to enable interrupts.
1386
	 */
1387
	jmp	swapgs_restore_regs_and_return_to_usermode
1388

1389
.Lnmi_from_kernel:
1390
	/*
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1431
	/*
1432 1433
	 * Determine whether we're a nested NMI.
	 *
1434 1435 1436 1437 1438 1439
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1440
	 */
1441 1442 1443 1444 1445 1446 1447 1448

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1449

1450
	/*
1451
	 * Now check "NMI executing".  If it's set, then we're nested.
1452 1453
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1454
	 */
1455 1456
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1457 1458

	/*
1459 1460
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1461 1462 1463 1464 1465 1466 1467 1468
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1469
	 */
1470 1471 1472 1473 1474
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1475

1476 1477 1478 1479
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1480 1481 1482 1483 1484 1485 1486

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1487

1488 1489
nested_nmi:
	/*
1490 1491
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1492
	 */
1493
	subq	$8, %rsp
1494 1495 1496
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1497
	pushfq
1498 1499
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1500 1501

	/* Put stack back */
1502
	addq	$(6*8), %rsp
1503 1504

nested_nmi_out:
1505
	popq	%rdx
1506

1507
	/* We are returning to kernel mode, so this cannot result in a fault. */
1508
	iretq
1509 1510

first_nmi:
1511
	/* Restore rdx. */
1512
	movq	(%rsp), %rdx
1513

1514 1515
	/* Make room for "NMI executing". */
	pushq	$0
1516

1517
	/* Leave room for the "iret" frame */
1518
	subq	$(5*8), %rsp
1519

1520
	/* Copy the "original" frame to the "outermost" frame */
1521
	.rept 5
1522
	pushq	11*8(%rsp)
1523
	.endr
1524
	UNWIND_HINT_IRET_REGS
1525

1526 1527
	/* Everything up to here is safe from nested NMIs */

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1539
	iretq			/* continues at repeat_nmi below */
1540
	UNWIND_HINT_IRET_REGS
1541 1542 1543
1:
#endif

1544
repeat_nmi:
1545 1546 1547 1548 1549 1550 1551 1552
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1553 1554 1555 1556
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1557 1558
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1559
	 */
1560
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1561

1562
	/*
1563 1564 1565
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1566
	 */
1567
	addq	$(10*8), %rsp
1568
	.rept 5
1569
	pushq	-6*8(%rsp)
1570
	.endr
1571
	subq	$(5*8), %rsp
1572
end_repeat_nmi:
1573 1574

	/*
1575 1576 1577
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1578
	 */
1579
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1580 1581
	PUSH_AND_CLEAR_REGS
	ENCODE_FRAME_POINTER
1582

1583
	/*
1584
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1585 1586 1587 1588 1589
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1590
	call	paranoid_entry
1591
	UNWIND_HINT_REGS
1592

1593
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1594 1595 1596
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1597

P
Peter Zijlstra 已提交
1598
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1599

1600 1601
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1602 1603 1604
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1605
	POP_REGS
1606

1607 1608 1609 1610 1611
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1612

1613 1614 1615
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1616 1617 1618 1619 1620
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1621 1622 1623
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1624 1625

	/*
1626 1627 1628 1629
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1630
	 */
1631
	iretq
1632 1633 1634
END(nmi)

ENTRY(ignore_sysret)
1635
	UNWIND_HINT_EMPTY
1636
	mov	$-ENOSYS, %eax
1637 1638
	sysret
END(ignore_sysret)
1639 1640

ENTRY(rewind_stack_do_exit)
1641
	UNWIND_HINT_FUNC
1642 1643 1644 1645
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1646 1647
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1648 1649 1650

	call	do_exit
END(rewind_stack_do_exit)