entry_64.S 47.1 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	btl	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
96
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145
ENTRY(entry_SYSCALL_64)
146
	UNWIND_HINT_EMPTY
147 148 149 150 151
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
152

153
	swapgs
154
	/* tss.sp2 is scratch space. */
155
	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
156
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
157
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158 159

	/* Construct struct pt_regs on stack */
160 161 162 163 164
	pushq	$__USER_DS				/* pt_regs->ss */
	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
	pushq	%r11					/* pt_regs->flags */
	pushq	$__USER_CS				/* pt_regs->cs */
	pushq	%rcx					/* pt_regs->ip */
165
GLOBAL(entry_SYSCALL_64_after_hwframe)
166
	pushq	%rax					/* pt_regs->orig_ax */
167 168

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
169

170 171
	TRACE_IRQS_OFF

172
	/* IRQs are off. */
173 174
	movq	%rax, %rdi
	movq	%rsp, %rsi
175 176
	call	do_syscall_64		/* returns with IRQs disabled */

177
	TRACE_IRQS_IRETQ		/* we're about to change IF */
178 179 180

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
181 182
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
183
	 */
184 185
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
186 187 188

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
189 190 191 192

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
193
	 * the kernel, since userspace controls RSP.
194
	 *
195
	 * If width of "canonical tail" ever becomes variable, this will need
196
	 * to be updated to remain correct on both old and new CPUs.
197
	 *
198 199
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
200
	 */
201
#ifdef CONFIG_X86_5LEVEL
202 203
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
204
#else
205 206
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
207
#endif
208

209 210
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
211
	jne	swapgs_restore_regs_and_return_to_usermode
212

213
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
214
	jne	swapgs_restore_regs_and_return_to_usermode
215

216 217
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
218
	jne	swapgs_restore_regs_and_return_to_usermode
219 220

	/*
221 222 223 224 225 226 227 228 229
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
230
	 *
231
	 *           movq	$stuck_here, %rcx
232 233 234 235 236 237
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
238
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
239
	jnz	swapgs_restore_regs_and_return_to_usermode
240 241 242

	/* nothing to check for RSP */

243
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
244
	jne	swapgs_restore_regs_and_return_to_usermode
245 246

	/*
247 248
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
249 250
	 */
syscall_return_via_sysret:
251
	/* rcx and r11 are already restored (see code above) */
252
	UNWIND_HINT_EMPTY
253
	POP_REGS pop_rdi=0 skip_r11rcx=1
254 255 256 257 258 259

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
260
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
261 262 263 264 265 266 267 268

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
269 270
	STACKLEAK_ERASE_NOCLOBBER

271
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
272

273
	popq	%rdi
274
	popq	%rsp
275
	USERGS_SYSRET64
276
END(entry_SYSCALL_64)
277

278 279 280 281 282
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
283
	UNWIND_HINT_FUNC
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

299
#ifdef CONFIG_STACKPROTECTOR
300
	movq	TASK_stack_canary(%rsi), %rbx
301
	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
302 303
#endif

304 305 306 307 308 309 310 311
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
312
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
313 314
#endif

315 316 317 318 319 320 321 322 323 324 325
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

326 327 328
/*
 * A newly forked process directly context switches into this address.
 *
329
 * rax: prev task we switched from
330 331
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
332 333
 */
ENTRY(ret_from_fork)
334
	UNWIND_HINT_EMPTY
335
	movq	%rax, %rdi
336
	call	schedule_tail			/* rdi: 'prev' task parameter */
337

338 339
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
340

341
2:
342
	UNWIND_HINT_REGS
343
	movq	%rsp, %rdi
344 345
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
346
	jmp	swapgs_restore_regs_and_return_to_usermode
347 348 349

1:
	/* kernel thread */
350
	UNWIND_HINT_EMPTY
351
	movq	%r12, %rdi
352
	CALL_NOSPEC %rbx
353 354 355 356 357 358 359
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
360 361
END(ret_from_fork)

362
/*
363 364
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
365
 */
366
	.align 8
367
ENTRY(irq_entries_start)
368 369
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
370
	UNWIND_HINT_IRET_REGS
371
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
372 373
	jmp	common_interrupt
	.align	8
374
	vector=vector+1
375
    .endr
376 377
END(irq_entries_start)

378 379
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
380 381 382
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
383 384 385
	jz .Lokay_\@
	ud2
.Lokay_\@:
386
	popq %rax
387 388 389 390 391 392 393 394 395 396
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
397
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
398
	DEBUG_ENTRY_ASSERT_IRQS_OFF
399 400 401 402 403 404 405 406 407

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
408
	movq	%rsp, \old_rsp
409
	.endif
410 411 412 413 414

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

415
	incl	PER_CPU_VAR(irq_count)
416
	jnz	.Lirq_stack_push_old_rsp_\@
417 418 419 420 421 422 423 424 425

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
426 427 428 429 430 431 432
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

433
	movq	\old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
434
	movq	PER_CPU_VAR(hardirq_stack_ptr), %rsp
435 436 437 438 439 440 441

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
442
	 */
443 444 445 446 447
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
448

449
.Lirq_stack_push_old_rsp_\@:
450
	pushq	\old_rsp
451 452 453 454

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
455 456 457 458 459 460 461 462 463

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
464 465 466 467 468
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
469
.macro LEAVE_IRQ_STACK regs=1
470 471 472 473
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

474 475 476 477
	.if \regs
	UNWIND_HINT_REGS
	.endif

478 479 480 481 482 483 484 485
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

486
/*
487
 * Interrupt entry helper function.
488
 *
489 490 491 492 493 494 495 496 497 498 499 500
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
501
 */
502 503 504
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC
	ASM_CLAC
505
	cld
506

507
	testb	$3, CS-ORIG_RAX+8(%rsp)
508 509
	jz	1f
	SWAPGS
510 511 512 513 514 515 516

	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
517
	pushq	%rdi
518

519 520 521 522
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
523 524 525 526 527 528

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
529 530 531 532 533 534 535 536 537 538 539

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
540 541
1:

542 543
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
544

545
	testb	$3, CS+8(%rsp)
546
	jz	1f
547 548

	/*
549 550
	 * IRQ from user mode.
	 *
551 552
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
553
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
554 555 556 557 558 559
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

560
	CALL_enter_from_user_mode
561

562
1:
563
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
564 565 566
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

567 568
	ret
END(interrupt_entry)
569
_ASM_NOKPROBE(interrupt_entry)
570

571 572

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
573

574 575 576 577
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
578 579
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
580
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
581 582 583
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
584
	/* 0(%rsp): old RSP */
585
ret_from_intr:
586
	DISABLE_INTERRUPTS(CLBR_ANY)
587
	TRACE_IRQS_OFF
588

589
	LEAVE_IRQ_STACK
590

591
	testb	$3, CS(%rsp)
592
	jz	retint_kernel
593

594 595 596 597
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
598
	TRACE_IRQS_IRETQ
599

600
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
601 602
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
603
	testb	$3, CS(%rsp)
604 605 606 607
	jnz	1f
	ud2
1:
#endif
608
	POP_REGS pop_rdi=0
609 610 611 612 613 614

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
615
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
631
	STACKLEAK_ERASE_NOCLOBBER
632

633
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
634

635 636 637
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
638 639
	INTERRUPT_RETURN

640

641
/* Returning to kernel space */
642
retint_kernel:
643 644 645
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
646
	btl	$9, EFLAGS(%rsp)		/* were interrupts off? */
647
	jnc	1f
648
	cmpl	$0, PER_CPU_VAR(__preempt_count)
649
	jnz	1f
650
	call	preempt_schedule_irq
651
1:
652
#endif
653 654 655 656
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
657

658 659 660
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
661
	testb	$3, CS(%rsp)
662 663 664 665
	jz	1f
	ud2
1:
#endif
666
	POP_REGS
667
	addq	$8, %rsp	/* skip regs->orig_ax */
668 669 670 671
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
672 673 674
	INTERRUPT_RETURN

ENTRY(native_iret)
675
	UNWIND_HINT_IRET_REGS
676 677 678 679
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
680
#ifdef CONFIG_X86_ESPFIX64
681 682
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
683
#endif
684

685
.global native_irq_return_iret
686
native_irq_return_iret:
A
Andy Lutomirski 已提交
687 688 689 690 691 692
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
693
	iretq
I
Ingo Molnar 已提交
694

695
#ifdef CONFIG_X86_ESPFIX64
696
native_irq_return_ldt:
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
719 720 721
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

722
	movq	PER_CPU_VAR(espfix_waddr), %rdi
723 724
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
725
	movq	%rax, (1*8)(%rdi)
726
	movq	(2*8)(%rsp), %rax		/* user CS */
727
	movq	%rax, (2*8)(%rdi)
728
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
729
	movq	%rax, (3*8)(%rdi)
730
	movq	(5*8)(%rsp), %rax		/* user SS */
731
	movq	%rax, (5*8)(%rdi)
732
	movq	(4*8)(%rsp), %rax		/* user RSP */
733
	movq	%rax, (4*8)(%rdi)
734 735 736 737 738 739 740 741 742 743 744 745
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
746
	orq	PER_CPU_VAR(espfix_stack), %rax
747

748
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
749 750 751
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

752
	movq	%rax, %rsp
753
	UNWIND_HINT_IRET_REGS offset=8
754 755 756 757 758 759 760 761 762 763 764 765

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
766
	jmp	native_irq_return_iret
767
#endif
768
END(common_interrupt)
769
_ASM_NOKPROBE(common_interrupt)
770

L
Linus Torvalds 已提交
771 772
/*
 * APIC interrupts.
773
 */
774
.macro apicinterrupt3 num sym do_sym
775
ENTRY(\sym)
776
	UNWIND_HINT_IRET_REGS
777
	pushq	$~(\num)
778
.Lcommon_\sym:
779 780 781
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
782
	jmp	ret_from_intr
783
END(\sym)
784
_ASM_NOKPROBE(\sym)
785
.endm
L
Linus Torvalds 已提交
786

787
/* Make sure APIC interrupt handlers end up in the irqentry section: */
788 789
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
790

791
.macro apicinterrupt num sym do_sym
792
PUSH_SECTION_IRQENTRY
793
apicinterrupt3 \num \sym \do_sym
794
POP_SECTION_IRQENTRY
795 796
.endm

797
#ifdef CONFIG_SMP
798 799
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
800
#endif
L
Linus Torvalds 已提交
801

N
Nick Piggin 已提交
802
#ifdef CONFIG_X86_UV
803
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
804
#endif
805 806 807

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
808

809
#ifdef CONFIG_HAVE_KVM
810 811
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
812
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
813 814
#endif

815
#ifdef CONFIG_X86_MCE_THRESHOLD
816
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
817 818
#endif

819
#ifdef CONFIG_X86_MCE_AMD
820
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
821 822
#endif

823
#ifdef CONFIG_X86_THERMAL_VECTOR
824
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
825
#endif
826

827
#ifdef CONFIG_SMP
828 829 830
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
831
#endif
L
Linus Torvalds 已提交
832

833 834
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
835

836
#ifdef CONFIG_IRQ_WORK
837
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
838 839
#endif

L
Linus Torvalds 已提交
840 841
/*
 * Exception entry points.
842
 */
843
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
844

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
/**
 * idtentry - Generate an IDT entry stub
 * @sym:		Name of the generated entry point
 * @do_sym: 		C function to be called
 * @has_error_code: 	True if this IDT vector has an error code on the stack
 * @paranoid: 		non-zero means that this vector may be invoked from
 *			kernel mode with user GSBASE and/or user CR3.
 *			2 is special -- see below.
 * @shift_ist:		Set to an IST index if entries from kernel mode should
 *             		decrement the IST stack so that nested entries get a
 *			fresh stack.  (This is for #DB, which has a nasty habit
 *             		of recursing.)
 *
 * idtentry generates an IDT stub that sets up a usable kernel context,
 * creates struct pt_regs, and calls @do_sym.  The stub has the following
 * special behaviors:
 *
 * On an entry from user mode, the stub switches from the trampoline or
 * IST stack to the normal thread stack.  On an exit to user mode, the
 * normal exit-to-usermode path is invoked.
 *
 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
 * whereas we omit the preemption check if @paranoid != 0.  This is purely
 * because the implementation is simpler this way.  The kernel only needs
 * to check for asynchronous kernel preemption when IRQ handlers return.
 *
 * If @paranoid == 0, then the stub will handle IRET faults by pretending
 * that the fault came from user mode.  It will handle gs_change faults by
 * pretending that the fault happened with kernel GSBASE.  Since this handling
 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
 * @paranoid == 0.  This special handling will do the wrong thing for
 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
 *
 * @paranoid == 2 is special: the stub will never switch stacks.  This is for
 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
 */
881
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0
882
ENTRY(\sym)
883
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
884

885 886 887 888 889
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

890
	ASM_CLAC
891

892
	.if \has_error_code == 0
893
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
894 895
	.endif

896
	.if \paranoid == 1
897
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
898
	jnz	.Lfrom_usermode_switch_stack_\@
899
	.endif
900

901 902 903 904 905 906 907 908 909 910 911 912 913 914
	.if \create_gap == 1
	/*
	 * If coming from kernel space, create a 6-word gap to allow the
	 * int3 handler to emulate a call instruction.
	 */
	testb	$3, CS-ORIG_RAX(%rsp)
	jnz	.Lfrom_usermode_no_gap_\@
	.rept	6
	pushq	5*8(%rsp)
	.endr
	UNWIND_HINT_IRET_REGS offset=8
.Lfrom_usermode_no_gap_\@:
	.endif

915
	.if \paranoid
916
	call	paranoid_entry
917
	.else
918
	call	error_entry
919
	.endif
920
	UNWIND_HINT_REGS
921
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
922 923

	.if \paranoid
924
	.if \shift_ist != -1
925
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
926
	.else
927
	TRACE_IRQS_OFF
928
	.endif
929
	.endif
930

931
	movq	%rsp, %rdi			/* pt_regs pointer */
932 933

	.if \has_error_code
934 935
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
936
	.else
937
	xorl	%esi, %esi			/* no error code */
938 939
	.endif

940
	.if \shift_ist != -1
941
	subq	$\ist_offset, CPU_TSS_IST(\shift_ist)
942 943
	.endif

944
	call	\do_sym
945

946
	.if \shift_ist != -1
947
	addq	$\ist_offset, CPU_TSS_IST(\shift_ist)
948 949
	.endif

950
	/* these procedures expect "no swapgs" flag in ebx */
951
	.if \paranoid
952
	jmp	paranoid_exit
953
	.else
954
	jmp	error_exit
955 956
	.endif

957
	.if \paranoid == 1
958
	/*
959
	 * Entry from userspace.  Switch stacks and treat it
960 961 962
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
963
.Lfrom_usermode_switch_stack_\@:
964
	call	error_entry
965

966
	movq	%rsp, %rdi			/* pt_regs pointer */
967 968

	.if \has_error_code
969 970
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
971
	.else
972
	xorl	%esi, %esi			/* no error code */
973 974
	.endif

975
	call	\do_sym
976

977
	jmp	error_exit
978
	.endif
979
_ASM_NOKPROBE(\sym)
980
END(\sym)
981
.endm
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1002
ENTRY(native_load_gs_index)
1003
	FRAME_BEGIN
1004
	pushfq
1005
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1006
	TRACE_IRQS_OFF
1007
	SWAPGS
1008
.Lgs_change:
1009
	movl	%edi, %gs
1010
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1011
	SWAPGS
1012
	TRACE_IRQS_FLAGS (%rsp)
1013
	popfq
1014
	FRAME_END
1015
	ret
1016
ENDPROC(native_load_gs_index)
1017
EXPORT_SYMBOL(native_load_gs_index)
1018

1019
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1020
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1021
	/* running with kernelgs */
1022
bad_gs:
1023
	SWAPGS					/* switch back to user gs */
1024 1025 1026 1027 1028 1029
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1030 1031 1032
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1033
	.previous
1034

1035
/* Call softirq on interrupt stack. Interrupts are off. */
1036
ENTRY(do_softirq_own_stack)
1037 1038
	pushq	%rbp
	mov	%rsp, %rbp
1039
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1040
	call	__do_softirq
1041
	LEAVE_IRQ_STACK regs=0
1042
	leaveq
1043
	ret
1044
ENDPROC(do_softirq_own_stack)
1045

1046
#ifdef CONFIG_XEN_PV
1047
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1048 1049

/*
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1062 1063
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1064 1065 1066 1067
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1068
	UNWIND_HINT_FUNC
1069
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1070
	UNWIND_HINT_REGS
1071 1072

	ENTER_IRQ_STACK old_rsp=%r10
1073
	call	xen_evtchn_do_upcall
1074 1075
	LEAVE_IRQ_STACK

1076
#ifndef CONFIG_PREEMPT
1077
	call	xen_maybe_preempt_hcall
1078
#endif
1079
	jmp	error_exit
1080
END(xen_do_hypervisor_callback)
1081 1082

/*
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1095
ENTRY(xen_failsafe_callback)
1096
	UNWIND_HINT_EMPTY
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1109
	/* All segments match their saved values => Category 2 (Bad IRET). */
1110 1111 1112 1113
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1114
	UNWIND_HINT_IRET_REGS offset=8
1115
	jmp	general_protection
1116
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1117 1118 1119
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1120
	UNWIND_HINT_IRET_REGS
1121
	pushq	$-1 /* orig_ax = -1 => not a system call */
1122
	PUSH_AND_CLEAR_REGS
1123
	ENCODE_FRAME_POINTER
1124
	jmp	error_exit
1125
END(xen_failsafe_callback)
1126
#endif /* CONFIG_XEN_PV */
1127

1128
#ifdef CONFIG_XEN_PVHVM
1129
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1130
	xen_hvm_callback_vector xen_evtchn_do_upcall
1131
#endif
1132

1133

1134
#if IS_ENABLED(CONFIG_HYPERV)
1135
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1136
	hyperv_callback_vector hyperv_vector_handler
1137 1138 1139

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1140 1141 1142

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1143 1144
#endif /* CONFIG_HYPERV */

1145
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
1146
idtentry int3			do_int3			has_error_code=0	create_gap=1
1147 1148
idtentry stack_segment		do_stack_segment	has_error_code=1

1149
#ifdef CONFIG_XEN_PV
1150
idtentry xennmi			do_nmi			has_error_code=0
1151 1152
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1153
#endif
1154 1155

idtentry general_protection	do_general_protection	has_error_code=1
1156
idtentry page_fault		do_page_fault		has_error_code=1
1157

G
Gleb Natapov 已提交
1158
#ifdef CONFIG_KVM_GUEST
1159
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1160
#endif
1161

1162
#ifdef CONFIG_X86_MCE
1163
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1164 1165
#endif

1166
/*
1167
 * Save all registers in pt_regs, and switch gs if needed.
1168 1169 1170 1171
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1172
	UNWIND_HINT_FUNC
1173
	cld
1174 1175
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1176 1177
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1178
	rdmsr
1179 1180
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1181
	SWAPGS
1182
	xorl	%ebx, %ebx
1183 1184

1:
1185 1186
	/*
	 * Always stash CR3 in %r14.  This value will be restored,
1187 1188 1189
	 * verbatim, at exit.  Needed if paranoid_entry interrupted
	 * another entry that already switched to the user CR3 value
	 * but has not yet returned to userspace.
1190 1191 1192
	 *
	 * This is also why CS (stashed in the "iret frame" by the
	 * hardware at entry) can not be used: this may be a return
1193
	 * to kernel code, but with a user CR3 value.
1194
	 */
1195 1196 1197
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1198
END(paranoid_entry)
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1209 1210
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1211
 */
1212
ENTRY(paranoid_exit)
1213
	UNWIND_HINT_REGS
1214
	DISABLE_INTERRUPTS(CLBR_ANY)
1215
	TRACE_IRQS_OFF_DEBUG
1216
	testl	%ebx, %ebx			/* swapgs needed? */
1217
	jnz	.Lparanoid_exit_no_swapgs
1218
	TRACE_IRQS_IRETQ
1219
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1220
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1221
	SWAPGS_UNSAFE_STACK
1222 1223
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1224
	TRACE_IRQS_IRETQ_DEBUG
1225
	/* Always restore stashed CR3 value (see paranoid_entry) */
1226
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1227 1228
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1229 1230 1231
END(paranoid_exit)

/*
1232
 * Save all registers in pt_regs, and switch GS if needed.
1233 1234
 */
ENTRY(error_entry)
1235
	UNWIND_HINT_FUNC
1236
	cld
1237 1238
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1239
	testb	$3, CS+8(%rsp)
1240
	jz	.Lerror_kernelspace
1241

1242 1243 1244 1245
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1246
	SWAPGS
1247 1248
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1249

1250
.Lerror_entry_from_usermode_after_swapgs:
1251 1252 1253 1254 1255 1256 1257 1258
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1259 1260 1261 1262 1263 1264
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1265
	CALL_enter_from_user_mode
1266
	ret
1267

1268
.Lerror_entry_done:
1269 1270 1271
	TRACE_IRQS_OFF
	ret

1272 1273 1274 1275 1276 1277
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1278
.Lerror_kernelspace:
1279 1280
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1281
	je	.Lerror_bad_iret
1282 1283
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1284
	je	.Lbstep_iret
1285
	cmpq	$.Lgs_change, RIP+8(%rsp)
1286
	jne	.Lerror_entry_done
1287 1288

	/*
1289
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1290
	 * gsbase and proceed.  We'll fix up the exception and land in
1291
	 * .Lgs_change's error handler with kernel gsbase.
1292
	 */
1293
	SWAPGS
1294
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1295
	jmp .Lerror_entry_done
1296

1297
.Lbstep_iret:
1298
	/* Fix truncated RIP */
1299
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1300 1301
	/* fall through */

1302
.Lerror_bad_iret:
1303
	/*
1304 1305
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1306
	 */
A
Andy Lutomirski 已提交
1307
	SWAPGS
1308
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1309 1310 1311

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1312
	 * as if we faulted immediately after IRET.
1313
	 */
1314 1315 1316
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1317
	jmp	.Lerror_entry_from_usermode_after_swapgs
1318 1319 1320
END(error_entry)

ENTRY(error_exit)
1321
	UNWIND_HINT_REGS
1322
	DISABLE_INTERRUPTS(CLBR_ANY)
1323
	TRACE_IRQS_OFF
1324 1325
	testb	$3, CS(%rsp)
	jz	retint_kernel
1326
	jmp	retint_user
1327 1328
END(error_exit)

1329 1330 1331
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1332 1333 1334 1335
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1336
 */
1337
ENTRY(nmi)
1338
	UNWIND_HINT_IRET_REGS
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1357 1358 1359
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1360 1361
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1362
	 *    o Modify the "iret" location to jump to the repeat_nmi
1363 1364 1365 1366 1367 1368 1369 1370
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1371 1372 1373 1374 1375
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1376 1377
	 */

1378 1379
	ASM_CLAC

1380
	/* Use %rdx as our temp variable throughout */
1381
	pushq	%rdx
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1392 1393 1394
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1395 1396
	 */

1397
	swapgs
1398
	cld
1399
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1400 1401
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1402
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1403 1404 1405 1406 1407
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1408
	UNWIND_HINT_IRET_REGS
1409
	pushq   $-1		/* pt_regs->orig_ax */
1410
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1411
	ENCODE_FRAME_POINTER
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1423
	/*
1424
	 * Return back to user mode.  We must *not* do the normal exit
1425
	 * work, because we don't want to enable interrupts.
1426
	 */
1427
	jmp	swapgs_restore_regs_and_return_to_usermode
1428

1429
.Lnmi_from_kernel:
1430
	/*
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1471
	/*
1472 1473
	 * Determine whether we're a nested NMI.
	 *
1474 1475 1476 1477 1478 1479
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1480
	 */
1481 1482 1483 1484 1485 1486 1487 1488

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1489

1490
	/*
1491
	 * Now check "NMI executing".  If it's set, then we're nested.
1492 1493
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1494
	 */
1495 1496
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1497 1498

	/*
1499 1500
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1501 1502 1503 1504 1505 1506 1507 1508
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1509
	 */
1510 1511 1512 1513 1514
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1515

1516 1517 1518 1519
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1520 1521 1522 1523 1524 1525 1526

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1527

1528 1529
nested_nmi:
	/*
1530 1531
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1532
	 */
1533
	subq	$8, %rsp
1534 1535 1536
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1537
	pushfq
1538 1539
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1540 1541

	/* Put stack back */
1542
	addq	$(6*8), %rsp
1543 1544

nested_nmi_out:
1545
	popq	%rdx
1546

1547
	/* We are returning to kernel mode, so this cannot result in a fault. */
1548
	iretq
1549 1550

first_nmi:
1551
	/* Restore rdx. */
1552
	movq	(%rsp), %rdx
1553

1554 1555
	/* Make room for "NMI executing". */
	pushq	$0
1556

1557
	/* Leave room for the "iret" frame */
1558
	subq	$(5*8), %rsp
1559

1560
	/* Copy the "original" frame to the "outermost" frame */
1561
	.rept 5
1562
	pushq	11*8(%rsp)
1563
	.endr
1564
	UNWIND_HINT_IRET_REGS
1565

1566 1567
	/* Everything up to here is safe from nested NMIs */

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1579
	iretq			/* continues at repeat_nmi below */
1580
	UNWIND_HINT_IRET_REGS
1581 1582 1583
1:
#endif

1584
repeat_nmi:
1585 1586 1587 1588 1589 1590 1591 1592
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1593 1594 1595 1596
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1597 1598
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1599
	 */
1600
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1601

1602
	/*
1603 1604 1605
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1606
	 */
1607
	addq	$(10*8), %rsp
1608
	.rept 5
1609
	pushq	-6*8(%rsp)
1610
	.endr
1611
	subq	$(5*8), %rsp
1612
end_repeat_nmi:
1613 1614

	/*
1615 1616 1617
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1618
	 */
1619
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1620

1621
	/*
1622
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1623 1624 1625 1626 1627
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1628
	call	paranoid_entry
1629
	UNWIND_HINT_REGS
1630

1631
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1632 1633 1634
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1635

1636
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1637
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1638

1639 1640
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1641 1642 1643
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1644
	POP_REGS
1645

1646 1647 1648 1649 1650
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1651

1652 1653 1654
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1655 1656 1657 1658 1659
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1660 1661 1662
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1663 1664

	/*
1665 1666 1667 1668
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1669
	 */
1670
	iretq
1671 1672 1673
END(nmi)

ENTRY(ignore_sysret)
1674
	UNWIND_HINT_EMPTY
1675
	mov	$-ENOSYS, %eax
1676 1677
	sysret
END(ignore_sysret)
1678 1679

ENTRY(rewind_stack_do_exit)
1680
	UNWIND_HINT_FUNC
1681 1682 1683 1684
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1685 1686
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1687 1688 1689

	call	do_exit
END(rewind_stack_do_exit)