entry_64.S 47.9 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	btl	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
96
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 164
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165 166 167 168 169 170 171 172

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

173 174 175
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
195
	JMP_NOSPEC %rdi
196 197 198 199 200 201 202 203 204 205
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

206
ENTRY(entry_SYSCALL_64)
207
	UNWIND_HINT_EMPTY
208 209 210 211 212
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
213

214
	swapgs
215
	/*
216
	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217 218
	 * is not required to switch CR3.
	 */
219 220
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221 222

	/* Construct struct pt_regs on stack */
223 224 225 226 227
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
228
GLOBAL(entry_SYSCALL_64_after_hwframe)
229
	pushq	%rax				/* pt_regs->orig_ax */
230 231

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
232

233 234
	TRACE_IRQS_OFF

235
	/* IRQs are off. */
236 237
	movq	%rax, %rdi
	movq	%rsp, %rsi
238 239
	call	do_syscall_64		/* returns with IRQs disabled */

240
	TRACE_IRQS_IRETQ		/* we're about to change IF */
241 242 243

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
244 245
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
246
	 */
247 248
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
249 250 251

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
252 253 254 255

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
256
	 * the kernel, since userspace controls RSP.
257
	 *
258
	 * If width of "canonical tail" ever becomes variable, this will need
259
	 * to be updated to remain correct on both old and new CPUs.
260
	 *
261 262
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
263
	 */
264
#ifdef CONFIG_X86_5LEVEL
265 266
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
267
#else
268 269
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
270
#endif
271

272 273
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
274
	jne	swapgs_restore_regs_and_return_to_usermode
275

276
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
277
	jne	swapgs_restore_regs_and_return_to_usermode
278

279 280
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
281
	jne	swapgs_restore_regs_and_return_to_usermode
282 283

	/*
284 285 286 287 288 289 290 291 292
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
293
	 *
294
	 *           movq	$stuck_here, %rcx
295 296 297 298 299 300
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
301
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
302
	jnz	swapgs_restore_regs_and_return_to_usermode
303 304 305

	/* nothing to check for RSP */

306
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
307
	jne	swapgs_restore_regs_and_return_to_usermode
308 309

	/*
310 311
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
312 313
	 */
syscall_return_via_sysret:
314
	/* rcx and r11 are already restored (see code above) */
315
	UNWIND_HINT_EMPTY
316
	POP_REGS pop_rdi=0 skip_r11rcx=1
317 318 319 320 321 322

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
323
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
324 325 326 327 328 329 330 331

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
332
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
333

334
	popq	%rdi
335
	popq	%rsp
336
	USERGS_SYSRET64
337
END(entry_SYSCALL_64)
338

339 340 341 342 343
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
344
	UNWIND_HINT_FUNC
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

360
#ifdef CONFIG_STACKPROTECTOR
361 362 363 364
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

365 366 367 368 369 370 371 372
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
373
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
374 375
#endif

376 377 378 379 380 381 382 383 384 385 386
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

387 388 389
/*
 * A newly forked process directly context switches into this address.
 *
390
 * rax: prev task we switched from
391 392
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
393 394
 */
ENTRY(ret_from_fork)
395
	UNWIND_HINT_EMPTY
396
	movq	%rax, %rdi
397
	call	schedule_tail			/* rdi: 'prev' task parameter */
398

399 400
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
401

402
2:
403
	UNWIND_HINT_REGS
404
	movq	%rsp, %rdi
405 406
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
407
	jmp	swapgs_restore_regs_and_return_to_usermode
408 409 410

1:
	/* kernel thread */
411
	UNWIND_HINT_EMPTY
412
	movq	%r12, %rdi
413
	CALL_NOSPEC %rbx
414 415 416 417 418 419 420
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
421 422
END(ret_from_fork)

423
/*
424 425
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
426
 */
427
	.align 8
428
ENTRY(irq_entries_start)
429 430
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
431
	UNWIND_HINT_IRET_REGS
432
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
433 434
	jmp	common_interrupt
	.align	8
435
	vector=vector+1
436
    .endr
437 438
END(irq_entries_start)

439 440
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
441 442 443
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
444 445 446
	jz .Lokay_\@
	ud2
.Lokay_\@:
447
	popq %rax
448 449 450 451 452 453 454 455 456 457
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
458
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
459
	DEBUG_ENTRY_ASSERT_IRQS_OFF
460 461 462 463 464 465 466 467 468

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
469
	movq	%rsp, \old_rsp
470
	.endif
471 472 473 474 475

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

476
	incl	PER_CPU_VAR(irq_count)
477
	jnz	.Lirq_stack_push_old_rsp_\@
478 479 480 481 482 483 484 485 486

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
503
	 */
504 505 506 507 508
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
509

510
.Lirq_stack_push_old_rsp_\@:
511
	pushq	\old_rsp
512 513 514 515

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
516 517 518 519 520 521 522 523 524

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
525 526 527 528 529
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
530
.macro LEAVE_IRQ_STACK regs=1
531 532 533 534
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

535 536 537 538
	.if \regs
	UNWIND_HINT_REGS
	.endif

539 540 541 542 543 544 545 546
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

547
/*
548
 * Interrupt entry helper function.
549
 *
550 551 552 553 554 555 556 557 558 559 560 561
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
562
 */
563 564 565
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC
	ASM_CLAC
566
	cld
567

568
	testb	$3, CS-ORIG_RAX+8(%rsp)
569 570
	jz	1f
	SWAPGS
571 572 573 574 575 576 577

	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
578
	pushq	%rdi
579

580 581 582 583
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
584 585 586 587 588 589

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
590 591 592 593 594 595 596 597 598 599 600

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
601 602
1:

603 604
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
605

606
	testb	$3, CS+8(%rsp)
607
	jz	1f
608 609

	/*
610 611
	 * IRQ from user mode.
	 *
612 613
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
614
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
615 616 617 618 619 620
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

621
	CALL_enter_from_user_mode
622

623
1:
624
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
625 626 627
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

628 629 630
	ret
END(interrupt_entry)

631 632

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
633

634 635 636 637
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
638 639
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
640
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
641 642 643
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
644
	/* 0(%rsp): old RSP */
645
ret_from_intr:
646
	DISABLE_INTERRUPTS(CLBR_ANY)
647
	TRACE_IRQS_OFF
648

649
	LEAVE_IRQ_STACK
650

651
	testb	$3, CS(%rsp)
652
	jz	retint_kernel
653

654 655 656 657
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
658
	TRACE_IRQS_IRETQ
659

660
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
661 662
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
663
	testb	$3, CS(%rsp)
664 665 666 667
	jnz	1f
	ud2
1:
#endif
668
	POP_REGS pop_rdi=0
669 670 671 672 673 674

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
675
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

692
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
693

694 695 696
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
697 698
	INTERRUPT_RETURN

699

700
/* Returning to kernel space */
701
retint_kernel:
702 703 704
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
705
	btl	$9, EFLAGS(%rsp)		/* were interrupts off? */
706
	jnc	1f
707
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
708
	jnz	1f
709
	call	preempt_schedule_irq
710
	jmp	0b
711
1:
712
#endif
713 714 715 716
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
717

718 719 720
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
721
	testb	$3, CS(%rsp)
722 723 724 725
	jz	1f
	ud2
1:
#endif
726
	POP_REGS
727
	addq	$8, %rsp	/* skip regs->orig_ax */
728 729 730 731
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
732 733 734
	INTERRUPT_RETURN

ENTRY(native_iret)
735
	UNWIND_HINT_IRET_REGS
736 737 738 739
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
740
#ifdef CONFIG_X86_ESPFIX64
741 742
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
743
#endif
744

745
.global native_irq_return_iret
746
native_irq_return_iret:
A
Andy Lutomirski 已提交
747 748 749 750 751 752
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
753
	iretq
I
Ingo Molnar 已提交
754

755
#ifdef CONFIG_X86_ESPFIX64
756
native_irq_return_ldt:
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
779 780 781
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

782
	movq	PER_CPU_VAR(espfix_waddr), %rdi
783 784
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
785
	movq	%rax, (1*8)(%rdi)
786
	movq	(2*8)(%rsp), %rax		/* user CS */
787
	movq	%rax, (2*8)(%rdi)
788
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
789
	movq	%rax, (3*8)(%rdi)
790
	movq	(5*8)(%rsp), %rax		/* user SS */
791
	movq	%rax, (5*8)(%rdi)
792
	movq	(4*8)(%rsp), %rax		/* user RSP */
793
	movq	%rax, (4*8)(%rdi)
794 795 796 797 798 799 800 801 802 803 804 805
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
806
	orq	PER_CPU_VAR(espfix_stack), %rax
807

808
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
809 810 811
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

812
	movq	%rax, %rsp
813
	UNWIND_HINT_IRET_REGS offset=8
814 815 816 817 818 819 820 821 822 823 824 825

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
826
	jmp	native_irq_return_iret
827
#endif
828
END(common_interrupt)
829

L
Linus Torvalds 已提交
830 831
/*
 * APIC interrupts.
832
 */
833
.macro apicinterrupt3 num sym do_sym
834
ENTRY(\sym)
835
	UNWIND_HINT_IRET_REGS
836
	pushq	$~(\num)
837
.Lcommon_\sym:
838 839 840
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
841
	jmp	ret_from_intr
842 843
END(\sym)
.endm
L
Linus Torvalds 已提交
844

845
/* Make sure APIC interrupt handlers end up in the irqentry section: */
846 847
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
848

849
.macro apicinterrupt num sym do_sym
850
PUSH_SECTION_IRQENTRY
851
apicinterrupt3 \num \sym \do_sym
852
POP_SECTION_IRQENTRY
853 854
.endm

855
#ifdef CONFIG_SMP
856 857
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
858
#endif
L
Linus Torvalds 已提交
859

N
Nick Piggin 已提交
860
#ifdef CONFIG_X86_UV
861
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
862
#endif
863 864 865

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
866

867
#ifdef CONFIG_HAVE_KVM
868 869
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
870
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
871 872
#endif

873
#ifdef CONFIG_X86_MCE_THRESHOLD
874
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
875 876
#endif

877
#ifdef CONFIG_X86_MCE_AMD
878
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
879 880
#endif

881
#ifdef CONFIG_X86_THERMAL_VECTOR
882
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
883
#endif
884

885
#ifdef CONFIG_SMP
886 887 888
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
889
#endif
L
Linus Torvalds 已提交
890

891 892
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
893

894
#ifdef CONFIG_IRQ_WORK
895
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
896 897
#endif

L
Linus Torvalds 已提交
898 899
/*
 * Exception entry points.
900
 */
901
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/**
 * idtentry - Generate an IDT entry stub
 * @sym:		Name of the generated entry point
 * @do_sym: 		C function to be called
 * @has_error_code: 	True if this IDT vector has an error code on the stack
 * @paranoid: 		non-zero means that this vector may be invoked from
 *			kernel mode with user GSBASE and/or user CR3.
 *			2 is special -- see below.
 * @shift_ist:		Set to an IST index if entries from kernel mode should
 *             		decrement the IST stack so that nested entries get a
 *			fresh stack.  (This is for #DB, which has a nasty habit
 *             		of recursing.)
 *
 * idtentry generates an IDT stub that sets up a usable kernel context,
 * creates struct pt_regs, and calls @do_sym.  The stub has the following
 * special behaviors:
 *
 * On an entry from user mode, the stub switches from the trampoline or
 * IST stack to the normal thread stack.  On an exit to user mode, the
 * normal exit-to-usermode path is invoked.
 *
 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
 * whereas we omit the preemption check if @paranoid != 0.  This is purely
 * because the implementation is simpler this way.  The kernel only needs
 * to check for asynchronous kernel preemption when IRQ handlers return.
 *
 * If @paranoid == 0, then the stub will handle IRET faults by pretending
 * that the fault came from user mode.  It will handle gs_change faults by
 * pretending that the fault happened with kernel GSBASE.  Since this handling
 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
 * @paranoid == 0.  This special handling will do the wrong thing for
 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
 *
 * @paranoid == 2 is special: the stub will never switch stacks.  This is for
 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
 */
939
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
940
ENTRY(\sym)
941
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
942

943 944 945 946 947
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

948
	ASM_CLAC
949

950
	.if \has_error_code == 0
951
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
952 953
	.endif

954
	.if \paranoid == 1
955
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
956
	jnz	.Lfrom_usermode_switch_stack_\@
957
	.endif
958 959

	.if \paranoid
960
	call	paranoid_entry
961
	.else
962
	call	error_entry
963
	.endif
964
	UNWIND_HINT_REGS
965
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
966 967

	.if \paranoid
968
	.if \shift_ist != -1
969
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
970
	.else
971
	TRACE_IRQS_OFF
972
	.endif
973
	.endif
974

975
	movq	%rsp, %rdi			/* pt_regs pointer */
976 977

	.if \has_error_code
978 979
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
980
	.else
981
	xorl	%esi, %esi			/* no error code */
982 983
	.endif

984
	.if \shift_ist != -1
985
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
986 987
	.endif

988
	call	\do_sym
989

990
	.if \shift_ist != -1
991
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
992 993
	.endif

994
	/* these procedures expect "no swapgs" flag in ebx */
995
	.if \paranoid
996
	jmp	paranoid_exit
997
	.else
998
	jmp	error_exit
999 1000
	.endif

1001
	.if \paranoid == 1
1002
	/*
1003
	 * Entry from userspace.  Switch stacks and treat it
1004 1005 1006
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1007
.Lfrom_usermode_switch_stack_\@:
1008
	call	error_entry
1009

1010
	movq	%rsp, %rdi			/* pt_regs pointer */
1011 1012

	.if \has_error_code
1013 1014
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1015
	.else
1016
	xorl	%esi, %esi			/* no error code */
1017 1018
	.endif

1019
	call	\do_sym
1020

1021
	jmp	error_exit
1022
	.endif
1023
END(\sym)
1024
.endm
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1045
ENTRY(native_load_gs_index)
1046
	FRAME_BEGIN
1047
	pushfq
1048
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1049
	TRACE_IRQS_OFF
1050
	SWAPGS
1051
.Lgs_change:
1052
	movl	%edi, %gs
1053
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1054
	SWAPGS
1055
	TRACE_IRQS_FLAGS (%rsp)
1056
	popfq
1057
	FRAME_END
1058
	ret
1059
ENDPROC(native_load_gs_index)
1060
EXPORT_SYMBOL(native_load_gs_index)
1061

1062
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1063
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1064
	/* running with kernelgs */
1065
bad_gs:
1066
	SWAPGS					/* switch back to user gs */
1067 1068 1069 1070 1071 1072
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1073 1074 1075
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1076
	.previous
1077

1078
/* Call softirq on interrupt stack. Interrupts are off. */
1079
ENTRY(do_softirq_own_stack)
1080 1081
	pushq	%rbp
	mov	%rsp, %rbp
1082
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1083
	call	__do_softirq
1084
	LEAVE_IRQ_STACK regs=0
1085
	leaveq
1086
	ret
1087
ENDPROC(do_softirq_own_stack)
1088

1089
#ifdef CONFIG_XEN
1090
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1091 1092

/*
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1105 1106
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1107 1108 1109 1110
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1111
	UNWIND_HINT_FUNC
1112
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1113
	UNWIND_HINT_REGS
1114 1115

	ENTER_IRQ_STACK old_rsp=%r10
1116
	call	xen_evtchn_do_upcall
1117 1118
	LEAVE_IRQ_STACK

1119
#ifndef CONFIG_PREEMPT
1120
	call	xen_maybe_preempt_hcall
1121
#endif
1122
	jmp	error_exit
1123
END(xen_do_hypervisor_callback)
1124 1125

/*
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1138
ENTRY(xen_failsafe_callback)
1139
	UNWIND_HINT_EMPTY
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1152
	/* All segments match their saved values => Category 2 (Bad IRET). */
1153 1154 1155 1156
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1157
	UNWIND_HINT_IRET_REGS offset=8
1158
	jmp	general_protection
1159
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1160 1161 1162
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1163
	UNWIND_HINT_IRET_REGS
1164
	pushq	$-1 /* orig_ax = -1 => not a system call */
1165
	PUSH_AND_CLEAR_REGS
1166
	ENCODE_FRAME_POINTER
1167
	jmp	error_exit
1168 1169
END(xen_failsafe_callback)

1170
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1171 1172
	xen_hvm_callback_vector xen_evtchn_do_upcall

1173
#endif /* CONFIG_XEN */
1174

1175
#if IS_ENABLED(CONFIG_HYPERV)
1176
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1177
	hyperv_callback_vector hyperv_vector_handler
1178 1179 1180

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1181 1182 1183

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1184 1185
#endif /* CONFIG_HYPERV */

1186
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1187
idtentry int3			do_int3			has_error_code=0
1188 1189
idtentry stack_segment		do_stack_segment	has_error_code=1

1190
#ifdef CONFIG_XEN
1191
idtentry xennmi			do_nmi			has_error_code=0
1192 1193
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1194
#endif
1195 1196

idtentry general_protection	do_general_protection	has_error_code=1
1197
idtentry page_fault		do_page_fault		has_error_code=1
1198

G
Gleb Natapov 已提交
1199
#ifdef CONFIG_KVM_GUEST
1200
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1201
#endif
1202

1203
#ifdef CONFIG_X86_MCE
1204
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1205 1206
#endif

1207
/*
1208
 * Save all registers in pt_regs, and switch gs if needed.
1209 1210 1211 1212
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1213
	UNWIND_HINT_FUNC
1214
	cld
1215 1216
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1217 1218
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1219
	rdmsr
1220 1221
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1222
	SWAPGS
1223
	xorl	%ebx, %ebx
1224 1225 1226 1227 1228

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1229
END(paranoid_entry)
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1240 1241
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1242
 */
1243
ENTRY(paranoid_exit)
1244
	UNWIND_HINT_REGS
1245
	DISABLE_INTERRUPTS(CLBR_ANY)
1246
	TRACE_IRQS_OFF_DEBUG
1247
	testl	%ebx, %ebx			/* swapgs needed? */
1248
	jnz	.Lparanoid_exit_no_swapgs
1249
	TRACE_IRQS_IRETQ
P
Peter Zijlstra 已提交
1250
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1251
	SWAPGS_UNSAFE_STACK
1252 1253
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1254
	TRACE_IRQS_IRETQ_DEBUG
1255
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1256 1257
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1258 1259 1260
END(paranoid_exit)

/*
1261
 * Save all registers in pt_regs, and switch GS if needed.
1262 1263
 */
ENTRY(error_entry)
1264
	UNWIND_HINT_FUNC
1265
	cld
1266 1267
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1268
	testb	$3, CS+8(%rsp)
1269
	jz	.Lerror_kernelspace
1270

1271 1272 1273 1274
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1275
	SWAPGS
1276 1277
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1278

1279
.Lerror_entry_from_usermode_after_swapgs:
1280 1281 1282 1283 1284 1285 1286 1287
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1288 1289 1290 1291 1292 1293
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1294
	CALL_enter_from_user_mode
1295
	ret
1296

1297
.Lerror_entry_done:
1298 1299 1300
	TRACE_IRQS_OFF
	ret

1301 1302 1303 1304 1305 1306
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1307
.Lerror_kernelspace:
1308 1309
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1310
	je	.Lerror_bad_iret
1311 1312
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1313
	je	.Lbstep_iret
1314
	cmpq	$.Lgs_change, RIP+8(%rsp)
1315
	jne	.Lerror_entry_done
1316 1317

	/*
1318
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1319
	 * gsbase and proceed.  We'll fix up the exception and land in
1320
	 * .Lgs_change's error handler with kernel gsbase.
1321
	 */
1322
	SWAPGS
1323
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1324
	jmp .Lerror_entry_done
1325

1326
.Lbstep_iret:
1327
	/* Fix truncated RIP */
1328
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1329 1330
	/* fall through */

1331
.Lerror_bad_iret:
1332
	/*
1333 1334
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1335
	 */
A
Andy Lutomirski 已提交
1336
	SWAPGS
1337
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1338 1339 1340

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1341
	 * as if we faulted immediately after IRET.
1342
	 */
1343 1344 1345
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1346
	jmp	.Lerror_entry_from_usermode_after_swapgs
1347 1348 1349
END(error_entry)

ENTRY(error_exit)
1350
	UNWIND_HINT_REGS
1351
	DISABLE_INTERRUPTS(CLBR_ANY)
1352
	TRACE_IRQS_OFF
1353 1354
	testb	$3, CS(%rsp)
	jz	retint_kernel
1355
	jmp	retint_user
1356 1357
END(error_exit)

1358 1359 1360
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1361 1362 1363 1364
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1365
 */
1366
ENTRY(nmi)
1367
	UNWIND_HINT_IRET_REGS
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1386 1387 1388
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1389 1390
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1391
	 *    o Modify the "iret" location to jump to the repeat_nmi
1392 1393 1394 1395 1396 1397 1398 1399
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1400 1401 1402 1403 1404
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1405 1406
	 */

1407 1408
	ASM_CLAC

1409
	/* Use %rdx as our temp variable throughout */
1410
	pushq	%rdx
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1421 1422 1423
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1424 1425
	 */

1426
	swapgs
1427
	cld
1428
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1429 1430
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1431
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1432 1433 1434 1435 1436
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1437
	UNWIND_HINT_IRET_REGS
1438
	pushq   $-1		/* pt_regs->orig_ax */
1439
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1440
	ENCODE_FRAME_POINTER
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1452
	/*
1453
	 * Return back to user mode.  We must *not* do the normal exit
1454
	 * work, because we don't want to enable interrupts.
1455
	 */
1456
	jmp	swapgs_restore_regs_and_return_to_usermode
1457

1458
.Lnmi_from_kernel:
1459
	/*
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1500
	/*
1501 1502
	 * Determine whether we're a nested NMI.
	 *
1503 1504 1505 1506 1507 1508
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1509
	 */
1510 1511 1512 1513 1514 1515 1516 1517

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1518

1519
	/*
1520
	 * Now check "NMI executing".  If it's set, then we're nested.
1521 1522
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1523
	 */
1524 1525
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1526 1527

	/*
1528 1529
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1530 1531 1532 1533 1534 1535 1536 1537
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1538
	 */
1539 1540 1541 1542 1543
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1544

1545 1546 1547 1548
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1549 1550 1551 1552 1553 1554 1555

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1556

1557 1558
nested_nmi:
	/*
1559 1560
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1561
	 */
1562
	subq	$8, %rsp
1563 1564 1565
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1566
	pushfq
1567 1568
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1569 1570

	/* Put stack back */
1571
	addq	$(6*8), %rsp
1572 1573

nested_nmi_out:
1574
	popq	%rdx
1575

1576
	/* We are returning to kernel mode, so this cannot result in a fault. */
1577
	iretq
1578 1579

first_nmi:
1580
	/* Restore rdx. */
1581
	movq	(%rsp), %rdx
1582

1583 1584
	/* Make room for "NMI executing". */
	pushq	$0
1585

1586
	/* Leave room for the "iret" frame */
1587
	subq	$(5*8), %rsp
1588

1589
	/* Copy the "original" frame to the "outermost" frame */
1590
	.rept 5
1591
	pushq	11*8(%rsp)
1592
	.endr
1593
	UNWIND_HINT_IRET_REGS
1594

1595 1596
	/* Everything up to here is safe from nested NMIs */

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1608
	iretq			/* continues at repeat_nmi below */
1609
	UNWIND_HINT_IRET_REGS
1610 1611 1612
1:
#endif

1613
repeat_nmi:
1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1622 1623 1624 1625
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1626 1627
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1628
	 */
1629
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1630

1631
	/*
1632 1633 1634
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1635
	 */
1636
	addq	$(10*8), %rsp
1637
	.rept 5
1638
	pushq	-6*8(%rsp)
1639
	.endr
1640
	subq	$(5*8), %rsp
1641
end_repeat_nmi:
1642 1643

	/*
1644 1645 1646
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1647
	 */
1648
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1649

1650
	/*
1651
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1652 1653 1654 1655 1656
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1657
	call	paranoid_entry
1658
	UNWIND_HINT_REGS
1659

1660
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1661 1662 1663
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1664

P
Peter Zijlstra 已提交
1665
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1666

1667 1668
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1669 1670 1671
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1672
	POP_REGS
1673

1674 1675 1676 1677 1678
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1679

1680 1681 1682
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1683 1684 1685 1686 1687
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1688 1689 1690
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1691 1692

	/*
1693 1694 1695 1696
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1697
	 */
1698
	iretq
1699 1700 1701
END(nmi)

ENTRY(ignore_sysret)
1702
	UNWIND_HINT_EMPTY
1703
	mov	$-ENOSYS, %eax
1704 1705
	sysret
END(ignore_sysret)
1706 1707

ENTRY(rewind_stack_do_exit)
1708
	UNWIND_HINT_FUNC
1709 1710 1711 1712
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1713 1714
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1715 1716 1717

	call	do_exit
END(rewind_stack_do_exit)