entry_64.S 46.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	btl	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
96
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145
ENTRY(entry_SYSCALL_64)
146
	UNWIND_HINT_EMPTY
147 148 149 150 151
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
152

153
	swapgs
154
	/* tss.sp2 is scratch space. */
155
	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
156
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
157
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158 159

	/* Construct struct pt_regs on stack */
160 161 162 163 164
	pushq	$__USER_DS				/* pt_regs->ss */
	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
	pushq	%r11					/* pt_regs->flags */
	pushq	$__USER_CS				/* pt_regs->cs */
	pushq	%rcx					/* pt_regs->ip */
165
GLOBAL(entry_SYSCALL_64_after_hwframe)
166
	pushq	%rax					/* pt_regs->orig_ax */
167 168

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
169

170 171
	TRACE_IRQS_OFF

172
	/* IRQs are off. */
173 174
	movq	%rax, %rdi
	movq	%rsp, %rsi
175 176
	call	do_syscall_64		/* returns with IRQs disabled */

177
	TRACE_IRQS_IRETQ		/* we're about to change IF */
178 179 180

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
181 182
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
183
	 */
184 185
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
186 187 188

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
189 190 191 192

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
193
	 * the kernel, since userspace controls RSP.
194
	 *
195
	 * If width of "canonical tail" ever becomes variable, this will need
196
	 * to be updated to remain correct on both old and new CPUs.
197
	 *
198 199
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
200
	 */
201
#ifdef CONFIG_X86_5LEVEL
202 203
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
204
#else
205 206
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
207
#endif
208

209 210
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
211
	jne	swapgs_restore_regs_and_return_to_usermode
212

213
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
214
	jne	swapgs_restore_regs_and_return_to_usermode
215

216 217
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
218
	jne	swapgs_restore_regs_and_return_to_usermode
219 220

	/*
221 222 223 224 225 226 227 228 229
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
230
	 *
231
	 *           movq	$stuck_here, %rcx
232 233 234 235 236 237
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
238
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
239
	jnz	swapgs_restore_regs_and_return_to_usermode
240 241 242

	/* nothing to check for RSP */

243
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
244
	jne	swapgs_restore_regs_and_return_to_usermode
245 246

	/*
247 248
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
249 250
	 */
syscall_return_via_sysret:
251
	/* rcx and r11 are already restored (see code above) */
252
	UNWIND_HINT_EMPTY
253
	POP_REGS pop_rdi=0 skip_r11rcx=1
254 255 256 257 258 259

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
260
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
261 262 263 264 265 266 267 268

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
269 270
	STACKLEAK_ERASE_NOCLOBBER

271
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
272

273
	popq	%rdi
274
	popq	%rsp
275
	USERGS_SYSRET64
276
END(entry_SYSCALL_64)
277

278 279 280 281 282
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
283
	UNWIND_HINT_FUNC
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

299
#ifdef CONFIG_STACKPROTECTOR
300 301 302 303
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

304 305 306 307 308 309 310 311
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
312
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
313 314
#endif

315 316 317 318 319 320 321 322 323 324 325
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

326 327 328
/*
 * A newly forked process directly context switches into this address.
 *
329
 * rax: prev task we switched from
330 331
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
332 333
 */
ENTRY(ret_from_fork)
334
	UNWIND_HINT_EMPTY
335
	movq	%rax, %rdi
336
	call	schedule_tail			/* rdi: 'prev' task parameter */
337

338 339
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
340

341
2:
342
	UNWIND_HINT_REGS
343
	movq	%rsp, %rdi
344 345
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
346
	jmp	swapgs_restore_regs_and_return_to_usermode
347 348 349

1:
	/* kernel thread */
350
	UNWIND_HINT_EMPTY
351
	movq	%r12, %rdi
352
	CALL_NOSPEC %rbx
353 354 355 356 357 358 359
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
360 361
END(ret_from_fork)

362
/*
363 364
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
365
 */
366
	.align 8
367
ENTRY(irq_entries_start)
368 369
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
370
	UNWIND_HINT_IRET_REGS
371
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
372 373
	jmp	common_interrupt
	.align	8
374
	vector=vector+1
375
    .endr
376 377
END(irq_entries_start)

378 379
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
380 381 382
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
383 384 385
	jz .Lokay_\@
	ud2
.Lokay_\@:
386
	popq %rax
387 388 389 390 391 392 393 394 395 396
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
397
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
398
	DEBUG_ENTRY_ASSERT_IRQS_OFF
399 400 401 402 403 404 405 406 407

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
408
	movq	%rsp, \old_rsp
409
	.endif
410 411 412 413 414

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

415
	incl	PER_CPU_VAR(irq_count)
416
	jnz	.Lirq_stack_push_old_rsp_\@
417 418 419 420 421 422 423 424 425

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
442
	 */
443 444 445 446 447
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
448

449
.Lirq_stack_push_old_rsp_\@:
450
	pushq	\old_rsp
451 452 453 454

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
455 456 457 458 459 460 461 462 463

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
464 465 466 467 468
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
469
.macro LEAVE_IRQ_STACK regs=1
470 471 472 473
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

474 475 476 477
	.if \regs
	UNWIND_HINT_REGS
	.endif

478 479 480 481 482 483 484 485
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

486
/*
487
 * Interrupt entry helper function.
488
 *
489 490 491 492 493 494 495 496 497 498 499 500
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
501
 */
502 503 504
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC
	ASM_CLAC
505
	cld
506

507
	testb	$3, CS-ORIG_RAX+8(%rsp)
508 509
	jz	1f
	SWAPGS
510 511 512 513 514 515 516

	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
517
	pushq	%rdi
518

519 520 521 522
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
523 524 525 526 527 528

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
529 530 531 532 533 534 535 536 537 538 539

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
540 541
1:

542 543
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
544

545
	testb	$3, CS+8(%rsp)
546
	jz	1f
547 548

	/*
549 550
	 * IRQ from user mode.
	 *
551 552
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
553
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
554 555 556 557 558 559
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

560
	CALL_enter_from_user_mode
561

562
1:
563
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
564 565 566
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

567 568 569
	ret
END(interrupt_entry)

570 571

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
572

573 574 575 576
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
577 578
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
579
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
580 581 582
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
583
	/* 0(%rsp): old RSP */
584
ret_from_intr:
585
	DISABLE_INTERRUPTS(CLBR_ANY)
586
	TRACE_IRQS_OFF
587

588
	LEAVE_IRQ_STACK
589

590
	testb	$3, CS(%rsp)
591
	jz	retint_kernel
592

593 594 595 596
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
597
	TRACE_IRQS_IRETQ
598

599
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
600 601
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
602
	testb	$3, CS(%rsp)
603 604 605 606
	jnz	1f
	ud2
1:
#endif
607
	POP_REGS pop_rdi=0
608 609 610 611 612 613

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
614
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
630
	STACKLEAK_ERASE_NOCLOBBER
631

632
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
633

634 635 636
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
637 638
	INTERRUPT_RETURN

639

640
/* Returning to kernel space */
641
retint_kernel:
642 643 644
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
645
	btl	$9, EFLAGS(%rsp)		/* were interrupts off? */
646
	jnc	1f
647
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
648
	jnz	1f
649
	call	preempt_schedule_irq
650
	jmp	0b
651
1:
652
#endif
653 654 655 656
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
657

658 659 660
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
661
	testb	$3, CS(%rsp)
662 663 664 665
	jz	1f
	ud2
1:
#endif
666
	POP_REGS
667
	addq	$8, %rsp	/* skip regs->orig_ax */
668 669 670 671
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
672 673 674
	INTERRUPT_RETURN

ENTRY(native_iret)
675
	UNWIND_HINT_IRET_REGS
676 677 678 679
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
680
#ifdef CONFIG_X86_ESPFIX64
681 682
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
683
#endif
684

685
.global native_irq_return_iret
686
native_irq_return_iret:
A
Andy Lutomirski 已提交
687 688 689 690 691 692
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
693
	iretq
I
Ingo Molnar 已提交
694

695
#ifdef CONFIG_X86_ESPFIX64
696
native_irq_return_ldt:
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
719 720 721
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

722
	movq	PER_CPU_VAR(espfix_waddr), %rdi
723 724
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
725
	movq	%rax, (1*8)(%rdi)
726
	movq	(2*8)(%rsp), %rax		/* user CS */
727
	movq	%rax, (2*8)(%rdi)
728
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
729
	movq	%rax, (3*8)(%rdi)
730
	movq	(5*8)(%rsp), %rax		/* user SS */
731
	movq	%rax, (5*8)(%rdi)
732
	movq	(4*8)(%rsp), %rax		/* user RSP */
733
	movq	%rax, (4*8)(%rdi)
734 735 736 737 738 739 740 741 742 743 744 745
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
746
	orq	PER_CPU_VAR(espfix_stack), %rax
747

748
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
749 750 751
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

752
	movq	%rax, %rsp
753
	UNWIND_HINT_IRET_REGS offset=8
754 755 756 757 758 759 760 761 762 763 764 765

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
766
	jmp	native_irq_return_iret
767
#endif
768
END(common_interrupt)
769

L
Linus Torvalds 已提交
770 771
/*
 * APIC interrupts.
772
 */
773
.macro apicinterrupt3 num sym do_sym
774
ENTRY(\sym)
775
	UNWIND_HINT_IRET_REGS
776
	pushq	$~(\num)
777
.Lcommon_\sym:
778 779 780
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
781
	jmp	ret_from_intr
782 783
END(\sym)
.endm
L
Linus Torvalds 已提交
784

785
/* Make sure APIC interrupt handlers end up in the irqentry section: */
786 787
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
788

789
.macro apicinterrupt num sym do_sym
790
PUSH_SECTION_IRQENTRY
791
apicinterrupt3 \num \sym \do_sym
792
POP_SECTION_IRQENTRY
793 794
.endm

795
#ifdef CONFIG_SMP
796 797
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
798
#endif
L
Linus Torvalds 已提交
799

N
Nick Piggin 已提交
800
#ifdef CONFIG_X86_UV
801
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
802
#endif
803 804 805

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
806

807
#ifdef CONFIG_HAVE_KVM
808 809
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
810
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
811 812
#endif

813
#ifdef CONFIG_X86_MCE_THRESHOLD
814
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
815 816
#endif

817
#ifdef CONFIG_X86_MCE_AMD
818
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
819 820
#endif

821
#ifdef CONFIG_X86_THERMAL_VECTOR
822
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
823
#endif
824

825
#ifdef CONFIG_SMP
826 827 828
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
829
#endif
L
Linus Torvalds 已提交
830

831 832
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
833

834
#ifdef CONFIG_IRQ_WORK
835
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
836 837
#endif

L
Linus Torvalds 已提交
838 839
/*
 * Exception entry points.
840
 */
841
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
842

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
/**
 * idtentry - Generate an IDT entry stub
 * @sym:		Name of the generated entry point
 * @do_sym: 		C function to be called
 * @has_error_code: 	True if this IDT vector has an error code on the stack
 * @paranoid: 		non-zero means that this vector may be invoked from
 *			kernel mode with user GSBASE and/or user CR3.
 *			2 is special -- see below.
 * @shift_ist:		Set to an IST index if entries from kernel mode should
 *             		decrement the IST stack so that nested entries get a
 *			fresh stack.  (This is for #DB, which has a nasty habit
 *             		of recursing.)
 *
 * idtentry generates an IDT stub that sets up a usable kernel context,
 * creates struct pt_regs, and calls @do_sym.  The stub has the following
 * special behaviors:
 *
 * On an entry from user mode, the stub switches from the trampoline or
 * IST stack to the normal thread stack.  On an exit to user mode, the
 * normal exit-to-usermode path is invoked.
 *
 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
 * whereas we omit the preemption check if @paranoid != 0.  This is purely
 * because the implementation is simpler this way.  The kernel only needs
 * to check for asynchronous kernel preemption when IRQ handlers return.
 *
 * If @paranoid == 0, then the stub will handle IRET faults by pretending
 * that the fault came from user mode.  It will handle gs_change faults by
 * pretending that the fault happened with kernel GSBASE.  Since this handling
 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
 * @paranoid == 0.  This special handling will do the wrong thing for
 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
 *
 * @paranoid == 2 is special: the stub will never switch stacks.  This is for
 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
 */
879
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
880
ENTRY(\sym)
881
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
882

883 884 885 886 887
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

888
	ASM_CLAC
889

890
	.if \has_error_code == 0
891
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
892 893
	.endif

894
	.if \paranoid == 1
895
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
896
	jnz	.Lfrom_usermode_switch_stack_\@
897
	.endif
898 899

	.if \paranoid
900
	call	paranoid_entry
901
	.else
902
	call	error_entry
903
	.endif
904
	UNWIND_HINT_REGS
905
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
906 907

	.if \paranoid
908
	.if \shift_ist != -1
909
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
910
	.else
911
	TRACE_IRQS_OFF
912
	.endif
913
	.endif
914

915
	movq	%rsp, %rdi			/* pt_regs pointer */
916 917

	.if \has_error_code
918 919
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
920
	.else
921
	xorl	%esi, %esi			/* no error code */
922 923
	.endif

924
	.if \shift_ist != -1
925
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
926 927
	.endif

928
	call	\do_sym
929

930
	.if \shift_ist != -1
931
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
932 933
	.endif

934
	/* these procedures expect "no swapgs" flag in ebx */
935
	.if \paranoid
936
	jmp	paranoid_exit
937
	.else
938
	jmp	error_exit
939 940
	.endif

941
	.if \paranoid == 1
942
	/*
943
	 * Entry from userspace.  Switch stacks and treat it
944 945 946
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
947
.Lfrom_usermode_switch_stack_\@:
948
	call	error_entry
949

950
	movq	%rsp, %rdi			/* pt_regs pointer */
951 952

	.if \has_error_code
953 954
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
955
	.else
956
	xorl	%esi, %esi			/* no error code */
957 958
	.endif

959
	call	\do_sym
960

961
	jmp	error_exit
962
	.endif
963
END(\sym)
964
.endm
965

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
985
ENTRY(native_load_gs_index)
986
	FRAME_BEGIN
987
	pushfq
988
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
989
	TRACE_IRQS_OFF
990
	SWAPGS
991
.Lgs_change:
992
	movl	%edi, %gs
993
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
994
	SWAPGS
995
	TRACE_IRQS_FLAGS (%rsp)
996
	popfq
997
	FRAME_END
998
	ret
999
ENDPROC(native_load_gs_index)
1000
EXPORT_SYMBOL(native_load_gs_index)
1001

1002
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1003
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1004
	/* running with kernelgs */
1005
bad_gs:
1006
	SWAPGS					/* switch back to user gs */
1007 1008 1009 1010 1011 1012
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1013 1014 1015
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1016
	.previous
1017

1018
/* Call softirq on interrupt stack. Interrupts are off. */
1019
ENTRY(do_softirq_own_stack)
1020 1021
	pushq	%rbp
	mov	%rsp, %rbp
1022
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1023
	call	__do_softirq
1024
	LEAVE_IRQ_STACK regs=0
1025
	leaveq
1026
	ret
1027
ENDPROC(do_softirq_own_stack)
1028

1029
#ifdef CONFIG_XEN_PV
1030
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1031 1032

/*
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1045 1046
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1047 1048 1049 1050
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1051
	UNWIND_HINT_FUNC
1052
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1053
	UNWIND_HINT_REGS
1054 1055

	ENTER_IRQ_STACK old_rsp=%r10
1056
	call	xen_evtchn_do_upcall
1057 1058
	LEAVE_IRQ_STACK

1059
#ifndef CONFIG_PREEMPT
1060
	call	xen_maybe_preempt_hcall
1061
#endif
1062
	jmp	error_exit
1063
END(xen_do_hypervisor_callback)
1064 1065

/*
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1078
ENTRY(xen_failsafe_callback)
1079
	UNWIND_HINT_EMPTY
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1092
	/* All segments match their saved values => Category 2 (Bad IRET). */
1093 1094 1095 1096
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1097
	UNWIND_HINT_IRET_REGS offset=8
1098
	jmp	general_protection
1099
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1100 1101 1102
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1103
	UNWIND_HINT_IRET_REGS
1104
	pushq	$-1 /* orig_ax = -1 => not a system call */
1105
	PUSH_AND_CLEAR_REGS
1106
	ENCODE_FRAME_POINTER
1107
	jmp	error_exit
1108
END(xen_failsafe_callback)
1109
#endif /* CONFIG_XEN_PV */
1110

1111
#ifdef CONFIG_XEN_PVHVM
1112
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1113
	xen_hvm_callback_vector xen_evtchn_do_upcall
1114
#endif
1115

1116

1117
#if IS_ENABLED(CONFIG_HYPERV)
1118
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1119
	hyperv_callback_vector hyperv_vector_handler
1120 1121 1122

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1123 1124 1125

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1126 1127
#endif /* CONFIG_HYPERV */

1128
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1129
idtentry int3			do_int3			has_error_code=0
1130 1131
idtentry stack_segment		do_stack_segment	has_error_code=1

1132
#ifdef CONFIG_XEN_PV
1133
idtentry xennmi			do_nmi			has_error_code=0
1134 1135
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1136
#endif
1137 1138

idtentry general_protection	do_general_protection	has_error_code=1
1139
idtentry page_fault		do_page_fault		has_error_code=1
1140

G
Gleb Natapov 已提交
1141
#ifdef CONFIG_KVM_GUEST
1142
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1143
#endif
1144

1145
#ifdef CONFIG_X86_MCE
1146
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1147 1148
#endif

1149
/*
1150
 * Save all registers in pt_regs, and switch gs if needed.
1151 1152 1153 1154
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1155
	UNWIND_HINT_FUNC
1156
	cld
1157 1158
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1159 1160
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1161
	rdmsr
1162 1163
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1164
	SWAPGS
1165
	xorl	%ebx, %ebx
1166 1167

1:
1168 1169
	/*
	 * Always stash CR3 in %r14.  This value will be restored,
1170 1171 1172
	 * verbatim, at exit.  Needed if paranoid_entry interrupted
	 * another entry that already switched to the user CR3 value
	 * but has not yet returned to userspace.
1173 1174 1175
	 *
	 * This is also why CS (stashed in the "iret frame" by the
	 * hardware at entry) can not be used: this may be a return
1176
	 * to kernel code, but with a user CR3 value.
1177
	 */
1178 1179 1180
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1181
END(paranoid_entry)
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1192 1193
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1194
 */
1195
ENTRY(paranoid_exit)
1196
	UNWIND_HINT_REGS
1197
	DISABLE_INTERRUPTS(CLBR_ANY)
1198
	TRACE_IRQS_OFF_DEBUG
1199
	testl	%ebx, %ebx			/* swapgs needed? */
1200
	jnz	.Lparanoid_exit_no_swapgs
1201
	TRACE_IRQS_IRETQ
1202
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1203
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1204
	SWAPGS_UNSAFE_STACK
1205 1206
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1207
	TRACE_IRQS_IRETQ_DEBUG
1208
	/* Always restore stashed CR3 value (see paranoid_entry) */
1209
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1210 1211
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1212 1213 1214
END(paranoid_exit)

/*
1215
 * Save all registers in pt_regs, and switch GS if needed.
1216 1217
 */
ENTRY(error_entry)
1218
	UNWIND_HINT_FUNC
1219
	cld
1220 1221
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1222
	testb	$3, CS+8(%rsp)
1223
	jz	.Lerror_kernelspace
1224

1225 1226 1227 1228
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1229
	SWAPGS
1230 1231
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1232

1233
.Lerror_entry_from_usermode_after_swapgs:
1234 1235 1236 1237 1238 1239 1240 1241
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1242 1243 1244 1245 1246 1247
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1248
	CALL_enter_from_user_mode
1249
	ret
1250

1251
.Lerror_entry_done:
1252 1253 1254
	TRACE_IRQS_OFF
	ret

1255 1256 1257 1258 1259 1260
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1261
.Lerror_kernelspace:
1262 1263
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1264
	je	.Lerror_bad_iret
1265 1266
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1267
	je	.Lbstep_iret
1268
	cmpq	$.Lgs_change, RIP+8(%rsp)
1269
	jne	.Lerror_entry_done
1270 1271

	/*
1272
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1273
	 * gsbase and proceed.  We'll fix up the exception and land in
1274
	 * .Lgs_change's error handler with kernel gsbase.
1275
	 */
1276
	SWAPGS
1277
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1278
	jmp .Lerror_entry_done
1279

1280
.Lbstep_iret:
1281
	/* Fix truncated RIP */
1282
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1283 1284
	/* fall through */

1285
.Lerror_bad_iret:
1286
	/*
1287 1288
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1289
	 */
A
Andy Lutomirski 已提交
1290
	SWAPGS
1291
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1292 1293 1294

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1295
	 * as if we faulted immediately after IRET.
1296
	 */
1297 1298 1299
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1300
	jmp	.Lerror_entry_from_usermode_after_swapgs
1301 1302 1303
END(error_entry)

ENTRY(error_exit)
1304
	UNWIND_HINT_REGS
1305
	DISABLE_INTERRUPTS(CLBR_ANY)
1306
	TRACE_IRQS_OFF
1307 1308
	testb	$3, CS(%rsp)
	jz	retint_kernel
1309
	jmp	retint_user
1310 1311
END(error_exit)

1312 1313 1314
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1315 1316 1317 1318
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1319
 */
1320
ENTRY(nmi)
1321
	UNWIND_HINT_IRET_REGS
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1340 1341 1342
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1343 1344
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1345
	 *    o Modify the "iret" location to jump to the repeat_nmi
1346 1347 1348 1349 1350 1351 1352 1353
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1354 1355 1356 1357 1358
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1359 1360
	 */

1361 1362
	ASM_CLAC

1363
	/* Use %rdx as our temp variable throughout */
1364
	pushq	%rdx
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1375 1376 1377
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1378 1379
	 */

1380
	swapgs
1381
	cld
1382
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1383 1384
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1385
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1386 1387 1388 1389 1390
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1391
	UNWIND_HINT_IRET_REGS
1392
	pushq   $-1		/* pt_regs->orig_ax */
1393
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1394
	ENCODE_FRAME_POINTER
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1406
	/*
1407
	 * Return back to user mode.  We must *not* do the normal exit
1408
	 * work, because we don't want to enable interrupts.
1409
	 */
1410
	jmp	swapgs_restore_regs_and_return_to_usermode
1411

1412
.Lnmi_from_kernel:
1413
	/*
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1454
	/*
1455 1456
	 * Determine whether we're a nested NMI.
	 *
1457 1458 1459 1460 1461 1462
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1463
	 */
1464 1465 1466 1467 1468 1469 1470 1471

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1472

1473
	/*
1474
	 * Now check "NMI executing".  If it's set, then we're nested.
1475 1476
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1477
	 */
1478 1479
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1480 1481

	/*
1482 1483
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1484 1485 1486 1487 1488 1489 1490 1491
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1492
	 */
1493 1494 1495 1496 1497
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1498

1499 1500 1501 1502
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1503 1504 1505 1506 1507 1508 1509

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1510

1511 1512
nested_nmi:
	/*
1513 1514
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1515
	 */
1516
	subq	$8, %rsp
1517 1518 1519
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1520
	pushfq
1521 1522
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1523 1524

	/* Put stack back */
1525
	addq	$(6*8), %rsp
1526 1527

nested_nmi_out:
1528
	popq	%rdx
1529

1530
	/* We are returning to kernel mode, so this cannot result in a fault. */
1531
	iretq
1532 1533

first_nmi:
1534
	/* Restore rdx. */
1535
	movq	(%rsp), %rdx
1536

1537 1538
	/* Make room for "NMI executing". */
	pushq	$0
1539

1540
	/* Leave room for the "iret" frame */
1541
	subq	$(5*8), %rsp
1542

1543
	/* Copy the "original" frame to the "outermost" frame */
1544
	.rept 5
1545
	pushq	11*8(%rsp)
1546
	.endr
1547
	UNWIND_HINT_IRET_REGS
1548

1549 1550
	/* Everything up to here is safe from nested NMIs */

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1562
	iretq			/* continues at repeat_nmi below */
1563
	UNWIND_HINT_IRET_REGS
1564 1565 1566
1:
#endif

1567
repeat_nmi:
1568 1569 1570 1571 1572 1573 1574 1575
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1576 1577 1578 1579
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1580 1581
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1582
	 */
1583
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1584

1585
	/*
1586 1587 1588
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1589
	 */
1590
	addq	$(10*8), %rsp
1591
	.rept 5
1592
	pushq	-6*8(%rsp)
1593
	.endr
1594
	subq	$(5*8), %rsp
1595
end_repeat_nmi:
1596 1597

	/*
1598 1599 1600
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1601
	 */
1602
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1603

1604
	/*
1605
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1606 1607 1608 1609 1610
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1611
	call	paranoid_entry
1612
	UNWIND_HINT_REGS
1613

1614
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1615 1616 1617
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1618

1619
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1620
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1621

1622 1623
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1624 1625 1626
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1627
	POP_REGS
1628

1629 1630 1631 1632 1633
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1634

1635 1636 1637
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1638 1639 1640 1641 1642
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1643 1644 1645
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1646 1647

	/*
1648 1649 1650 1651
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1652
	 */
1653
	iretq
1654 1655 1656
END(nmi)

ENTRY(ignore_sysret)
1657
	UNWIND_HINT_EMPTY
1658
	mov	$-ENOSYS, %eax
1659 1660
	sysret
END(ignore_sysret)
1661 1662

ENTRY(rewind_stack_do_exit)
1663
	UNWIND_HINT_FUNC
1664 1665 1666 1667
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1668 1669
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1670 1671 1672

	call	do_exit
END(rewind_stack_do_exit)