entry_64.S 46.2 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	bt	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95 96
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 164
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165 166 167 168 169 170 171 172

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

173 174 175
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
195
	JMP_NOSPEC %rdi
196 197 198 199 200 201 202 203 204 205
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

206
ENTRY(entry_SYSCALL_64)
207
	UNWIND_HINT_EMPTY
208 209 210 211 212
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
213

214
	swapgs
215
	/*
216
	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217 218
	 * is not required to switch CR3.
	 */
219 220
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221 222

	/* Construct struct pt_regs on stack */
223 224 225 226 227
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
228
GLOBAL(entry_SYSCALL_64_after_hwframe)
229
	pushq	%rax				/* pt_regs->orig_ax */
230 231

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
232

233 234
	TRACE_IRQS_OFF

235
	/* IRQs are off. */
236
	movq	%rsp, %rdi
237 238
	call	do_syscall_64		/* returns with IRQs disabled */

239
	TRACE_IRQS_IRETQ		/* we're about to change IF */
240 241 242

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
243 244
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
245
	 */
246 247
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
248 249 250

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
251 252 253 254

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
255
	 * the kernel, since userspace controls RSP.
256
	 *
257
	 * If width of "canonical tail" ever becomes variable, this will need
258
	 * to be updated to remain correct on both old and new CPUs.
259
	 *
260 261
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
262
	 */
263 264
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
265

266 267
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
268
	jne	swapgs_restore_regs_and_return_to_usermode
269

270
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
271
	jne	swapgs_restore_regs_and_return_to_usermode
272

273 274
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
275
	jne	swapgs_restore_regs_and_return_to_usermode
276 277

	/*
278 279 280 281 282 283 284 285 286
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
287
	 *
288
	 *           movq	$stuck_here, %rcx
289 290 291 292 293 294
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
295
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
296
	jnz	swapgs_restore_regs_and_return_to_usermode
297 298 299

	/* nothing to check for RSP */

300
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
301
	jne	swapgs_restore_regs_and_return_to_usermode
302 303

	/*
304 305
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
306 307
	 */
syscall_return_via_sysret:
308
	/* rcx and r11 are already restored (see code above) */
309
	UNWIND_HINT_EMPTY
310
	POP_REGS pop_rdi=0 skip_r11rcx=1
311 312 313 314 315 316

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
317
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
318 319 320 321 322 323 324 325

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
326
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
327

328
	popq	%rdi
329
	popq	%rsp
330
	USERGS_SYSRET64
331
END(entry_SYSCALL_64)
332

333 334 335 336 337
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
338
	UNWIND_HINT_FUNC
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

359 360 361 362 363 364 365 366
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
367
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
368 369
#endif

370 371 372 373 374 375 376 377 378 379 380
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

381 382 383
/*
 * A newly forked process directly context switches into this address.
 *
384
 * rax: prev task we switched from
385 386
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
387 388
 */
ENTRY(ret_from_fork)
389
	UNWIND_HINT_EMPTY
390
	movq	%rax, %rdi
391
	call	schedule_tail			/* rdi: 'prev' task parameter */
392

393 394
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
395

396
2:
397
	UNWIND_HINT_REGS
398
	movq	%rsp, %rdi
399 400
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
401
	jmp	swapgs_restore_regs_and_return_to_usermode
402 403 404 405

1:
	/* kernel thread */
	movq	%r12, %rdi
406
	CALL_NOSPEC %rbx
407 408 409 410 411 412 413
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
414 415
END(ret_from_fork)

416
/*
417 418
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
419
 */
420
	.align 8
421
ENTRY(irq_entries_start)
422 423
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
424
	UNWIND_HINT_IRET_REGS
425
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
426 427
	jmp	common_interrupt
	.align	8
428
	vector=vector+1
429
    .endr
430 431
END(irq_entries_start)

432 433
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
434 435 436
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
437 438 439
	jz .Lokay_\@
	ud2
.Lokay_\@:
440
	popq %rax
441 442 443 444 445 446 447 448 449 450
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
451
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
452
	DEBUG_ENTRY_ASSERT_IRQS_OFF
453 454 455 456 457 458 459 460 461

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
462
	movq	%rsp, \old_rsp
463
	.endif
464 465 466 467 468

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

469
	incl	PER_CPU_VAR(irq_count)
470
	jnz	.Lirq_stack_push_old_rsp_\@
471 472 473 474 475 476 477 478 479

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
496
	 */
497 498 499 500 501
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
502

503
.Lirq_stack_push_old_rsp_\@:
504
	pushq	\old_rsp
505 506 507 508

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
509 510 511 512 513 514 515 516 517

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
518 519 520 521 522
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
523
.macro LEAVE_IRQ_STACK regs=1
524 525 526 527
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

528 529 530 531
	.if \regs
	UNWIND_HINT_REGS
	.endif

532 533 534 535 536 537 538 539
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

540
/*
541 542 543 544 545 546 547 548 549 550 551 552 553 554
 * Interrupt entry helper function.
 *
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
555
 */
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC
	ASM_CLAC
	cld

	testb	$3, CS-ORIG_RAX+8(%rsp)
	jz	1f
	SWAPGS

	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
571
	pushq	%rdi
572

573 574 575 576
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
577 578 579 580 581 582

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
583 584 585 586 587 588 589 590 591 592 593 594

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
1:
595 596 597 598

	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8

599
	testb	$3, CS+8(%rsp)
600
	jz	1f
601 602

	/*
603 604
	 * IRQ from user mode.
	 *
605 606
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
607
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
608 609 610 611 612 613
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

614
	CALL_enter_from_user_mode
615

616
1:
617
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
618 619 620
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

621 622 623
	ret
END(interrupt_entry)

624 625 626

/* Interrupt entry/exit. */

627 628 629 630
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
631 632
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
633
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
634 635 636
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
637
	/* 0(%rsp): old RSP */
638
ret_from_intr:
639
	DISABLE_INTERRUPTS(CLBR_ANY)
640
	TRACE_IRQS_OFF
641

642
	LEAVE_IRQ_STACK
643

644
	testb	$3, CS(%rsp)
645
	jz	retint_kernel
646

647 648 649 650
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
651
	TRACE_IRQS_IRETQ
652

653
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
654 655
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
656
	testb	$3, CS(%rsp)
657 658 659 660
	jnz	1f
	ud2
1:
#endif
661
	POP_REGS pop_rdi=0
662 663 664 665 666 667

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
668
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

685
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
686

687 688 689
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
690 691
	INTERRUPT_RETURN

692

693
/* Returning to kernel space */
694
retint_kernel:
695 696 697
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
698
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
699
	jnc	1f
700
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
701
	jnz	1f
702
	call	preempt_schedule_irq
703
	jmp	0b
704
1:
705
#endif
706 707 708 709
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
710

711 712 713
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
714
	testb	$3, CS(%rsp)
715 716 717 718
	jz	1f
	ud2
1:
#endif
719
	POP_REGS
720
	addq	$8, %rsp	/* skip regs->orig_ax */
721 722 723 724
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
725 726 727
	INTERRUPT_RETURN

ENTRY(native_iret)
728
	UNWIND_HINT_IRET_REGS
729 730 731 732
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
733
#ifdef CONFIG_X86_ESPFIX64
734 735
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
736
#endif
737

738
.global native_irq_return_iret
739
native_irq_return_iret:
A
Andy Lutomirski 已提交
740 741 742 743 744 745
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
746
	iretq
I
Ingo Molnar 已提交
747

748
#ifdef CONFIG_X86_ESPFIX64
749
native_irq_return_ldt:
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
772 773 774
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

775
	movq	PER_CPU_VAR(espfix_waddr), %rdi
776 777
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
778
	movq	%rax, (1*8)(%rdi)
779
	movq	(2*8)(%rsp), %rax		/* user CS */
780
	movq	%rax, (2*8)(%rdi)
781
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
782
	movq	%rax, (3*8)(%rdi)
783
	movq	(5*8)(%rsp), %rax		/* user SS */
784
	movq	%rax, (5*8)(%rdi)
785
	movq	(4*8)(%rsp), %rax		/* user RSP */
786
	movq	%rax, (4*8)(%rdi)
787 788 789 790 791 792 793 794 795 796 797 798
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
799
	orq	PER_CPU_VAR(espfix_stack), %rax
800

801
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
802 803 804
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

805
	movq	%rax, %rsp
806
	UNWIND_HINT_IRET_REGS offset=8
807 808 809 810 811 812 813 814 815 816 817 818

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
819
	jmp	native_irq_return_iret
820
#endif
821
END(common_interrupt)
822

L
Linus Torvalds 已提交
823 824
/*
 * APIC interrupts.
825
 */
826
.macro apicinterrupt3 num sym do_sym
827
ENTRY(\sym)
828
	UNWIND_HINT_IRET_REGS
829
	pushq	$~(\num)
830
.Lcommon_\sym:
831 832 833
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
834
	jmp	ret_from_intr
835 836
END(\sym)
.endm
L
Linus Torvalds 已提交
837

838
/* Make sure APIC interrupt handlers end up in the irqentry section: */
839 840
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
841

842
.macro apicinterrupt num sym do_sym
843
PUSH_SECTION_IRQENTRY
844
apicinterrupt3 \num \sym \do_sym
845
POP_SECTION_IRQENTRY
846 847
.endm

848
#ifdef CONFIG_SMP
849 850
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
851
#endif
L
Linus Torvalds 已提交
852

N
Nick Piggin 已提交
853
#ifdef CONFIG_X86_UV
854
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
855
#endif
856 857 858

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
859

860
#ifdef CONFIG_HAVE_KVM
861 862
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
863
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
864 865
#endif

866
#ifdef CONFIG_X86_MCE_THRESHOLD
867
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
868 869
#endif

870
#ifdef CONFIG_X86_MCE_AMD
871
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
872 873
#endif

874
#ifdef CONFIG_X86_THERMAL_VECTOR
875
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
876
#endif
877

878
#ifdef CONFIG_SMP
879 880 881
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
882
#endif
L
Linus Torvalds 已提交
883

884 885
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
886

887
#ifdef CONFIG_IRQ_WORK
888
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
889 890
#endif

L
Linus Torvalds 已提交
891 892
/*
 * Exception entry points.
893
 */
894
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
895 896

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
897
ENTRY(\sym)
898
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
899

900 901 902 903 904
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

905
	ASM_CLAC
906

907
	.if \has_error_code == 0
908
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
909 910
	.endif

911
	.if \paranoid < 2
912
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
913
	jnz	.Lfrom_usermode_switch_stack_\@
914
	.endif
915 916

	.if \paranoid
917
	call	paranoid_entry
918
	.else
919
	call	error_entry
920
	.endif
921
	UNWIND_HINT_REGS
922
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
923 924

	.if \paranoid
925
	.if \shift_ist != -1
926
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
927
	.else
928
	TRACE_IRQS_OFF
929
	.endif
930
	.endif
931

932
	movq	%rsp, %rdi			/* pt_regs pointer */
933 934

	.if \has_error_code
935 936
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
937
	.else
938
	xorl	%esi, %esi			/* no error code */
939 940
	.endif

941
	.if \shift_ist != -1
942
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
943 944
	.endif

945
	call	\do_sym
946

947
	.if \shift_ist != -1
948
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
949 950
	.endif

951
	/* these procedures expect "no swapgs" flag in ebx */
952
	.if \paranoid
953
	jmp	paranoid_exit
954
	.else
955
	jmp	error_exit
956 957
	.endif

958
	.if \paranoid < 2
959
	/*
960
	 * Entry from userspace.  Switch stacks and treat it
961 962 963
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
964
.Lfrom_usermode_switch_stack_\@:
965
	call	error_entry
966

967
	movq	%rsp, %rdi			/* pt_regs pointer */
968 969

	.if \has_error_code
970 971
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
972
	.else
973
	xorl	%esi, %esi			/* no error code */
974 975
	.endif

976
	call	\do_sym
977

978
	jmp	error_exit			/* %ebx: no swapgs flag */
979
	.endif
980
END(\sym)
981
.endm
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1002
ENTRY(native_load_gs_index)
1003
	FRAME_BEGIN
1004
	pushfq
1005
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1006
	TRACE_IRQS_OFF
1007
	SWAPGS
1008
.Lgs_change:
1009
	movl	%edi, %gs
1010
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1011
	SWAPGS
1012
	TRACE_IRQS_FLAGS (%rsp)
1013
	popfq
1014
	FRAME_END
1015
	ret
1016
ENDPROC(native_load_gs_index)
1017
EXPORT_SYMBOL(native_load_gs_index)
1018

1019
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1020
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1021
	/* running with kernelgs */
1022
bad_gs:
1023
	SWAPGS					/* switch back to user gs */
1024 1025 1026 1027 1028 1029
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1030 1031 1032
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1033
	.previous
1034

1035
/* Call softirq on interrupt stack. Interrupts are off. */
1036
ENTRY(do_softirq_own_stack)
1037 1038
	pushq	%rbp
	mov	%rsp, %rbp
1039
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1040
	call	__do_softirq
1041
	LEAVE_IRQ_STACK regs=0
1042
	leaveq
1043
	ret
1044
ENDPROC(do_softirq_own_stack)
1045

1046
#ifdef CONFIG_XEN
1047
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1048 1049

/*
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1062 1063
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1064 1065 1066 1067
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1068
	UNWIND_HINT_FUNC
1069
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1070
	UNWIND_HINT_REGS
1071 1072

	ENTER_IRQ_STACK old_rsp=%r10
1073
	call	xen_evtchn_do_upcall
1074 1075
	LEAVE_IRQ_STACK

1076
#ifndef CONFIG_PREEMPT
1077
	call	xen_maybe_preempt_hcall
1078
#endif
1079
	jmp	error_exit
1080
END(xen_do_hypervisor_callback)
1081 1082

/*
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1095
ENTRY(xen_failsafe_callback)
1096
	UNWIND_HINT_EMPTY
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1109
	/* All segments match their saved values => Category 2 (Bad IRET). */
1110 1111 1112 1113
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1114
	UNWIND_HINT_IRET_REGS offset=8
1115
	jmp	general_protection
1116
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1117 1118 1119
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1120
	UNWIND_HINT_IRET_REGS
1121
	pushq	$-1 /* orig_ax = -1 => not a system call */
1122
	PUSH_AND_CLEAR_REGS
1123
	ENCODE_FRAME_POINTER
1124
	jmp	error_exit
1125 1126
END(xen_failsafe_callback)

1127
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1128 1129
	xen_hvm_callback_vector xen_evtchn_do_upcall

1130
#endif /* CONFIG_XEN */
1131

1132
#if IS_ENABLED(CONFIG_HYPERV)
1133
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1134
	hyperv_callback_vector hyperv_vector_handler
1135 1136 1137

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1138 1139
#endif /* CONFIG_HYPERV */

1140
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1141
idtentry int3			do_int3			has_error_code=0
1142 1143
idtentry stack_segment		do_stack_segment	has_error_code=1

1144
#ifdef CONFIG_XEN
1145
idtentry xennmi			do_nmi			has_error_code=0
1146 1147
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1148
#endif
1149 1150

idtentry general_protection	do_general_protection	has_error_code=1
1151
idtentry page_fault		do_page_fault		has_error_code=1
1152

G
Gleb Natapov 已提交
1153
#ifdef CONFIG_KVM_GUEST
1154
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1155
#endif
1156

1157
#ifdef CONFIG_X86_MCE
1158
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1159 1160
#endif

1161
/*
1162
 * Save all registers in pt_regs, and switch gs if needed.
1163 1164 1165 1166
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1167
	UNWIND_HINT_FUNC
1168
	cld
1169 1170
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1171 1172
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1173
	rdmsr
1174 1175
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1176
	SWAPGS
1177
	xorl	%ebx, %ebx
1178 1179 1180 1181 1182

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1183
END(paranoid_entry)
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1194 1195
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1196
 */
1197
ENTRY(paranoid_exit)
1198
	UNWIND_HINT_REGS
1199
	DISABLE_INTERRUPTS(CLBR_ANY)
1200
	TRACE_IRQS_OFF_DEBUG
1201
	testl	%ebx, %ebx			/* swapgs needed? */
1202
	jnz	.Lparanoid_exit_no_swapgs
1203
	TRACE_IRQS_IRETQ
P
Peter Zijlstra 已提交
1204
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1205
	SWAPGS_UNSAFE_STACK
1206 1207
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1208
	TRACE_IRQS_IRETQ_DEBUG
1209
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1210 1211
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1212 1213 1214
END(paranoid_exit)

/*
1215
 * Save all registers in pt_regs, and switch GS if needed.
1216
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1217 1218
 */
ENTRY(error_entry)
1219
	UNWIND_HINT_FUNC
1220
	cld
1221 1222
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1223
	testb	$3, CS+8(%rsp)
1224
	jz	.Lerror_kernelspace
1225

1226 1227 1228 1229
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1230
	SWAPGS
1231 1232
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1233

1234
.Lerror_entry_from_usermode_after_swapgs:
1235 1236 1237 1238 1239 1240 1241 1242
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1243 1244 1245 1246 1247 1248
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1249
	CALL_enter_from_user_mode
1250
	ret
1251

1252
.Lerror_entry_done:
1253 1254 1255
	TRACE_IRQS_OFF
	ret

1256 1257 1258 1259 1260 1261
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1262
.Lerror_kernelspace:
1263 1264 1265
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1266
	je	.Lerror_bad_iret
1267 1268
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1269
	je	.Lbstep_iret
1270
	cmpq	$.Lgs_change, RIP+8(%rsp)
1271
	jne	.Lerror_entry_done
1272 1273

	/*
1274
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1275
	 * gsbase and proceed.  We'll fix up the exception and land in
1276
	 * .Lgs_change's error handler with kernel gsbase.
1277
	 */
1278
	SWAPGS
1279
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1280
	jmp .Lerror_entry_done
1281

1282
.Lbstep_iret:
1283
	/* Fix truncated RIP */
1284
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1285 1286
	/* fall through */

1287
.Lerror_bad_iret:
1288
	/*
1289 1290
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1291
	 */
A
Andy Lutomirski 已提交
1292
	SWAPGS
1293
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1294 1295 1296 1297 1298 1299

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1300 1301 1302
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1303
	decl	%ebx
1304
	jmp	.Lerror_entry_from_usermode_after_swapgs
1305 1306 1307
END(error_entry)


1308
/*
1309
 * On entry, EBX is a "return to kernel mode" flag:
1310 1311 1312
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1313
ENTRY(error_exit)
1314
	UNWIND_HINT_REGS
1315
	DISABLE_INTERRUPTS(CLBR_ANY)
1316
	TRACE_IRQS_OFF
1317
	testl	%ebx, %ebx
1318 1319
	jnz	retint_kernel
	jmp	retint_user
1320 1321
END(error_exit)

1322 1323 1324
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1325 1326 1327 1328
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1329
 */
1330
ENTRY(nmi)
1331
	UNWIND_HINT_IRET_REGS
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1350 1351 1352
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1353 1354
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1355
	 *    o Modify the "iret" location to jump to the repeat_nmi
1356 1357 1358 1359 1360 1361 1362 1363
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1364 1365 1366 1367 1368
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1369 1370
	 */

1371 1372
	ASM_CLAC

1373
	/* Use %rdx as our temp variable throughout */
1374
	pushq	%rdx
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1385 1386 1387
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1388 1389
	 */

1390
	swapgs
1391
	cld
1392
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1393 1394
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1395
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1396 1397 1398 1399 1400
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1401
	UNWIND_HINT_IRET_REGS
1402
	pushq   $-1		/* pt_regs->orig_ax */
1403
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1404
	ENCODE_FRAME_POINTER
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1416
	/*
1417
	 * Return back to user mode.  We must *not* do the normal exit
1418
	 * work, because we don't want to enable interrupts.
1419
	 */
1420
	jmp	swapgs_restore_regs_and_return_to_usermode
1421

1422
.Lnmi_from_kernel:
1423
	/*
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1464
	/*
1465 1466
	 * Determine whether we're a nested NMI.
	 *
1467 1468 1469 1470 1471 1472
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1473
	 */
1474 1475 1476 1477 1478 1479 1480 1481

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1482

1483
	/*
1484
	 * Now check "NMI executing".  If it's set, then we're nested.
1485 1486
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1487
	 */
1488 1489
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1490 1491

	/*
1492 1493
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1494 1495 1496 1497 1498 1499 1500 1501
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1502
	 */
1503 1504 1505 1506 1507
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1508

1509 1510 1511 1512
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1513 1514 1515 1516 1517 1518 1519

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1520

1521 1522
nested_nmi:
	/*
1523 1524
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1525
	 */
1526
	subq	$8, %rsp
1527 1528 1529
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1530
	pushfq
1531 1532
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1533 1534

	/* Put stack back */
1535
	addq	$(6*8), %rsp
1536 1537

nested_nmi_out:
1538
	popq	%rdx
1539

1540
	/* We are returning to kernel mode, so this cannot result in a fault. */
1541
	iretq
1542 1543

first_nmi:
1544
	/* Restore rdx. */
1545
	movq	(%rsp), %rdx
1546

1547 1548
	/* Make room for "NMI executing". */
	pushq	$0
1549

1550
	/* Leave room for the "iret" frame */
1551
	subq	$(5*8), %rsp
1552

1553
	/* Copy the "original" frame to the "outermost" frame */
1554
	.rept 5
1555
	pushq	11*8(%rsp)
1556
	.endr
1557
	UNWIND_HINT_IRET_REGS
1558

1559 1560
	/* Everything up to here is safe from nested NMIs */

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1572
	iretq			/* continues at repeat_nmi below */
1573
	UNWIND_HINT_IRET_REGS
1574 1575 1576
1:
#endif

1577
repeat_nmi:
1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1586 1587 1588 1589
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1590 1591
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1592
	 */
1593
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1594

1595
	/*
1596 1597 1598
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1599
	 */
1600
	addq	$(10*8), %rsp
1601
	.rept 5
1602
	pushq	-6*8(%rsp)
1603
	.endr
1604
	subq	$(5*8), %rsp
1605
end_repeat_nmi:
1606 1607

	/*
1608 1609 1610
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1611
	 */
1612
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1613

1614
	/*
1615
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1616 1617 1618 1619 1620
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1621
	call	paranoid_entry
1622
	UNWIND_HINT_REGS
1623

1624
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1625 1626 1627
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1628

P
Peter Zijlstra 已提交
1629
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1630

1631 1632
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1633 1634 1635
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1636
	POP_REGS
1637

1638 1639 1640 1641 1642
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1643

1644 1645 1646
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1647 1648 1649 1650 1651
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1652 1653 1654
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1655 1656

	/*
1657 1658 1659 1660
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1661
	 */
1662
	iretq
1663 1664 1665
END(nmi)

ENTRY(ignore_sysret)
1666
	UNWIND_HINT_EMPTY
1667
	mov	$-ENOSYS, %eax
1668 1669
	sysret
END(ignore_sysret)
1670 1671

ENTRY(rewind_stack_do_exit)
1672
	UNWIND_HINT_FUNC
1673 1674 1675 1676
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1677 1678
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1679 1680 1681

	call	do_exit
END(rewind_stack_do_exit)