entry_64.S 47.9 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	btl	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
96
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 164
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165 166 167 168 169 170 171 172

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

173 174 175
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
195
	JMP_NOSPEC %rdi
196 197 198 199 200 201 202 203 204 205
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

206
ENTRY(entry_SYSCALL_64)
207
	UNWIND_HINT_EMPTY
208 209 210 211 212
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
213

214
	swapgs
215
	/*
216
	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217
	 * is not required to switch CR3.
218 219
	 *
	 * tss.sp2 is scratch space.
220
	 */
221
	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
222
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
223 224

	/* Construct struct pt_regs on stack */
225 226 227 228 229
	pushq	$__USER_DS				/* pt_regs->ss */
	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
	pushq	%r11					/* pt_regs->flags */
	pushq	$__USER_CS				/* pt_regs->cs */
	pushq	%rcx					/* pt_regs->ip */
230
GLOBAL(entry_SYSCALL_64_after_hwframe)
231
	pushq	%rax					/* pt_regs->orig_ax */
232 233

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
234

235 236
	TRACE_IRQS_OFF

237
	/* IRQs are off. */
238 239
	movq	%rax, %rdi
	movq	%rsp, %rsi
240 241
	call	do_syscall_64		/* returns with IRQs disabled */

242
	TRACE_IRQS_IRETQ		/* we're about to change IF */
243 244 245

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
246 247
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
248
	 */
249 250
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
251 252 253

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
254 255 256 257

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
258
	 * the kernel, since userspace controls RSP.
259
	 *
260
	 * If width of "canonical tail" ever becomes variable, this will need
261
	 * to be updated to remain correct on both old and new CPUs.
262
	 *
263 264
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
265
	 */
266
#ifdef CONFIG_X86_5LEVEL
267 268
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
269
#else
270 271
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272
#endif
273

274 275
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
276
	jne	swapgs_restore_regs_and_return_to_usermode
277

278
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
279
	jne	swapgs_restore_regs_and_return_to_usermode
280

281 282
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
283
	jne	swapgs_restore_regs_and_return_to_usermode
284 285

	/*
286 287 288 289 290 291 292 293 294
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
295
	 *
296
	 *           movq	$stuck_here, %rcx
297 298 299 300 301 302
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
303
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
304
	jnz	swapgs_restore_regs_and_return_to_usermode
305 306 307

	/* nothing to check for RSP */

308
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
309
	jne	swapgs_restore_regs_and_return_to_usermode
310 311

	/*
312 313
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
314 315
	 */
syscall_return_via_sysret:
316
	/* rcx and r11 are already restored (see code above) */
317
	UNWIND_HINT_EMPTY
318
	POP_REGS pop_rdi=0 skip_r11rcx=1
319 320 321 322 323 324

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
325
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
326 327 328 329 330 331 332 333

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
334
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
335

336
	popq	%rdi
337
	popq	%rsp
338
	USERGS_SYSRET64
339
END(entry_SYSCALL_64)
340

341 342 343 344 345
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
346
	UNWIND_HINT_FUNC
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

362
#ifdef CONFIG_STACKPROTECTOR
363 364 365 366
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

367 368 369 370 371 372 373 374
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
375
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
376 377
#endif

378 379 380 381 382 383 384 385 386 387 388
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

389 390 391
/*
 * A newly forked process directly context switches into this address.
 *
392
 * rax: prev task we switched from
393 394
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
395 396
 */
ENTRY(ret_from_fork)
397
	UNWIND_HINT_EMPTY
398
	movq	%rax, %rdi
399
	call	schedule_tail			/* rdi: 'prev' task parameter */
400

401 402
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
403

404
2:
405
	UNWIND_HINT_REGS
406
	movq	%rsp, %rdi
407 408
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
409
	jmp	swapgs_restore_regs_and_return_to_usermode
410 411 412

1:
	/* kernel thread */
413
	UNWIND_HINT_EMPTY
414
	movq	%r12, %rdi
415
	CALL_NOSPEC %rbx
416 417 418 419 420 421 422
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
423 424
END(ret_from_fork)

425
/*
426 427
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
428
 */
429
	.align 8
430
ENTRY(irq_entries_start)
431 432
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
433
	UNWIND_HINT_IRET_REGS
434
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
435 436
	jmp	common_interrupt
	.align	8
437
	vector=vector+1
438
    .endr
439 440
END(irq_entries_start)

441 442
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
443 444 445
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
446 447 448
	jz .Lokay_\@
	ud2
.Lokay_\@:
449
	popq %rax
450 451 452 453 454 455 456 457 458 459
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
460
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
461
	DEBUG_ENTRY_ASSERT_IRQS_OFF
462 463 464 465 466 467 468 469 470

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
471
	movq	%rsp, \old_rsp
472
	.endif
473 474 475 476 477

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

478
	incl	PER_CPU_VAR(irq_count)
479
	jnz	.Lirq_stack_push_old_rsp_\@
480 481 482 483 484 485 486 487 488

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
505
	 */
506 507 508 509 510
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
511

512
.Lirq_stack_push_old_rsp_\@:
513
	pushq	\old_rsp
514 515 516 517

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
518 519 520 521 522 523 524 525 526

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
527 528 529 530 531
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
532
.macro LEAVE_IRQ_STACK regs=1
533 534 535 536
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

537 538 539 540
	.if \regs
	UNWIND_HINT_REGS
	.endif

541 542 543 544 545 546 547 548
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

549
/*
550
 * Interrupt entry helper function.
551
 *
552 553 554 555 556 557 558 559 560 561 562 563
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
564
 */
565 566 567
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC
	ASM_CLAC
568
	cld
569

570
	testb	$3, CS-ORIG_RAX+8(%rsp)
571 572
	jz	1f
	SWAPGS
573 574 575 576 577 578 579

	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
580
	pushq	%rdi
581

582 583 584 585
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
586 587 588 589 590 591

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
592 593 594 595 596 597 598 599 600 601 602

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
603 604
1:

605 606
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
607

608
	testb	$3, CS+8(%rsp)
609
	jz	1f
610 611

	/*
612 613
	 * IRQ from user mode.
	 *
614 615
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
616
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
617 618 619 620 621 622
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

623
	CALL_enter_from_user_mode
624

625
1:
626
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
627 628 629
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

630 631 632
	ret
END(interrupt_entry)

633 634

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
635

636 637 638 639
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
640 641
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
642
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
643 644 645
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
646
	/* 0(%rsp): old RSP */
647
ret_from_intr:
648
	DISABLE_INTERRUPTS(CLBR_ANY)
649
	TRACE_IRQS_OFF
650

651
	LEAVE_IRQ_STACK
652

653
	testb	$3, CS(%rsp)
654
	jz	retint_kernel
655

656 657 658 659
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
660
	TRACE_IRQS_IRETQ
661

662
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
663 664
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
665
	testb	$3, CS(%rsp)
666 667 668 669
	jnz	1f
	ud2
1:
#endif
670
	POP_REGS pop_rdi=0
671 672 673 674 675 676

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
677
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

694
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
695

696 697 698
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
699 700
	INTERRUPT_RETURN

701

702
/* Returning to kernel space */
703
retint_kernel:
704 705 706
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
707
	btl	$9, EFLAGS(%rsp)		/* were interrupts off? */
708
	jnc	1f
709
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
710
	jnz	1f
711
	call	preempt_schedule_irq
712
	jmp	0b
713
1:
714
#endif
715 716 717 718
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
719

720 721 722
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
723
	testb	$3, CS(%rsp)
724 725 726 727
	jz	1f
	ud2
1:
#endif
728
	POP_REGS
729
	addq	$8, %rsp	/* skip regs->orig_ax */
730 731 732 733
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
734 735 736
	INTERRUPT_RETURN

ENTRY(native_iret)
737
	UNWIND_HINT_IRET_REGS
738 739 740 741
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
742
#ifdef CONFIG_X86_ESPFIX64
743 744
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
745
#endif
746

747
.global native_irq_return_iret
748
native_irq_return_iret:
A
Andy Lutomirski 已提交
749 750 751 752 753 754
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
755
	iretq
I
Ingo Molnar 已提交
756

757
#ifdef CONFIG_X86_ESPFIX64
758
native_irq_return_ldt:
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
781 782 783
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

784
	movq	PER_CPU_VAR(espfix_waddr), %rdi
785 786
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
787
	movq	%rax, (1*8)(%rdi)
788
	movq	(2*8)(%rsp), %rax		/* user CS */
789
	movq	%rax, (2*8)(%rdi)
790
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
791
	movq	%rax, (3*8)(%rdi)
792
	movq	(5*8)(%rsp), %rax		/* user SS */
793
	movq	%rax, (5*8)(%rdi)
794
	movq	(4*8)(%rsp), %rax		/* user RSP */
795
	movq	%rax, (4*8)(%rdi)
796 797 798 799 800 801 802 803 804 805 806 807
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
808
	orq	PER_CPU_VAR(espfix_stack), %rax
809

810
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
811 812 813
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

814
	movq	%rax, %rsp
815
	UNWIND_HINT_IRET_REGS offset=8
816 817 818 819 820 821 822 823 824 825 826 827

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
828
	jmp	native_irq_return_iret
829
#endif
830
END(common_interrupt)
831

L
Linus Torvalds 已提交
832 833
/*
 * APIC interrupts.
834
 */
835
.macro apicinterrupt3 num sym do_sym
836
ENTRY(\sym)
837
	UNWIND_HINT_IRET_REGS
838
	pushq	$~(\num)
839
.Lcommon_\sym:
840 841 842
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
843
	jmp	ret_from_intr
844 845
END(\sym)
.endm
L
Linus Torvalds 已提交
846

847
/* Make sure APIC interrupt handlers end up in the irqentry section: */
848 849
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
850

851
.macro apicinterrupt num sym do_sym
852
PUSH_SECTION_IRQENTRY
853
apicinterrupt3 \num \sym \do_sym
854
POP_SECTION_IRQENTRY
855 856
.endm

857
#ifdef CONFIG_SMP
858 859
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
860
#endif
L
Linus Torvalds 已提交
861

N
Nick Piggin 已提交
862
#ifdef CONFIG_X86_UV
863
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
864
#endif
865 866 867

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
868

869
#ifdef CONFIG_HAVE_KVM
870 871
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
872
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
873 874
#endif

875
#ifdef CONFIG_X86_MCE_THRESHOLD
876
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
877 878
#endif

879
#ifdef CONFIG_X86_MCE_AMD
880
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
881 882
#endif

883
#ifdef CONFIG_X86_THERMAL_VECTOR
884
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
885
#endif
886

887
#ifdef CONFIG_SMP
888 889 890
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
891
#endif
L
Linus Torvalds 已提交
892

893 894
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
895

896
#ifdef CONFIG_IRQ_WORK
897
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
898 899
#endif

L
Linus Torvalds 已提交
900 901
/*
 * Exception entry points.
902
 */
903
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
904

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
/**
 * idtentry - Generate an IDT entry stub
 * @sym:		Name of the generated entry point
 * @do_sym: 		C function to be called
 * @has_error_code: 	True if this IDT vector has an error code on the stack
 * @paranoid: 		non-zero means that this vector may be invoked from
 *			kernel mode with user GSBASE and/or user CR3.
 *			2 is special -- see below.
 * @shift_ist:		Set to an IST index if entries from kernel mode should
 *             		decrement the IST stack so that nested entries get a
 *			fresh stack.  (This is for #DB, which has a nasty habit
 *             		of recursing.)
 *
 * idtentry generates an IDT stub that sets up a usable kernel context,
 * creates struct pt_regs, and calls @do_sym.  The stub has the following
 * special behaviors:
 *
 * On an entry from user mode, the stub switches from the trampoline or
 * IST stack to the normal thread stack.  On an exit to user mode, the
 * normal exit-to-usermode path is invoked.
 *
 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
 * whereas we omit the preemption check if @paranoid != 0.  This is purely
 * because the implementation is simpler this way.  The kernel only needs
 * to check for asynchronous kernel preemption when IRQ handlers return.
 *
 * If @paranoid == 0, then the stub will handle IRET faults by pretending
 * that the fault came from user mode.  It will handle gs_change faults by
 * pretending that the fault happened with kernel GSBASE.  Since this handling
 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
 * @paranoid == 0.  This special handling will do the wrong thing for
 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
 *
 * @paranoid == 2 is special: the stub will never switch stacks.  This is for
 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
 */
941
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
942
ENTRY(\sym)
943
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
944

945 946 947 948 949
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

950
	ASM_CLAC
951

952
	.if \has_error_code == 0
953
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
954 955
	.endif

956
	.if \paranoid == 1
957
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
958
	jnz	.Lfrom_usermode_switch_stack_\@
959
	.endif
960 961

	.if \paranoid
962
	call	paranoid_entry
963
	.else
964
	call	error_entry
965
	.endif
966
	UNWIND_HINT_REGS
967
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
968 969

	.if \paranoid
970
	.if \shift_ist != -1
971
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
972
	.else
973
	TRACE_IRQS_OFF
974
	.endif
975
	.endif
976

977
	movq	%rsp, %rdi			/* pt_regs pointer */
978 979

	.if \has_error_code
980 981
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
982
	.else
983
	xorl	%esi, %esi			/* no error code */
984 985
	.endif

986
	.if \shift_ist != -1
987
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
988 989
	.endif

990
	call	\do_sym
991

992
	.if \shift_ist != -1
993
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
994 995
	.endif

996
	/* these procedures expect "no swapgs" flag in ebx */
997
	.if \paranoid
998
	jmp	paranoid_exit
999
	.else
1000
	jmp	error_exit
1001 1002
	.endif

1003
	.if \paranoid == 1
1004
	/*
1005
	 * Entry from userspace.  Switch stacks and treat it
1006 1007 1008
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1009
.Lfrom_usermode_switch_stack_\@:
1010
	call	error_entry
1011

1012
	movq	%rsp, %rdi			/* pt_regs pointer */
1013 1014

	.if \has_error_code
1015 1016
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1017
	.else
1018
	xorl	%esi, %esi			/* no error code */
1019 1020
	.endif

1021
	call	\do_sym
1022

1023
	jmp	error_exit
1024
	.endif
1025
END(\sym)
1026
.endm
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1047
ENTRY(native_load_gs_index)
1048
	FRAME_BEGIN
1049
	pushfq
1050
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1051
	TRACE_IRQS_OFF
1052
	SWAPGS
1053
.Lgs_change:
1054
	movl	%edi, %gs
1055
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1056
	SWAPGS
1057
	TRACE_IRQS_FLAGS (%rsp)
1058
	popfq
1059
	FRAME_END
1060
	ret
1061
ENDPROC(native_load_gs_index)
1062
EXPORT_SYMBOL(native_load_gs_index)
1063

1064
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1065
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1066
	/* running with kernelgs */
1067
bad_gs:
1068
	SWAPGS					/* switch back to user gs */
1069 1070 1071 1072 1073 1074
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1075 1076 1077
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1078
	.previous
1079

1080
/* Call softirq on interrupt stack. Interrupts are off. */
1081
ENTRY(do_softirq_own_stack)
1082 1083
	pushq	%rbp
	mov	%rsp, %rbp
1084
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1085
	call	__do_softirq
1086
	LEAVE_IRQ_STACK regs=0
1087
	leaveq
1088
	ret
1089
ENDPROC(do_softirq_own_stack)
1090

1091
#ifdef CONFIG_XEN
1092
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1093 1094

/*
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1107 1108
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1109 1110 1111 1112
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1113
	UNWIND_HINT_FUNC
1114
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1115
	UNWIND_HINT_REGS
1116 1117

	ENTER_IRQ_STACK old_rsp=%r10
1118
	call	xen_evtchn_do_upcall
1119 1120
	LEAVE_IRQ_STACK

1121
#ifndef CONFIG_PREEMPT
1122
	call	xen_maybe_preempt_hcall
1123
#endif
1124
	jmp	error_exit
1125
END(xen_do_hypervisor_callback)
1126 1127

/*
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1140
ENTRY(xen_failsafe_callback)
1141
	UNWIND_HINT_EMPTY
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1154
	/* All segments match their saved values => Category 2 (Bad IRET). */
1155 1156 1157 1158
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1159
	UNWIND_HINT_IRET_REGS offset=8
1160
	jmp	general_protection
1161
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1162 1163 1164
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1165
	UNWIND_HINT_IRET_REGS
1166
	pushq	$-1 /* orig_ax = -1 => not a system call */
1167
	PUSH_AND_CLEAR_REGS
1168
	ENCODE_FRAME_POINTER
1169
	jmp	error_exit
1170 1171
END(xen_failsafe_callback)

1172
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1173 1174
	xen_hvm_callback_vector xen_evtchn_do_upcall

1175
#endif /* CONFIG_XEN */
1176

1177
#if IS_ENABLED(CONFIG_HYPERV)
1178
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1179
	hyperv_callback_vector hyperv_vector_handler
1180 1181 1182

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1183 1184 1185

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1186 1187
#endif /* CONFIG_HYPERV */

1188
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1189
idtentry int3			do_int3			has_error_code=0
1190 1191
idtentry stack_segment		do_stack_segment	has_error_code=1

1192
#ifdef CONFIG_XEN
1193
idtentry xennmi			do_nmi			has_error_code=0
1194 1195
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1196
#endif
1197 1198

idtentry general_protection	do_general_protection	has_error_code=1
1199
idtentry page_fault		do_page_fault		has_error_code=1
1200

G
Gleb Natapov 已提交
1201
#ifdef CONFIG_KVM_GUEST
1202
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1203
#endif
1204

1205
#ifdef CONFIG_X86_MCE
1206
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1207 1208
#endif

1209
/*
1210
 * Save all registers in pt_regs, and switch gs if needed.
1211 1212 1213 1214
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1215
	UNWIND_HINT_FUNC
1216
	cld
1217 1218
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1219 1220
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1221
	rdmsr
1222 1223
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1224
	SWAPGS
1225
	xorl	%ebx, %ebx
1226 1227 1228 1229 1230

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1231
END(paranoid_entry)
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1242 1243
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1244
 */
1245
ENTRY(paranoid_exit)
1246
	UNWIND_HINT_REGS
1247
	DISABLE_INTERRUPTS(CLBR_ANY)
1248
	TRACE_IRQS_OFF_DEBUG
1249
	testl	%ebx, %ebx			/* swapgs needed? */
1250
	jnz	.Lparanoid_exit_no_swapgs
1251
	TRACE_IRQS_IRETQ
P
Peter Zijlstra 已提交
1252
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1253
	SWAPGS_UNSAFE_STACK
1254 1255
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1256
	TRACE_IRQS_IRETQ_DEBUG
1257
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1258 1259
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1260 1261 1262
END(paranoid_exit)

/*
1263
 * Save all registers in pt_regs, and switch GS if needed.
1264 1265
 */
ENTRY(error_entry)
1266
	UNWIND_HINT_FUNC
1267
	cld
1268 1269
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1270
	testb	$3, CS+8(%rsp)
1271
	jz	.Lerror_kernelspace
1272

1273 1274 1275 1276
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1277
	SWAPGS
1278 1279
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1280

1281
.Lerror_entry_from_usermode_after_swapgs:
1282 1283 1284 1285 1286 1287 1288 1289
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1290 1291 1292 1293 1294 1295
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1296
	CALL_enter_from_user_mode
1297
	ret
1298

1299
.Lerror_entry_done:
1300 1301 1302
	TRACE_IRQS_OFF
	ret

1303 1304 1305 1306 1307 1308
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1309
.Lerror_kernelspace:
1310 1311
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1312
	je	.Lerror_bad_iret
1313 1314
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1315
	je	.Lbstep_iret
1316
	cmpq	$.Lgs_change, RIP+8(%rsp)
1317
	jne	.Lerror_entry_done
1318 1319

	/*
1320
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1321
	 * gsbase and proceed.  We'll fix up the exception and land in
1322
	 * .Lgs_change's error handler with kernel gsbase.
1323
	 */
1324
	SWAPGS
1325
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1326
	jmp .Lerror_entry_done
1327

1328
.Lbstep_iret:
1329
	/* Fix truncated RIP */
1330
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1331 1332
	/* fall through */

1333
.Lerror_bad_iret:
1334
	/*
1335 1336
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1337
	 */
A
Andy Lutomirski 已提交
1338
	SWAPGS
1339
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1340 1341 1342

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1343
	 * as if we faulted immediately after IRET.
1344
	 */
1345 1346 1347
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1348
	jmp	.Lerror_entry_from_usermode_after_swapgs
1349 1350 1351
END(error_entry)

ENTRY(error_exit)
1352
	UNWIND_HINT_REGS
1353
	DISABLE_INTERRUPTS(CLBR_ANY)
1354
	TRACE_IRQS_OFF
1355 1356
	testb	$3, CS(%rsp)
	jz	retint_kernel
1357
	jmp	retint_user
1358 1359
END(error_exit)

1360 1361 1362
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1363 1364 1365 1366
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1367
 */
1368
ENTRY(nmi)
1369
	UNWIND_HINT_IRET_REGS
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1388 1389 1390
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1391 1392
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1393
	 *    o Modify the "iret" location to jump to the repeat_nmi
1394 1395 1396 1397 1398 1399 1400 1401
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1402 1403 1404 1405 1406
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1407 1408
	 */

1409 1410
	ASM_CLAC

1411
	/* Use %rdx as our temp variable throughout */
1412
	pushq	%rdx
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1423 1424 1425
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1426 1427
	 */

1428
	swapgs
1429
	cld
1430
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1431 1432
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1433
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1434 1435 1436 1437 1438
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1439
	UNWIND_HINT_IRET_REGS
1440
	pushq   $-1		/* pt_regs->orig_ax */
1441
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1442
	ENCODE_FRAME_POINTER
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1454
	/*
1455
	 * Return back to user mode.  We must *not* do the normal exit
1456
	 * work, because we don't want to enable interrupts.
1457
	 */
1458
	jmp	swapgs_restore_regs_and_return_to_usermode
1459

1460
.Lnmi_from_kernel:
1461
	/*
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1502
	/*
1503 1504
	 * Determine whether we're a nested NMI.
	 *
1505 1506 1507 1508 1509 1510
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1511
	 */
1512 1513 1514 1515 1516 1517 1518 1519

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1520

1521
	/*
1522
	 * Now check "NMI executing".  If it's set, then we're nested.
1523 1524
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1525
	 */
1526 1527
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1528 1529

	/*
1530 1531
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1532 1533 1534 1535 1536 1537 1538 1539
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1540
	 */
1541 1542 1543 1544 1545
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1546

1547 1548 1549 1550
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1551 1552 1553 1554 1555 1556 1557

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1558

1559 1560
nested_nmi:
	/*
1561 1562
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1563
	 */
1564
	subq	$8, %rsp
1565 1566 1567
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1568
	pushfq
1569 1570
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1571 1572

	/* Put stack back */
1573
	addq	$(6*8), %rsp
1574 1575

nested_nmi_out:
1576
	popq	%rdx
1577

1578
	/* We are returning to kernel mode, so this cannot result in a fault. */
1579
	iretq
1580 1581

first_nmi:
1582
	/* Restore rdx. */
1583
	movq	(%rsp), %rdx
1584

1585 1586
	/* Make room for "NMI executing". */
	pushq	$0
1587

1588
	/* Leave room for the "iret" frame */
1589
	subq	$(5*8), %rsp
1590

1591
	/* Copy the "original" frame to the "outermost" frame */
1592
	.rept 5
1593
	pushq	11*8(%rsp)
1594
	.endr
1595
	UNWIND_HINT_IRET_REGS
1596

1597 1598
	/* Everything up to here is safe from nested NMIs */

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1610
	iretq			/* continues at repeat_nmi below */
1611
	UNWIND_HINT_IRET_REGS
1612 1613 1614
1:
#endif

1615
repeat_nmi:
1616 1617 1618 1619 1620 1621 1622 1623
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1624 1625 1626 1627
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1628 1629
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1630
	 */
1631
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1632

1633
	/*
1634 1635 1636
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1637
	 */
1638
	addq	$(10*8), %rsp
1639
	.rept 5
1640
	pushq	-6*8(%rsp)
1641
	.endr
1642
	subq	$(5*8), %rsp
1643
end_repeat_nmi:
1644 1645

	/*
1646 1647 1648
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1649
	 */
1650
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1651

1652
	/*
1653
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1654 1655 1656 1657 1658
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1659
	call	paranoid_entry
1660
	UNWIND_HINT_REGS
1661

1662
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1663 1664 1665
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1666

P
Peter Zijlstra 已提交
1667
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1668

1669 1670
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1671 1672 1673
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1674
	POP_REGS
1675

1676 1677 1678 1679 1680
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1681

1682 1683 1684
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1685 1686 1687 1688 1689
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1690 1691 1692
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1693 1694

	/*
1695 1696 1697 1698
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1699
	 */
1700
	iretq
1701 1702 1703
END(nmi)

ENTRY(ignore_sysret)
1704
	UNWIND_HINT_EMPTY
1705
	mov	$-ENOSYS, %eax
1706 1707
	sysret
END(ignore_sysret)
1708 1709

ENTRY(rewind_stack_do_exit)
1710
	UNWIND_HINT_FUNC
1711 1712 1713 1714
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1715 1716
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1717 1718 1719

	call	do_exit
END(rewind_stack_do_exit)