entry_64.S 42.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <linux/err.h>
L
Linus Torvalds 已提交
40

41 42
.code64
.section .entry.text, "ax"
43

44
#ifdef CONFIG_PARAVIRT
45
ENTRY(native_usergs_sysret64)
46 47
	swapgs
	sysretq
48
ENDPROC(native_usergs_sysret64)
49 50
#endif /* CONFIG_PARAVIRT */

51
.macro TRACE_IRQS_IRETQ
52
#ifdef CONFIG_TRACE_IRQFLAGS
53 54
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
55 56 57 58 59
	TRACE_IRQS_ON
1:
#endif
.endm

60 61 62 63 64 65 66 67 68 69 70 71 72 73
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
74
	call	debug_stack_set_zero
75
	TRACE_IRQS_OFF
76
	call	debug_stack_reset
77 78 79
.endm

.macro TRACE_IRQS_ON_DEBUG
80
	call	debug_stack_set_zero
81
	TRACE_IRQS_ON
82
	call	debug_stack_reset
83 84
.endm

85
.macro TRACE_IRQS_IRETQ_DEBUG
86 87
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
88 89 90 91 92
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
93 94 95
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
96 97
#endif

L
Linus Torvalds 已提交
98
/*
99
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
100
 *
101 102 103 104 105 106 107 108 109 110
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
111
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
112 113 114 115 116 117
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
118
 * rax  system call number
119 120
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
121 122
 * rdi  arg0
 * rsi  arg1
123
 * rdx  arg2
124
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
125 126
 * r8   arg4
 * r9   arg5
127
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
128
 *
L
Linus Torvalds 已提交
129 130
 * Only called from user space.
 *
131
 * When user can change pt_regs->foo always force IRET. That is because
132 133
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
134
 */
L
Linus Torvalds 已提交
135

136
ENTRY(entry_SYSCALL_64)
137 138 139 140 141
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
142 143 144 145 146 147
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
148
GLOBAL(entry_SYSCALL_64_after_swapgs)
149

150 151
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
152

153 154
	TRACE_IRQS_OFF

155
	/* Construct struct pt_regs on stack */
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

173 174 175 176
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
177 178
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
179 180
	jnz	entry_SYSCALL64_slow_path

181
entry_SYSCALL_64_fastpath:
182 183 184 185 186 187 188
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
189
#if __SYSCALL_MASK == ~0
190
	cmpq	$__NR_syscall_max, %rax
191
#else
192 193
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
194
#endif
195 196
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
197 198 199

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
200 201
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
202
	 */
203
	call	*sys_call_table(, %rax, 8)
204 205
.Lentry_SYSCALL_64_after_fastpath_call:

206
	movq	%rax, RAX(%rsp)
207
1:
208 209

	/*
210 211 212
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
213
	 */
214
	DISABLE_INTERRUPTS(CLBR_ANY)
215
	TRACE_IRQS_OFF
216 217
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
218
	jnz	1f
219

220 221
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
222 223 224
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
225
	movq	RSP(%rsp), %rsp
226
	USERGS_SYSRET64
L
Linus Torvalds 已提交
227

228 229 230 231 232 233
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
234
	TRACE_IRQS_ON
235
	ENABLE_INTERRUPTS(CLBR_ANY)
236
	SAVE_EXTRA_REGS
237
	movq	%rsp, %rdi
238 239
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
240

241 242
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
243
	SAVE_EXTRA_REGS
244
	movq	%rsp, %rdi
245 246 247
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
248
	RESTORE_EXTRA_REGS
249
	TRACE_IRQS_IRETQ		/* we're about to change IF */
250 251 252 253 254

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
255 256 257 258
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
259 260 261 262

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
263
	 * the kernel, since userspace controls RSP.
264
	 *
265
	 * If width of "canonical tail" ever becomes variable, this will need
266
	 * to be updated to remain correct on both old and new CPUs.
267
	 *
268 269
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
270
	 */
271 272
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273

274 275 276
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
277

278 279
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
280

281 282 283
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
284 285

	/*
286 287 288 289 290 291 292 293 294
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
295
	 *
296
	 *           movq	$stuck_here, %rcx
297 298 299 300 301 302
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
303 304
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
305 306 307

	/* nothing to check for RSP */

308 309
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
310 311

	/*
312 313
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
314 315
	 */
syscall_return_via_sysret:
316 317
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
318
	movq	RSP(%rsp), %rsp
319 320 321 322 323
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
324
END(entry_SYSCALL_64)
325

326 327 328
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
329 330 331
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
332 333
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
334
	 * IRQs are on.
335 336 337 338
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

339 340 341 342
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
343
	DISABLE_INTERRUPTS(CLBR_ANY)
344
	TRACE_IRQS_OFF
345
	popq	%rax
346
	jmp	entry_SYSCALL64_slow_path
347 348

1:
349
	jmp	*%rax				/* Called from C */
350 351 352 353 354 355 356 357 358 359 360 361 362 363
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

401 402 403
/*
 * A newly forked process directly context switches into this address.
 *
404
 * rax: prev task we switched from
405 406
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
407 408
 */
ENTRY(ret_from_fork)
409
	movq	%rax, %rdi
410
	call	schedule_tail			/* rdi: 'prev' task parameter */
411

412 413
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
414

415
2:
416
	movq	%rsp, %rdi
417 418 419 420
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
421 422 423 424 425 426 427 428 429 430 431 432

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
433 434
END(ret_from_fork)

435
/*
436 437
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
438
 */
439
	.align 8
440
ENTRY(irq_entries_start)
441 442
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
443
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
444 445 446 447
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
448 449
END(irq_entries_start)

450
/*
L
Linus Torvalds 已提交
451 452 453
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
454 455 456
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
457

458
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
459
	.macro interrupt func
460
	cld
461 462 463
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
464
	ENCODE_FRAME_POINTER
465

466
	testb	$3, CS(%rsp)
467
	jz	1f
468 469 470 471 472

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
473
	SWAPGS
474 475 476 477 478 479 480 481 482 483 484

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

485
	CALL_enter_from_user_mode
486

487
1:
488
	/*
D
Denys Vlasenko 已提交
489
	 * Save previous stack pointer, optionally switch to interrupt stack.
490 491 492 493 494
	 * irq_count is used to check if a CPU is already on an interrupt stack
	 * or not. While this is essentially redundant with preempt_count it is
	 * a little cheaper to use a separate counter in the PDA (short of
	 * moving irq_enter into assembly, which would be too much work)
	 */
495
	movq	%rsp, %rdi
496 497
	incl	PER_CPU_VAR(irq_count)
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
498
	pushq	%rdi
499 500 501
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

502
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
503 504
	.endm

505 506 507 508
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
509 510
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
511
	ASM_CLAC
512
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
513
	interrupt do_IRQ
514
	/* 0(%rsp): old RSP */
515
ret_from_intr:
516
	DISABLE_INTERRUPTS(CLBR_ANY)
517
	TRACE_IRQS_OFF
518
	decl	PER_CPU_VAR(irq_count)
519

520
	/* Restore saved previous stack */
521
	popq	%rsp
522

523
	testb	$3, CS(%rsp)
524
	jz	retint_kernel
525

526 527 528 529
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
530
	TRACE_IRQS_IRETQ
531
	SWAPGS
532
	jmp	restore_regs_and_iret
533

534
/* Returning to kernel space */
535
retint_kernel:
536 537 538
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
539
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
540
	jnc	1f
541
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
542
	jnz	1f
543
	call	preempt_schedule_irq
544
	jmp	0b
545
1:
546
#endif
547 548 549 550
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
551 552 553 554 555

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
556
GLOBAL(restore_regs_and_iret)
557
	RESTORE_EXTRA_REGS
558
restore_c_regs_and_iret:
559 560
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
561 562 563
	INTERRUPT_RETURN

ENTRY(native_iret)
564 565 566 567
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
568
#ifdef CONFIG_X86_ESPFIX64
569 570
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
571
#endif
572

573
.global native_irq_return_iret
574
native_irq_return_iret:
A
Andy Lutomirski 已提交
575 576 577 578 579 580
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
581
	iretq
I
Ingo Molnar 已提交
582

583
#ifdef CONFIG_X86_ESPFIX64
584
native_irq_return_ldt:
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
607
	SWAPGS
608
	movq	PER_CPU_VAR(espfix_waddr), %rdi
609 610
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
611
	movq	%rax, (1*8)(%rdi)
612
	movq	(2*8)(%rsp), %rax		/* user CS */
613
	movq	%rax, (2*8)(%rdi)
614
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
615
	movq	%rax, (3*8)(%rdi)
616
	movq	(5*8)(%rsp), %rax		/* user SS */
617
	movq	%rax, (5*8)(%rdi)
618
	movq	(4*8)(%rsp), %rax		/* user RSP */
619
	movq	%rax, (4*8)(%rdi)
620 621 622 623 624 625 626 627 628 629 630 631 632
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
633
	orq	PER_CPU_VAR(espfix_stack), %rax
634
	SWAPGS
635
	movq	%rax, %rsp
636 637 638 639 640 641 642 643 644 645 646 647

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
648
	jmp	native_irq_return_iret
649
#endif
650
END(common_interrupt)
651

L
Linus Torvalds 已提交
652 653
/*
 * APIC interrupts.
654
 */
655
.macro apicinterrupt3 num sym do_sym
656
ENTRY(\sym)
657
	ASM_CLAC
658
	pushq	$~(\num)
659
.Lcommon_\sym:
660
	interrupt \do_sym
661
	jmp	ret_from_intr
662 663
END(\sym)
.endm
L
Linus Torvalds 已提交
664

665 666 667 668 669 670 671 672 673 674 675 676
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

677 678 679 680 681 682 683 684 685
/* Make sure APIC interrupt handlers end up in the irqentry section: */
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
# define POP_SECTION_IRQENTRY	.popsection
#else
# define PUSH_SECTION_IRQENTRY
# define POP_SECTION_IRQENTRY
#endif

686
.macro apicinterrupt num sym do_sym
687
PUSH_SECTION_IRQENTRY
688 689
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
690
POP_SECTION_IRQENTRY
691 692
.endm

693
#ifdef CONFIG_SMP
694 695
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
696
#endif
L
Linus Torvalds 已提交
697

N
Nick Piggin 已提交
698
#ifdef CONFIG_X86_UV
699
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
700
#endif
701 702 703

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
704

705
#ifdef CONFIG_HAVE_KVM
706 707
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
708 709
#endif

710
#ifdef CONFIG_X86_MCE_THRESHOLD
711
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
712 713
#endif

714
#ifdef CONFIG_X86_MCE_AMD
715
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
716 717
#endif

718
#ifdef CONFIG_X86_THERMAL_VECTOR
719
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
720
#endif
721

722
#ifdef CONFIG_SMP
723 724 725
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
726
#endif
L
Linus Torvalds 已提交
727

728 729
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
730

731
#ifdef CONFIG_IRQ_WORK
732
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
733 734
#endif

L
Linus Torvalds 已提交
735 736
/*
 * Exception entry points.
737
 */
738
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
739 740

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
741
ENTRY(\sym)
742 743 744 745 746
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

747
	ASM_CLAC
748
	PARAVIRT_ADJUST_EXCEPTION_FRAME
749 750

	.ifeq \has_error_code
751
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
752 753
	.endif

754
	ALLOC_PT_GPREGS_ON_STACK
755 756

	.if \paranoid
757
	.if \paranoid == 1
758 759
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
760
	.endif
761
	call	paranoid_entry
762
	.else
763
	call	error_entry
764
	.endif
765
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
766 767

	.if \paranoid
768
	.if \shift_ist != -1
769
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
770
	.else
771
	TRACE_IRQS_OFF
772
	.endif
773
	.endif
774

775
	movq	%rsp, %rdi			/* pt_regs pointer */
776 777

	.if \has_error_code
778 779
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
780
	.else
781
	xorl	%esi, %esi			/* no error code */
782 783
	.endif

784
	.if \shift_ist != -1
785
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
786 787
	.endif

788
	call	\do_sym
789

790
	.if \shift_ist != -1
791
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
792 793
	.endif

794
	/* these procedures expect "no swapgs" flag in ebx */
795
	.if \paranoid
796
	jmp	paranoid_exit
797
	.else
798
	jmp	error_exit
799 800
	.endif

801 802 803 804 805 806 807
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
808
	call	error_entry
809 810


811 812 813
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
814

815
	movq	%rsp, %rdi			/* pt_regs pointer */
816 817

	.if \has_error_code
818 819
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
820
	.else
821
	xorl	%esi, %esi			/* no error code */
822 823
	.endif

824
	call	\do_sym
825

826
	jmp	error_exit			/* %ebx: no swapgs flag */
827
	.endif
828
END(\sym)
829
.endm
830

831
#ifdef CONFIG_TRACING
832 833 834
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
835 836
.endm
#else
837 838
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
839 840 841
.endm
#endif

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
861
ENTRY(native_load_gs_index)
862
	pushfq
863
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
864
	SWAPGS
865
.Lgs_change:
866
	movl	%edi, %gs
867
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
868
	SWAPGS
869
	popfq
870
	ret
871
END(native_load_gs_index)
872
EXPORT_SYMBOL(native_load_gs_index)
873

874
	_ASM_EXTABLE(.Lgs_change, bad_gs)
875
	.section .fixup, "ax"
L
Linus Torvalds 已提交
876
	/* running with kernelgs */
877
bad_gs:
878
	SWAPGS					/* switch back to user gs */
879 880 881 882 883 884
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
885 886 887
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
888
	.previous
889

890
/* Call softirq on interrupt stack. Interrupts are off. */
891
ENTRY(do_softirq_own_stack)
892 893 894 895 896 897
	pushq	%rbp
	mov	%rsp, %rbp
	incl	PER_CPU_VAR(irq_count)
	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
	push	%rbp				/* frame pointer backlink */
	call	__do_softirq
898
	leaveq
899
	decl	PER_CPU_VAR(irq_count)
900
	ret
901
END(do_softirq_own_stack)
902

903
#ifdef CONFIG_XEN
904
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
905 906

/*
907 908 909 910 911 912 913 914 915 916 917 918
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
919 920
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

921 922 923 924
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
925 926 927 928 929 930 931 932
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
11:	incl	PER_CPU_VAR(irq_count)
	movq	%rsp, %rbp
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	%rbp				/* frame pointer backlink */
	call	xen_evtchn_do_upcall
	popq	%rsp
	decl	PER_CPU_VAR(irq_count)
933
#ifndef CONFIG_PREEMPT
934
	call	xen_maybe_preempt_hcall
935
#endif
936
	jmp	error_exit
937
END(xen_do_hypervisor_callback)
938 939

/*
940 941 942 943 944 945 946 947 948 949 950 951
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
952
ENTRY(xen_failsafe_callback)
953 954 955 956 957 958 959 960 961 962 963 964
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
965
	/* All segments match their saved values => Category 2 (Bad IRET). */
966 967 968 969 970 971 972
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
973
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
974 975 976 977
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
978 979 980
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
981
	ENCODE_FRAME_POINTER
982
	jmp	error_exit
983 984
END(xen_failsafe_callback)

985
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
986 987
	xen_hvm_callback_vector xen_evtchn_do_upcall

988
#endif /* CONFIG_XEN */
989

990
#if IS_ENABLED(CONFIG_HYPERV)
991
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
992 993 994
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

995 996 997 998
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

999
#ifdef CONFIG_XEN
1000 1001 1002
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1003
#endif
1004 1005 1006 1007

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
1008
#ifdef CONFIG_KVM_GUEST
1009
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1010
#endif
1011

1012
#ifdef CONFIG_X86_MCE
1013
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1014 1015
#endif

1016 1017 1018 1019 1020 1021
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1022 1023 1024
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1025
	ENCODE_FRAME_POINTER 8
1026 1027
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1028
	rdmsr
1029 1030
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1031
	SWAPGS
1032
	xorl	%ebx, %ebx
1033
1:	ret
1034
END(paranoid_entry)
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1045 1046
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1047
 */
1048
ENTRY(paranoid_exit)
1049
	DISABLE_INTERRUPTS(CLBR_ANY)
1050
	TRACE_IRQS_OFF_DEBUG
1051 1052
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1053
	TRACE_IRQS_IRETQ
1054
	SWAPGS_UNSAFE_STACK
1055
	jmp	paranoid_exit_restore
1056
paranoid_exit_no_swapgs:
1057
	TRACE_IRQS_IRETQ_DEBUG
1058
paranoid_exit_restore:
1059 1060 1061
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1062
	INTERRUPT_RETURN
1063 1064 1065
END(paranoid_exit)

/*
1066
 * Save all registers in pt_regs, and switch gs if needed.
1067
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1068 1069 1070
 */
ENTRY(error_entry)
	cld
1071 1072
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1073
	ENCODE_FRAME_POINTER 8
1074
	xorl	%ebx, %ebx
1075
	testb	$3, CS+8(%rsp)
1076
	jz	.Lerror_kernelspace
1077

1078 1079 1080 1081
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1082
	SWAPGS
1083

1084
.Lerror_entry_from_usermode_after_swapgs:
1085 1086 1087 1088 1089 1090
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1091
	CALL_enter_from_user_mode
1092
	ret
1093

1094
.Lerror_entry_done:
1095 1096 1097
	TRACE_IRQS_OFF
	ret

1098 1099 1100 1101 1102 1103
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1104
.Lerror_kernelspace:
1105 1106 1107
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1108
	je	.Lerror_bad_iret
1109 1110
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1111
	je	.Lbstep_iret
1112
	cmpq	$.Lgs_change, RIP+8(%rsp)
1113
	jne	.Lerror_entry_done
1114 1115

	/*
1116
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1117
	 * gsbase and proceed.  We'll fix up the exception and land in
1118
	 * .Lgs_change's error handler with kernel gsbase.
1119
	 */
1120 1121
	SWAPGS
	jmp .Lerror_entry_done
1122

1123
.Lbstep_iret:
1124
	/* Fix truncated RIP */
1125
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1126 1127
	/* fall through */

1128
.Lerror_bad_iret:
1129 1130 1131 1132
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1133
	SWAPGS
1134 1135 1136 1137 1138 1139

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1140 1141 1142
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1143
	decl	%ebx
1144
	jmp	.Lerror_entry_from_usermode_after_swapgs
1145 1146 1147
END(error_entry)


1148
/*
1149
 * On entry, EBX is a "return to kernel mode" flag:
1150 1151 1152
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1153
ENTRY(error_exit)
1154
	DISABLE_INTERRUPTS(CLBR_ANY)
1155
	TRACE_IRQS_OFF
1156
	testl	%ebx, %ebx
1157 1158
	jnz	retint_kernel
	jmp	retint_user
1159 1160
END(error_exit)

1161
/* Runs on exception stack */
1162
ENTRY(nmi)
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1173
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1192 1193 1194
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1195 1196
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1197
	 *    o Modify the "iret" location to jump to the repeat_nmi
1198 1199 1200 1201 1202 1203 1204 1205
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1206 1207 1208 1209 1210
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1211 1212
	 */

1213
	/* Use %rdx as our temp variable throughout */
1214
	pushq	%rdx
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1225 1226 1227
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1228 1229
	 */

1230
	SWAPGS_UNSAFE_STACK
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1255
	ENCODE_FRAME_POINTER
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1267
	/*
1268
	 * Return back to user mode.  We must *not* do the normal exit
1269
	 * work, because we don't want to enable interrupts.
1270
	 */
1271
	SWAPGS
1272
	jmp	restore_regs_and_iret
1273

1274
.Lnmi_from_kernel:
1275
	/*
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1316
	/*
1317 1318
	 * Determine whether we're a nested NMI.
	 *
1319 1320 1321 1322 1323 1324
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1325
	 */
1326 1327 1328 1329 1330 1331 1332 1333

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1334

1335
	/*
1336
	 * Now check "NMI executing".  If it's set, then we're nested.
1337 1338
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1339
	 */
1340 1341
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1342 1343

	/*
1344 1345
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1346 1347 1348 1349 1350 1351 1352 1353
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1354
	 */
1355 1356 1357 1358 1359
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1360

1361 1362 1363 1364
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1365 1366 1367 1368 1369 1370 1371

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1372

1373 1374
nested_nmi:
	/*
1375 1376
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1377
	 */
1378
	subq	$8, %rsp
1379 1380 1381
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1382
	pushfq
1383 1384
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1385 1386

	/* Put stack back */
1387
	addq	$(6*8), %rsp
1388 1389

nested_nmi_out:
1390
	popq	%rdx
1391

1392
	/* We are returning to kernel mode, so this cannot result in a fault. */
1393 1394 1395
	INTERRUPT_RETURN

first_nmi:
1396
	/* Restore rdx. */
1397
	movq	(%rsp), %rdx
1398

1399 1400
	/* Make room for "NMI executing". */
	pushq	$0
1401

1402
	/* Leave room for the "iret" frame */
1403
	subq	$(5*8), %rsp
1404

1405
	/* Copy the "original" frame to the "outermost" frame */
1406
	.rept 5
1407
	pushq	11*8(%rsp)
1408
	.endr
1409

1410 1411
	/* Everything up to here is safe from nested NMIs */

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1:
#endif

1427
repeat_nmi:
1428 1429 1430 1431 1432 1433 1434 1435
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1436 1437 1438 1439
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1440 1441
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1442
	 */
1443
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1444

1445
	/*
1446 1447 1448
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1449
	 */
1450
	addq	$(10*8), %rsp
1451
	.rept 5
1452
	pushq	-6*8(%rsp)
1453
	.endr
1454
	subq	$(5*8), %rsp
1455
end_repeat_nmi:
1456 1457

	/*
1458 1459 1460
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1461
	 */
1462
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1463 1464
	ALLOC_PT_GPREGS_ON_STACK

1465
	/*
1466
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1467 1468 1469 1470 1471
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1472
	call	paranoid_entry
1473

1474
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1475 1476 1477
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1478

1479 1480
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1481 1482 1483
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1484 1485
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1486 1487

	/* Point RSP at the "iret" frame. */
1488
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1500 1501 1502 1503 1504 1505

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1506
	INTERRUPT_RETURN
1507 1508 1509
END(nmi)

ENTRY(ignore_sysret)
1510
	mov	$-ENOSYS, %eax
1511 1512
	sysret
END(ignore_sysret)
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
	leaq	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)