entry_64.S 42.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <linux/err.h>
L
Linus Torvalds 已提交
41

42 43
.code64
.section .entry.text, "ax"
44

45
#ifdef CONFIG_PARAVIRT
46
ENTRY(native_usergs_sysret64)
47 48
	swapgs
	sysretq
49
ENDPROC(native_usergs_sysret64)
50 51
#endif /* CONFIG_PARAVIRT */

52
.macro TRACE_IRQS_IRETQ
53
#ifdef CONFIG_TRACE_IRQFLAGS
54 55
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
56 57 58 59 60
	TRACE_IRQS_ON
1:
#endif
.endm

61 62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
75
	call	debug_stack_set_zero
76
	TRACE_IRQS_OFF
77
	call	debug_stack_reset
78 79 80
.endm

.macro TRACE_IRQS_ON_DEBUG
81
	call	debug_stack_set_zero
82
	TRACE_IRQS_ON
83
	call	debug_stack_reset
84 85
.endm

86
.macro TRACE_IRQS_IRETQ_DEBUG
87 88
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
89 90 91 92 93
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
94 95 96
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
97 98
#endif

L
Linus Torvalds 已提交
99
/*
100
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
101
 *
102 103 104 105 106 107 108 109 110 111
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
112
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
113 114 115 116 117 118
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
119
 * rax  system call number
120 121
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
122 123
 * rdi  arg0
 * rsi  arg1
124
 * rdx  arg2
125
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
126 127
 * r8   arg4
 * r9   arg5
128
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
129
 *
L
Linus Torvalds 已提交
130 131
 * Only called from user space.
 *
132
 * When user can change pt_regs->foo always force IRET. That is because
133 134
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
135
 */
L
Linus Torvalds 已提交
136

137
ENTRY(entry_SYSCALL_64)
138 139 140 141 142
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
143 144 145 146 147 148
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
149
GLOBAL(entry_SYSCALL_64_after_swapgs)
150

151 152
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
153

154 155
	TRACE_IRQS_OFF

156
	/* Construct struct pt_regs on stack */
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

174 175 176 177
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
178 179
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
180 181
	jnz	entry_SYSCALL64_slow_path

182
entry_SYSCALL_64_fastpath:
183 184 185 186 187 188 189
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
190
#if __SYSCALL_MASK == ~0
191
	cmpq	$__NR_syscall_max, %rax
192
#else
193 194
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
195
#endif
196 197
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
198 199 200

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
201 202
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
203
	 */
204
	call	*sys_call_table(, %rax, 8)
205 206
.Lentry_SYSCALL_64_after_fastpath_call:

207
	movq	%rax, RAX(%rsp)
208
1:
209 210

	/*
211 212 213
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
214
	 */
215 216
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
217 218
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
219
	jnz	1f
220

221 222
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
223 224 225
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
226
	movq	RSP(%rsp), %rsp
227
	USERGS_SYSRET64
L
Linus Torvalds 已提交
228

229 230 231 232 233 234
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
235 236
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
237
	SAVE_EXTRA_REGS
238
	movq	%rsp, %rdi
239 240
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
241

242 243
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
244
	SAVE_EXTRA_REGS
245
	movq	%rsp, %rdi
246 247 248
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
249
	RESTORE_EXTRA_REGS
250
	TRACE_IRQS_IRETQ		/* we're about to change IF */
251 252 253 254 255

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
256 257 258 259
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
260 261 262 263

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
264
	 * the kernel, since userspace controls RSP.
265
	 *
266
	 * If width of "canonical tail" ever becomes variable, this will need
267 268 269 270 271
	 * to be updated to remain correct on both old and new CPUs.
	 */
	.ifne __VIRTUAL_MASK_SHIFT - 47
	.error "virtual address width changed -- SYSRET checks need update"
	.endif
272

273 274 275
	/* Change top 16 bits to be the sign-extension of 47th bit */
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
276

277 278 279
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
280

281 282
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
283

284 285 286
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
287 288

	/*
289 290 291 292 293 294 295 296 297
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
298
	 *
299
	 *           movq	$stuck_here, %rcx
300 301 302 303 304 305
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
306 307
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
308 309 310

	/* nothing to check for RSP */

311 312
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
313 314

	/*
315 316
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
317 318
	 */
syscall_return_via_sysret:
319 320
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
321
	movq	RSP(%rsp), %rsp
322 323 324 325 326
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
327
END(entry_SYSCALL_64)
328

329 330 331
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
332 333 334
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
335 336
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
337
	 * IRQs are on.
338 339 340 341
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

342 343 344 345 346 347
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
348
	popq	%rax
349
	jmp	entry_SYSCALL64_slow_path
350 351

1:
352
	jmp	*%rax				/* Called from C */
353 354 355 356 357 358 359 360 361 362 363 364 365 366
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

404 405 406
/*
 * A newly forked process directly context switches into this address.
 *
407
 * rax: prev task we switched from
408 409
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
410 411
 */
ENTRY(ret_from_fork)
412
	FRAME_BEGIN			/* help unwinder find end of stack */
413
	movq	%rax, %rdi
414
	call	schedule_tail		/* rdi: 'prev' task parameter */
415

416 417
	testq	%rbx, %rbx		/* from kernel_thread? */
	jnz	1f			/* kernel threads are uncommon */
418

419
2:
420
	leaq	FRAME_OFFSET(%rsp),%rdi	/* pt_regs pointer */
421 422 423
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
424
	FRAME_END
425
	jmp	restore_regs_and_iret
426 427 428 429 430 431 432 433 434 435 436 437

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
438 439
END(ret_from_fork)

440
/*
441 442
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
443
 */
444
	.align 8
445
ENTRY(irq_entries_start)
446 447
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
448
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
449 450 451 452
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
453 454
END(irq_entries_start)

455
/*
L
Linus Torvalds 已提交
456 457 458
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
459 460 461
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
462

463
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
464
	.macro interrupt func
465
	cld
466 467 468
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
469
	ENCODE_FRAME_POINTER
470

471
	testb	$3, CS(%rsp)
472
	jz	1f
473 474 475 476 477

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
478
	SWAPGS
479 480 481 482 483 484 485 486 487 488 489

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

490
	CALL_enter_from_user_mode
491

492
1:
493
	/*
D
Denys Vlasenko 已提交
494
	 * Save previous stack pointer, optionally switch to interrupt stack.
495 496 497 498 499
	 * irq_count is used to check if a CPU is already on an interrupt stack
	 * or not. While this is essentially redundant with preempt_count it is
	 * a little cheaper to use a separate counter in the PDA (short of
	 * moving irq_enter into assembly, which would be too much work)
	 */
500
	movq	%rsp, %rdi
501 502
	incl	PER_CPU_VAR(irq_count)
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
503
	pushq	%rdi
504 505 506
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

507
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
508 509
	.endm

510 511 512 513
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
514 515
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
516
	ASM_CLAC
517
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
518
	interrupt do_IRQ
519
	/* 0(%rsp): old RSP */
520
ret_from_intr:
521
	DISABLE_INTERRUPTS(CLBR_NONE)
522
	TRACE_IRQS_OFF
523
	decl	PER_CPU_VAR(irq_count)
524

525
	/* Restore saved previous stack */
526
	popq	%rsp
527

528
	testb	$3, CS(%rsp)
529
	jz	retint_kernel
530

531 532 533 534
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
535
	TRACE_IRQS_IRETQ
536
	SWAPGS
537
	jmp	restore_regs_and_iret
538

539
/* Returning to kernel space */
540
retint_kernel:
541 542 543
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
544
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
545
	jnc	1f
546
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
547
	jnz	1f
548
	call	preempt_schedule_irq
549
	jmp	0b
550
1:
551
#endif
552 553 554 555
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
556 557 558 559 560

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
561
GLOBAL(restore_regs_and_iret)
562
	RESTORE_EXTRA_REGS
563
restore_c_regs_and_iret:
564 565
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
566 567 568
	INTERRUPT_RETURN

ENTRY(native_iret)
569 570 571 572
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
573
#ifdef CONFIG_X86_ESPFIX64
574 575
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
576
#endif
577

578
.global native_irq_return_iret
579
native_irq_return_iret:
A
Andy Lutomirski 已提交
580 581 582 583 584 585
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
586
	iretq
I
Ingo Molnar 已提交
587

588
#ifdef CONFIG_X86_ESPFIX64
589
native_irq_return_ldt:
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
612
	SWAPGS
613
	movq	PER_CPU_VAR(espfix_waddr), %rdi
614 615
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
616
	movq	%rax, (1*8)(%rdi)
617
	movq	(2*8)(%rsp), %rax		/* user CS */
618
	movq	%rax, (2*8)(%rdi)
619
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
620
	movq	%rax, (3*8)(%rdi)
621
	movq	(5*8)(%rsp), %rax		/* user SS */
622
	movq	%rax, (5*8)(%rdi)
623
	movq	(4*8)(%rsp), %rax		/* user RSP */
624
	movq	%rax, (4*8)(%rdi)
625 626 627 628 629 630 631 632 633 634 635 636 637
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
638
	orq	PER_CPU_VAR(espfix_stack), %rax
639
	SWAPGS
640
	movq	%rax, %rsp
641 642 643 644 645 646 647 648 649 650 651 652

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
653
	jmp	native_irq_return_iret
654
#endif
655
END(common_interrupt)
656

L
Linus Torvalds 已提交
657 658
/*
 * APIC interrupts.
659
 */
660
.macro apicinterrupt3 num sym do_sym
661
ENTRY(\sym)
662
	ASM_CLAC
663
	pushq	$~(\num)
664
.Lcommon_\sym:
665
	interrupt \do_sym
666
	jmp	ret_from_intr
667 668
END(\sym)
.endm
L
Linus Torvalds 已提交
669

670 671 672 673 674 675 676 677 678 679 680 681
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

682 683 684 685 686 687 688 689 690
/* Make sure APIC interrupt handlers end up in the irqentry section: */
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
# define POP_SECTION_IRQENTRY	.popsection
#else
# define PUSH_SECTION_IRQENTRY
# define POP_SECTION_IRQENTRY
#endif

691
.macro apicinterrupt num sym do_sym
692
PUSH_SECTION_IRQENTRY
693 694
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
695
POP_SECTION_IRQENTRY
696 697
.endm

698
#ifdef CONFIG_SMP
699 700
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
701
#endif
L
Linus Torvalds 已提交
702

N
Nick Piggin 已提交
703
#ifdef CONFIG_X86_UV
704
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
705
#endif
706 707 708

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
709

710
#ifdef CONFIG_HAVE_KVM
711 712
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
713 714
#endif

715
#ifdef CONFIG_X86_MCE_THRESHOLD
716
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
717 718
#endif

719
#ifdef CONFIG_X86_MCE_AMD
720
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
721 722
#endif

723
#ifdef CONFIG_X86_THERMAL_VECTOR
724
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
725
#endif
726

727
#ifdef CONFIG_SMP
728 729 730
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
731
#endif
L
Linus Torvalds 已提交
732

733 734
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
735

736
#ifdef CONFIG_IRQ_WORK
737
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
738 739
#endif

L
Linus Torvalds 已提交
740 741
/*
 * Exception entry points.
742
 */
743
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
744 745

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
746
ENTRY(\sym)
747 748 749 750 751
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

752
	ASM_CLAC
753
	PARAVIRT_ADJUST_EXCEPTION_FRAME
754 755

	.ifeq \has_error_code
756
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
757 758
	.endif

759
	ALLOC_PT_GPREGS_ON_STACK
760 761

	.if \paranoid
762
	.if \paranoid == 1
763 764
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
765
	.endif
766
	call	paranoid_entry
767
	.else
768
	call	error_entry
769
	.endif
770
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
771 772

	.if \paranoid
773
	.if \shift_ist != -1
774
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
775
	.else
776
	TRACE_IRQS_OFF
777
	.endif
778
	.endif
779

780
	movq	%rsp, %rdi			/* pt_regs pointer */
781 782

	.if \has_error_code
783 784
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
785
	.else
786
	xorl	%esi, %esi			/* no error code */
787 788
	.endif

789
	.if \shift_ist != -1
790
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
791 792
	.endif

793
	call	\do_sym
794

795
	.if \shift_ist != -1
796
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
797 798
	.endif

799
	/* these procedures expect "no swapgs" flag in ebx */
800
	.if \paranoid
801
	jmp	paranoid_exit
802
	.else
803
	jmp	error_exit
804 805
	.endif

806 807 808 809 810 811 812
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
813
	call	error_entry
814 815


816 817 818
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
819

820
	movq	%rsp, %rdi			/* pt_regs pointer */
821 822

	.if \has_error_code
823 824
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
825
	.else
826
	xorl	%esi, %esi			/* no error code */
827 828
	.endif

829
	call	\do_sym
830

831
	jmp	error_exit			/* %ebx: no swapgs flag */
832
	.endif
833
END(\sym)
834
.endm
835

836
#ifdef CONFIG_TRACING
837 838 839
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
840 841
.endm
#else
842 843
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
844 845 846
.endm
#endif

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
866
ENTRY(native_load_gs_index)
867
	pushfq
868
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
869
	SWAPGS
870
.Lgs_change:
871
	movl	%edi, %gs
872
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
873
	SWAPGS
874
	popfq
875
	ret
876
END(native_load_gs_index)
877
EXPORT_SYMBOL(native_load_gs_index)
878

879
	_ASM_EXTABLE(.Lgs_change, bad_gs)
880
	.section .fixup, "ax"
L
Linus Torvalds 已提交
881
	/* running with kernelgs */
882
bad_gs:
883
	SWAPGS					/* switch back to user gs */
884 885 886 887 888 889
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
890 891 892
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
893
	.previous
894

895
/* Call softirq on interrupt stack. Interrupts are off. */
896
ENTRY(do_softirq_own_stack)
897 898 899 900 901 902
	pushq	%rbp
	mov	%rsp, %rbp
	incl	PER_CPU_VAR(irq_count)
	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
	push	%rbp				/* frame pointer backlink */
	call	__do_softirq
903
	leaveq
904
	decl	PER_CPU_VAR(irq_count)
905
	ret
906
END(do_softirq_own_stack)
907

908
#ifdef CONFIG_XEN
909
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
910 911

/*
912 913 914 915 916 917 918 919 920 921 922 923
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
924 925
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

926 927 928 929
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
930 931 932 933 934 935 936 937
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
11:	incl	PER_CPU_VAR(irq_count)
	movq	%rsp, %rbp
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	%rbp				/* frame pointer backlink */
	call	xen_evtchn_do_upcall
	popq	%rsp
	decl	PER_CPU_VAR(irq_count)
938
#ifndef CONFIG_PREEMPT
939
	call	xen_maybe_preempt_hcall
940
#endif
941
	jmp	error_exit
942
END(xen_do_hypervisor_callback)
943 944

/*
945 946 947 948 949 950 951 952 953 954 955 956
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
957
ENTRY(xen_failsafe_callback)
958 959 960 961 962 963 964 965 966 967 968 969
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
970
	/* All segments match their saved values => Category 2 (Bad IRET). */
971 972 973 974 975 976 977
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
978
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
979 980 981 982
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
983 984 985
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
986
	ENCODE_FRAME_POINTER
987
	jmp	error_exit
988 989
END(xen_failsafe_callback)

990
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
991 992
	xen_hvm_callback_vector xen_evtchn_do_upcall

993
#endif /* CONFIG_XEN */
994

995
#if IS_ENABLED(CONFIG_HYPERV)
996
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
997 998 999
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1000 1001 1002 1003
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1004
#ifdef CONFIG_XEN
1005 1006 1007
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1008
#endif
1009 1010 1011 1012

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
1013
#ifdef CONFIG_KVM_GUEST
1014
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1015
#endif
1016

1017
#ifdef CONFIG_X86_MCE
1018
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1019 1020
#endif

1021 1022 1023 1024 1025 1026
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1027 1028 1029
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1030
	ENCODE_FRAME_POINTER 8
1031 1032
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1033
	rdmsr
1034 1035
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1036
	SWAPGS
1037
	xorl	%ebx, %ebx
1038
1:	ret
1039
END(paranoid_entry)
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1050 1051
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1052
 */
1053 1054
ENTRY(paranoid_exit)
	DISABLE_INTERRUPTS(CLBR_NONE)
1055
	TRACE_IRQS_OFF_DEBUG
1056 1057
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1058
	TRACE_IRQS_IRETQ
1059
	SWAPGS_UNSAFE_STACK
1060
	jmp	paranoid_exit_restore
1061
paranoid_exit_no_swapgs:
1062
	TRACE_IRQS_IRETQ_DEBUG
1063
paranoid_exit_restore:
1064 1065 1066
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1067
	INTERRUPT_RETURN
1068 1069 1070
END(paranoid_exit)

/*
1071
 * Save all registers in pt_regs, and switch gs if needed.
1072
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1073 1074 1075
 */
ENTRY(error_entry)
	cld
1076 1077
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1078
	ENCODE_FRAME_POINTER 8
1079
	xorl	%ebx, %ebx
1080
	testb	$3, CS+8(%rsp)
1081
	jz	.Lerror_kernelspace
1082

1083 1084 1085 1086
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1087
	SWAPGS
1088

1089
.Lerror_entry_from_usermode_after_swapgs:
1090 1091 1092 1093 1094 1095
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1096
	CALL_enter_from_user_mode
1097
	ret
1098

1099
.Lerror_entry_done:
1100 1101 1102
	TRACE_IRQS_OFF
	ret

1103 1104 1105 1106 1107 1108
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1109
.Lerror_kernelspace:
1110 1111 1112
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1113
	je	.Lerror_bad_iret
1114 1115
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1116
	je	.Lbstep_iret
1117
	cmpq	$.Lgs_change, RIP+8(%rsp)
1118
	jne	.Lerror_entry_done
1119 1120

	/*
1121
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1122
	 * gsbase and proceed.  We'll fix up the exception and land in
1123
	 * .Lgs_change's error handler with kernel gsbase.
1124
	 */
1125 1126
	SWAPGS
	jmp .Lerror_entry_done
1127

1128
.Lbstep_iret:
1129
	/* Fix truncated RIP */
1130
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1131 1132
	/* fall through */

1133
.Lerror_bad_iret:
1134 1135 1136 1137
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1138
	SWAPGS
1139 1140 1141 1142 1143 1144

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1145 1146 1147
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1148
	decl	%ebx
1149
	jmp	.Lerror_entry_from_usermode_after_swapgs
1150 1151 1152
END(error_entry)


1153
/*
1154
 * On entry, EBX is a "return to kernel mode" flag:
1155 1156 1157
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1158
ENTRY(error_exit)
1159
	movl	%ebx, %eax
1160 1161
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
1162 1163 1164
	testl	%eax, %eax
	jnz	retint_kernel
	jmp	retint_user
1165 1166
END(error_exit)

1167
/* Runs on exception stack */
1168
ENTRY(nmi)
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1179
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1198 1199 1200
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1201 1202
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1203
	 *    o Modify the "iret" location to jump to the repeat_nmi
1204 1205 1206 1207 1208 1209 1210 1211
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1212 1213 1214 1215 1216
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1217 1218
	 */

1219
	/* Use %rdx as our temp variable throughout */
1220
	pushq	%rdx
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1231 1232 1233
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1234 1235
	 */

1236
	SWAPGS_UNSAFE_STACK
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1261
	ENCODE_FRAME_POINTER
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1273
	/*
1274
	 * Return back to user mode.  We must *not* do the normal exit
1275
	 * work, because we don't want to enable interrupts.
1276
	 */
1277
	SWAPGS
1278
	jmp	restore_regs_and_iret
1279

1280
.Lnmi_from_kernel:
1281
	/*
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1322
	/*
1323 1324
	 * Determine whether we're a nested NMI.
	 *
1325 1326 1327 1328 1329 1330
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1331
	 */
1332 1333 1334 1335 1336 1337 1338 1339

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1340

1341
	/*
1342
	 * Now check "NMI executing".  If it's set, then we're nested.
1343 1344
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1345
	 */
1346 1347
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1348 1349

	/*
1350 1351
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1352 1353 1354 1355 1356 1357 1358 1359
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1360
	 */
1361 1362 1363 1364 1365
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1366

1367 1368 1369 1370
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1371 1372 1373 1374 1375 1376 1377

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1378

1379 1380
nested_nmi:
	/*
1381 1382
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1383
	 */
1384
	subq	$8, %rsp
1385 1386 1387
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1388
	pushfq
1389 1390
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1391 1392

	/* Put stack back */
1393
	addq	$(6*8), %rsp
1394 1395

nested_nmi_out:
1396
	popq	%rdx
1397

1398
	/* We are returning to kernel mode, so this cannot result in a fault. */
1399 1400 1401
	INTERRUPT_RETURN

first_nmi:
1402
	/* Restore rdx. */
1403
	movq	(%rsp), %rdx
1404

1405 1406
	/* Make room for "NMI executing". */
	pushq	$0
1407

1408
	/* Leave room for the "iret" frame */
1409
	subq	$(5*8), %rsp
1410

1411
	/* Copy the "original" frame to the "outermost" frame */
1412
	.rept 5
1413
	pushq	11*8(%rsp)
1414
	.endr
1415

1416 1417
	/* Everything up to here is safe from nested NMIs */

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1:
#endif

1433
repeat_nmi:
1434 1435 1436 1437 1438 1439 1440 1441
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1442 1443 1444 1445
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1446 1447
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1448
	 */
1449
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1450

1451
	/*
1452 1453 1454
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1455
	 */
1456
	addq	$(10*8), %rsp
1457
	.rept 5
1458
	pushq	-6*8(%rsp)
1459
	.endr
1460
	subq	$(5*8), %rsp
1461
end_repeat_nmi:
1462 1463

	/*
1464 1465 1466
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1467
	 */
1468
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1469 1470
	ALLOC_PT_GPREGS_ON_STACK

1471
	/*
1472
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1473 1474 1475 1476 1477
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1478
	call	paranoid_entry
1479

1480
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1481 1482 1483
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1484

1485 1486
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1487 1488 1489
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1490 1491
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1492 1493

	/* Point RSP at the "iret" frame. */
1494
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1506 1507 1508 1509 1510 1511

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1512
	INTERRUPT_RETURN
1513 1514 1515
END(nmi)

ENTRY(ignore_sysret)
1516
	mov	$-ENOSYS, %eax
1517 1518
	sysret
END(ignore_sysret)
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
	leaq	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)