entry_64.S 43.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <linux/err.h>
L
Linus Torvalds 已提交
41

42 43
.code64
.section .entry.text, "ax"
44

45
#ifdef CONFIG_PARAVIRT
46
ENTRY(native_usergs_sysret64)
47
	UNWIND_HINT_EMPTY
48 49
	swapgs
	sysretq
50
END(native_usergs_sysret64)
51 52
#endif /* CONFIG_PARAVIRT */

53
.macro TRACE_IRQS_IRETQ
54
#ifdef CONFIG_TRACE_IRQFLAGS
55 56
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
57 58 59 60 61
	TRACE_IRQS_ON
1:
#endif
.endm

62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
76
	call	debug_stack_set_zero
77
	TRACE_IRQS_OFF
78
	call	debug_stack_reset
79 80 81
.endm

.macro TRACE_IRQS_ON_DEBUG
82
	call	debug_stack_set_zero
83
	TRACE_IRQS_ON
84
	call	debug_stack_reset
85 86
.endm

87
.macro TRACE_IRQS_IRETQ_DEBUG
88 89
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
90 91 92 93 94
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
95 96 97
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
98 99
#endif

L
Linus Torvalds 已提交
100
/*
101
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
102
 *
103 104 105 106 107 108 109 110 111 112
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
113
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
114 115 116 117 118 119
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
120
 * rax  system call number
121 122
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
123 124
 * rdi  arg0
 * rsi  arg1
125
 * rdx  arg2
126
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
127 128
 * r8   arg4
 * r9   arg5
129
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
130
 *
L
Linus Torvalds 已提交
131 132
 * Only called from user space.
 *
133
 * When user can change pt_regs->foo always force IRET. That is because
134 135
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
136
 */
L
Linus Torvalds 已提交
137

138
ENTRY(entry_SYSCALL_64)
139
	UNWIND_HINT_EMPTY
140 141 142 143 144
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
145

146
	swapgs
147 148
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
149

150 151
	TRACE_IRQS_OFF

152
	/* Construct struct pt_regs on stack */
153 154 155 156 157
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
158
GLOBAL(entry_SYSCALL_64_after_hwframe)
159 160 161 162 163 164 165 166 167 168 169
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
170
	UNWIND_HINT_REGS extra=0
171

172 173 174 175
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
176 177
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
178 179
	jnz	entry_SYSCALL64_slow_path

180
entry_SYSCALL_64_fastpath:
181 182 183 184 185 186 187
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
188
#if __SYSCALL_MASK == ~0
189
	cmpq	$__NR_syscall_max, %rax
190
#else
191 192
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
193
#endif
194 195
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
196 197 198

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
199 200
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
201
	 */
202
	call	*sys_call_table(, %rax, 8)
203 204
.Lentry_SYSCALL_64_after_fastpath_call:

205
	movq	%rax, RAX(%rsp)
206
1:
207 208

	/*
209 210 211
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
212
	 */
213
	DISABLE_INTERRUPTS(CLBR_ANY)
214
	TRACE_IRQS_OFF
215 216
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
217
	jnz	1f
218

219 220
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
221 222 223
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
224
	movq	RSP(%rsp), %rsp
225
	UNWIND_HINT_EMPTY
226
	USERGS_SYSRET64
L
Linus Torvalds 已提交
227

228 229 230 231 232 233
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
234
	TRACE_IRQS_ON
235
	ENABLE_INTERRUPTS(CLBR_ANY)
236
	SAVE_EXTRA_REGS
237
	movq	%rsp, %rdi
238 239
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
240

241 242
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
243
	SAVE_EXTRA_REGS
244
	movq	%rsp, %rdi
245 246 247
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
248
	TRACE_IRQS_IRETQ		/* we're about to change IF */
249 250 251

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
252 253
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
254
	 */
255 256
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
257 258 259

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
260 261 262 263

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
264
	 * the kernel, since userspace controls RSP.
265
	 *
266
	 * If width of "canonical tail" ever becomes variable, this will need
267
	 * to be updated to remain correct on both old and new CPUs.
268
	 *
269 270
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
271
	 */
272 273
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
274

275 276
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
277
	jne	swapgs_restore_regs_and_return_to_usermode
278

279
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
280
	jne	swapgs_restore_regs_and_return_to_usermode
281

282 283
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
284
	jne	swapgs_restore_regs_and_return_to_usermode
285 286

	/*
287 288 289 290 291 292 293 294 295
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
296
	 *
297
	 *           movq	$stuck_here, %rcx
298 299 300 301 302 303
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
304
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
305
	jnz	swapgs_restore_regs_and_return_to_usermode
306 307 308

	/* nothing to check for RSP */

309
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
310
	jne	swapgs_restore_regs_and_return_to_usermode
311 312

	/*
313 314
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
315 316
	 */
syscall_return_via_sysret:
317
	/* rcx and r11 are already restored (see code above) */
318
	RESTORE_EXTRA_REGS
319
	RESTORE_C_REGS_EXCEPT_RCX_R11
320
	movq	RSP(%rsp), %rsp
321
	UNWIND_HINT_EMPTY
322
	USERGS_SYSRET64
323
END(entry_SYSCALL_64)
324

325 326 327
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
328 329 330
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
331 332
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
333
	 * IRQs are on.
334 335 336 337
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

338 339 340 341
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
342
	DISABLE_INTERRUPTS(CLBR_ANY)
343
	TRACE_IRQS_OFF
344
	popq	%rax
345
	UNWIND_HINT_REGS extra=0
346
	jmp	entry_SYSCALL64_slow_path
347 348

1:
349
	jmp	*%rax				/* Called from C */
350 351 352 353
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
354
	UNWIND_HINT_FUNC
355 356 357 358 359 360 361 362 363 364
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
365

366 367 368 369 370
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
371
	UNWIND_HINT_FUNC
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

403 404 405
/*
 * A newly forked process directly context switches into this address.
 *
406
 * rax: prev task we switched from
407 408
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
409 410
 */
ENTRY(ret_from_fork)
411
	UNWIND_HINT_EMPTY
412
	movq	%rax, %rdi
413
	call	schedule_tail			/* rdi: 'prev' task parameter */
414

415 416
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
417

418
2:
419
	UNWIND_HINT_REGS
420
	movq	%rsp, %rdi
421 422
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
423
	jmp	swapgs_restore_regs_and_return_to_usermode
424 425 426 427 428 429 430 431 432 433 434 435

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
436 437
END(ret_from_fork)

438
/*
439 440
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
441
 */
442
	.align 8
443
ENTRY(irq_entries_start)
444 445
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
446
	UNWIND_HINT_IRET_REGS
447
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
448 449
	jmp	common_interrupt
	.align	8
450
	vector=vector+1
451
    .endr
452 453
END(irq_entries_start)

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
	pushfq
	testl $X86_EFLAGS_IF, (%rsp)
	jz .Lokay_\@
	ud2
.Lokay_\@:
	addq $8, %rsp
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
472
.macro ENTER_IRQ_STACK regs=1 old_rsp
473 474
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
475 476 477 478 479

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

480
	incl	PER_CPU_VAR(irq_count)
481
	jnz	.Lirq_stack_push_old_rsp_\@
482 483 484 485 486 487 488 489 490

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
507
	 */
508 509 510 511 512
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
513

514
.Lirq_stack_push_old_rsp_\@:
515
	pushq	\old_rsp
516 517 518 519

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
520 521 522 523 524
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
525
.macro LEAVE_IRQ_STACK regs=1
526 527 528 529
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

530 531 532 533
	.if \regs
	UNWIND_HINT_REGS
	.endif

534 535 536 537 538 539 540 541
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

542
/*
L
Linus Torvalds 已提交
543 544 545
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
546 547 548
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
549

550
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
551
	.macro interrupt func
552
	cld
553 554 555
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
556
	ENCODE_FRAME_POINTER
557

558
	testb	$3, CS(%rsp)
559
	jz	1f
560 561 562 563 564

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
565
	SWAPGS
566 567 568 569 570 571 572 573 574 575 576

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

577
	CALL_enter_from_user_mode
578

579
1:
580
	ENTER_IRQ_STACK old_rsp=%rdi
581 582 583
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

584
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
585 586
	.endm

587 588 589 590
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
591 592
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
593
	ASM_CLAC
594
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
595
	interrupt do_IRQ
596
	/* 0(%rsp): old RSP */
597
ret_from_intr:
598
	DISABLE_INTERRUPTS(CLBR_ANY)
599
	TRACE_IRQS_OFF
600

601
	LEAVE_IRQ_STACK
602

603
	testb	$3, CS(%rsp)
604
	jz	retint_kernel
605

606 607 608 609
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
610
	TRACE_IRQS_IRETQ
611

612
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
613 614 615 616 617 618 619
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
	testl	$3, CS(%rsp)
	jnz	1f
	ud2
1:
#endif
620
	SWAPGS
621 622 623 624 625
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
	INTERRUPT_RETURN

626

627
/* Returning to kernel space */
628
retint_kernel:
629 630 631
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
632
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
633
	jnc	1f
634
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
635
	jnz	1f
636
	call	preempt_schedule_irq
637
	jmp	0b
638
1:
639
#endif
640 641 642 643
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
644

645 646 647 648 649 650 651 652
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
	testl	$3, CS(%rsp)
	jz	1f
	ud2
1:
#endif
653
	RESTORE_EXTRA_REGS
654 655
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
656 657 658
	INTERRUPT_RETURN

ENTRY(native_iret)
659
	UNWIND_HINT_IRET_REGS
660 661 662 663
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
664
#ifdef CONFIG_X86_ESPFIX64
665 666
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
667
#endif
668

669
.global native_irq_return_iret
670
native_irq_return_iret:
A
Andy Lutomirski 已提交
671 672 673 674 675 676
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
677
	iretq
I
Ingo Molnar 已提交
678

679
#ifdef CONFIG_X86_ESPFIX64
680
native_irq_return_ldt:
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
703
	SWAPGS
704
	movq	PER_CPU_VAR(espfix_waddr), %rdi
705 706
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
707
	movq	%rax, (1*8)(%rdi)
708
	movq	(2*8)(%rsp), %rax		/* user CS */
709
	movq	%rax, (2*8)(%rdi)
710
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
711
	movq	%rax, (3*8)(%rdi)
712
	movq	(5*8)(%rsp), %rax		/* user SS */
713
	movq	%rax, (5*8)(%rdi)
714
	movq	(4*8)(%rsp), %rax		/* user RSP */
715
	movq	%rax, (4*8)(%rdi)
716 717 718 719 720 721 722 723 724 725 726 727 728
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
729
	orq	PER_CPU_VAR(espfix_stack), %rax
730
	SWAPGS
731
	movq	%rax, %rsp
732
	UNWIND_HINT_IRET_REGS offset=8
733 734 735 736 737 738 739 740 741 742 743 744

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
745
	jmp	native_irq_return_iret
746
#endif
747
END(common_interrupt)
748

L
Linus Torvalds 已提交
749 750
/*
 * APIC interrupts.
751
 */
752
.macro apicinterrupt3 num sym do_sym
753
ENTRY(\sym)
754
	UNWIND_HINT_IRET_REGS
755
	ASM_CLAC
756
	pushq	$~(\num)
757
.Lcommon_\sym:
758
	interrupt \do_sym
759
	jmp	ret_from_intr
760 761
END(\sym)
.endm
L
Linus Torvalds 已提交
762

763
/* Make sure APIC interrupt handlers end up in the irqentry section: */
764 765
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
766

767
.macro apicinterrupt num sym do_sym
768
PUSH_SECTION_IRQENTRY
769
apicinterrupt3 \num \sym \do_sym
770
POP_SECTION_IRQENTRY
771 772
.endm

773
#ifdef CONFIG_SMP
774 775
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
776
#endif
L
Linus Torvalds 已提交
777

N
Nick Piggin 已提交
778
#ifdef CONFIG_X86_UV
779
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
780
#endif
781 782 783

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
784

785
#ifdef CONFIG_HAVE_KVM
786 787
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
788
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
789 790
#endif

791
#ifdef CONFIG_X86_MCE_THRESHOLD
792
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
793 794
#endif

795
#ifdef CONFIG_X86_MCE_AMD
796
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
797 798
#endif

799
#ifdef CONFIG_X86_THERMAL_VECTOR
800
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
801
#endif
802

803
#ifdef CONFIG_SMP
804 805 806
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
807
#endif
L
Linus Torvalds 已提交
808

809 810
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
811

812
#ifdef CONFIG_IRQ_WORK
813
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
814 815
#endif

L
Linus Torvalds 已提交
816 817
/*
 * Exception entry points.
818
 */
819
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
820 821

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
822
ENTRY(\sym)
823
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
824

825 826 827 828 829
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

830
	ASM_CLAC
831

832
	.if \has_error_code == 0
833
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
834 835
	.endif

836
	ALLOC_PT_GPREGS_ON_STACK
837 838

	.if \paranoid
839
	.if \paranoid == 1
840 841
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
842
	.endif
843
	call	paranoid_entry
844
	.else
845
	call	error_entry
846
	.endif
847
	UNWIND_HINT_REGS
848
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
849 850

	.if \paranoid
851
	.if \shift_ist != -1
852
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
853
	.else
854
	TRACE_IRQS_OFF
855
	.endif
856
	.endif
857

858
	movq	%rsp, %rdi			/* pt_regs pointer */
859 860

	.if \has_error_code
861 862
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
863
	.else
864
	xorl	%esi, %esi			/* no error code */
865 866
	.endif

867
	.if \shift_ist != -1
868
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
869 870
	.endif

871
	call	\do_sym
872

873
	.if \shift_ist != -1
874
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
875 876
	.endif

877
	/* these procedures expect "no swapgs" flag in ebx */
878
	.if \paranoid
879
	jmp	paranoid_exit
880
	.else
881
	jmp	error_exit
882 883
	.endif

884 885 886 887 888 889 890
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
891
	call	error_entry
892 893


894 895 896
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
897

898
	movq	%rsp, %rdi			/* pt_regs pointer */
899 900

	.if \has_error_code
901 902
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
903
	.else
904
	xorl	%esi, %esi			/* no error code */
905 906
	.endif

907
	call	\do_sym
908

909
	jmp	error_exit			/* %ebx: no swapgs flag */
910
	.endif
911
END(\sym)
912
.endm
913

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
933
ENTRY(native_load_gs_index)
934
	FRAME_BEGIN
935
	pushfq
936
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
937
	SWAPGS
938
.Lgs_change:
939
	movl	%edi, %gs
940
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
941
	SWAPGS
942
	popfq
943
	FRAME_END
944
	ret
945
ENDPROC(native_load_gs_index)
946
EXPORT_SYMBOL(native_load_gs_index)
947

948
	_ASM_EXTABLE(.Lgs_change, bad_gs)
949
	.section .fixup, "ax"
L
Linus Torvalds 已提交
950
	/* running with kernelgs */
951
bad_gs:
952
	SWAPGS					/* switch back to user gs */
953 954 955 956 957 958
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
959 960 961
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
962
	.previous
963

964
/* Call softirq on interrupt stack. Interrupts are off. */
965
ENTRY(do_softirq_own_stack)
966 967
	pushq	%rbp
	mov	%rsp, %rbp
968
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
969
	call	__do_softirq
970
	LEAVE_IRQ_STACK regs=0
971
	leaveq
972
	ret
973
ENDPROC(do_softirq_own_stack)
974

975
#ifdef CONFIG_XEN
976
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
977 978

/*
979 980 981 982 983 984 985 986 987 988 989 990
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
991 992
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

993 994 995 996
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
997
	UNWIND_HINT_FUNC
998
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
999
	UNWIND_HINT_REGS
1000 1001

	ENTER_IRQ_STACK old_rsp=%r10
1002
	call	xen_evtchn_do_upcall
1003 1004
	LEAVE_IRQ_STACK

1005
#ifndef CONFIG_PREEMPT
1006
	call	xen_maybe_preempt_hcall
1007
#endif
1008
	jmp	error_exit
1009
END(xen_do_hypervisor_callback)
1010 1011

/*
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1024
ENTRY(xen_failsafe_callback)
1025
	UNWIND_HINT_EMPTY
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1038
	/* All segments match their saved values => Category 2 (Bad IRET). */
1039 1040 1041 1042
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1043
	UNWIND_HINT_IRET_REGS offset=8
1044
	jmp	general_protection
1045
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1046 1047 1048
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1049
	UNWIND_HINT_IRET_REGS
1050
	pushq	$-1 /* orig_ax = -1 => not a system call */
1051 1052 1053
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1054
	ENCODE_FRAME_POINTER
1055
	jmp	error_exit
1056 1057
END(xen_failsafe_callback)

1058
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1059 1060
	xen_hvm_callback_vector xen_evtchn_do_upcall

1061
#endif /* CONFIG_XEN */
1062

1063
#if IS_ENABLED(CONFIG_HYPERV)
1064
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1065 1066 1067
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1068 1069 1070 1071
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1072
#ifdef CONFIG_XEN
1073 1074
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1075
#endif
1076 1077

idtentry general_protection	do_general_protection	has_error_code=1
1078
idtentry page_fault		do_page_fault		has_error_code=1
1079

G
Gleb Natapov 已提交
1080
#ifdef CONFIG_KVM_GUEST
1081
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1082
#endif
1083

1084
#ifdef CONFIG_X86_MCE
1085
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1086 1087
#endif

1088 1089 1090 1091 1092 1093
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1094
	UNWIND_HINT_FUNC
1095 1096 1097
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1098
	ENCODE_FRAME_POINTER 8
1099 1100
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1101
	rdmsr
1102 1103
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1104
	SWAPGS
1105
	xorl	%ebx, %ebx
1106
1:	ret
1107
END(paranoid_entry)
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1118 1119
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1120
 */
1121
ENTRY(paranoid_exit)
1122
	UNWIND_HINT_REGS
1123
	DISABLE_INTERRUPTS(CLBR_ANY)
1124
	TRACE_IRQS_OFF_DEBUG
1125 1126
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1127
	TRACE_IRQS_IRETQ
1128
	SWAPGS_UNSAFE_STACK
1129
	jmp	paranoid_exit_restore
1130
paranoid_exit_no_swapgs:
1131
	TRACE_IRQS_IRETQ_DEBUG
1132
paranoid_exit_restore:
1133 1134 1135
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1136
	INTERRUPT_RETURN
1137 1138 1139
END(paranoid_exit)

/*
1140
 * Save all registers in pt_regs, and switch gs if needed.
1141
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1142 1143
 */
ENTRY(error_entry)
1144
	UNWIND_HINT_FUNC
1145
	cld
1146 1147
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1148
	ENCODE_FRAME_POINTER 8
1149
	xorl	%ebx, %ebx
1150
	testb	$3, CS+8(%rsp)
1151
	jz	.Lerror_kernelspace
1152

1153 1154 1155 1156
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1157
	SWAPGS
1158

1159
.Lerror_entry_from_usermode_after_swapgs:
1160 1161 1162 1163 1164 1165
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1166
	CALL_enter_from_user_mode
1167
	ret
1168

1169
.Lerror_entry_done:
1170 1171 1172
	TRACE_IRQS_OFF
	ret

1173 1174 1175 1176 1177 1178
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1179
.Lerror_kernelspace:
1180 1181 1182
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1183
	je	.Lerror_bad_iret
1184 1185
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1186
	je	.Lbstep_iret
1187
	cmpq	$.Lgs_change, RIP+8(%rsp)
1188
	jne	.Lerror_entry_done
1189 1190

	/*
1191
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1192
	 * gsbase and proceed.  We'll fix up the exception and land in
1193
	 * .Lgs_change's error handler with kernel gsbase.
1194
	 */
1195 1196
	SWAPGS
	jmp .Lerror_entry_done
1197

1198
.Lbstep_iret:
1199
	/* Fix truncated RIP */
1200
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1201 1202
	/* fall through */

1203
.Lerror_bad_iret:
1204 1205 1206 1207
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1208
	SWAPGS
1209 1210 1211 1212 1213 1214

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1215 1216 1217
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1218
	decl	%ebx
1219
	jmp	.Lerror_entry_from_usermode_after_swapgs
1220 1221 1222
END(error_entry)


1223
/*
1224
 * On entry, EBX is a "return to kernel mode" flag:
1225 1226 1227
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1228
ENTRY(error_exit)
1229
	UNWIND_HINT_REGS
1230
	DISABLE_INTERRUPTS(CLBR_ANY)
1231
	TRACE_IRQS_OFF
1232
	testl	%ebx, %ebx
1233 1234
	jnz	retint_kernel
	jmp	retint_user
1235 1236
END(error_exit)

1237
/* Runs on exception stack */
1238
/* XXX: broken on Xen PV */
1239
ENTRY(nmi)
1240
	UNWIND_HINT_IRET_REGS
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1258 1259 1260
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1261 1262
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1263
	 *    o Modify the "iret" location to jump to the repeat_nmi
1264 1265 1266 1267 1268 1269 1270 1271
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1272 1273 1274 1275 1276
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1277 1278
	 */

1279 1280
	ASM_CLAC

1281
	/* Use %rdx as our temp variable throughout */
1282
	pushq	%rdx
1283

1284 1285 1286 1287 1288 1289 1290 1291 1292
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1293 1294 1295
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1296 1297
	 */

1298
	SWAPGS_UNSAFE_STACK
1299 1300 1301
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1302
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1303 1304 1305 1306 1307
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1308
	UNWIND_HINT_IRET_REGS
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1325
	UNWIND_HINT_REGS
1326
	ENCODE_FRAME_POINTER
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1338
	/*
1339
	 * Return back to user mode.  We must *not* do the normal exit
1340
	 * work, because we don't want to enable interrupts.
1341
	 */
1342
	jmp	swapgs_restore_regs_and_return_to_usermode
1343

1344
.Lnmi_from_kernel:
1345
	/*
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1386
	/*
1387 1388
	 * Determine whether we're a nested NMI.
	 *
1389 1390 1391 1392 1393 1394
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1395
	 */
1396 1397 1398 1399 1400 1401 1402 1403

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1404

1405
	/*
1406
	 * Now check "NMI executing".  If it's set, then we're nested.
1407 1408
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1409
	 */
1410 1411
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1412 1413

	/*
1414 1415
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1416 1417 1418 1419 1420 1421 1422 1423
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1424
	 */
1425 1426 1427 1428 1429
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1430

1431 1432 1433 1434
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1435 1436 1437 1438 1439 1440 1441

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1442

1443 1444
nested_nmi:
	/*
1445 1446
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1447
	 */
1448
	subq	$8, %rsp
1449 1450 1451
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1452
	pushfq
1453 1454
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1455 1456

	/* Put stack back */
1457
	addq	$(6*8), %rsp
1458 1459

nested_nmi_out:
1460
	popq	%rdx
1461

1462
	/* We are returning to kernel mode, so this cannot result in a fault. */
1463 1464 1465
	INTERRUPT_RETURN

first_nmi:
1466
	/* Restore rdx. */
1467
	movq	(%rsp), %rdx
1468

1469 1470
	/* Make room for "NMI executing". */
	pushq	$0
1471

1472
	/* Leave room for the "iret" frame */
1473
	subq	$(5*8), %rsp
1474

1475
	/* Copy the "original" frame to the "outermost" frame */
1476
	.rept 5
1477
	pushq	11*8(%rsp)
1478
	.endr
1479
	UNWIND_HINT_IRET_REGS
1480

1481 1482
	/* Everything up to here is safe from nested NMIs */

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1495
	UNWIND_HINT_IRET_REGS
1496 1497 1498
1:
#endif

1499
repeat_nmi:
1500 1501 1502 1503 1504 1505 1506 1507
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1508 1509 1510 1511
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1512 1513
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1514
	 */
1515
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1516

1517
	/*
1518 1519 1520
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1521
	 */
1522
	addq	$(10*8), %rsp
1523
	.rept 5
1524
	pushq	-6*8(%rsp)
1525
	.endr
1526
	subq	$(5*8), %rsp
1527
end_repeat_nmi:
1528 1529

	/*
1530 1531 1532
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1533
	 */
1534
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1535 1536
	ALLOC_PT_GPREGS_ON_STACK

1537
	/*
1538
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1539 1540 1541 1542 1543
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1544
	call	paranoid_entry
1545
	UNWIND_HINT_REGS
1546

1547
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1548 1549 1550
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1551

1552 1553
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1554 1555 1556
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1557 1558
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1559 1560

	/* Point RSP at the "iret" frame. */
1561
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1573 1574 1575 1576 1577 1578

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1579
	INTERRUPT_RETURN
1580 1581 1582
END(nmi)

ENTRY(ignore_sysret)
1583
	UNWIND_HINT_EMPTY
1584
	mov	$-ENOSYS, %eax
1585 1586
	sysret
END(ignore_sysret)
1587 1588

ENTRY(rewind_stack_do_exit)
1589
	UNWIND_HINT_FUNC
1590 1591 1592 1593
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1594 1595
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1596 1597 1598

	call	do_exit
END(rewind_stack_do_exit)